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ABSTRACT

We present two new parallel algorithms which compute the
GCD of 𝑛 integers of 𝑂(𝑛) bits in 𝑂(𝑛/ log𝑛) time with
𝑂(𝑛2+𝜖) processors in the worst case, for any 𝜖 > 0 in CRCW
PRAM model. More generally, we prove that computing
the GCD of 𝑚 integers of 𝑂(𝑛) bits can be achieved in
𝑂(𝑛 / log𝑛) parallel time with 𝑂(𝑚𝑛1+𝜖 ) processors, for any

2 ≤ 𝑚 ≤ 𝑛3/2/ log𝑛, i.e. the parallel time does not depend
on the number 𝑚 of integers considered in this range. We
suggest an extended GCD version for many integers as well
as an algorithm to solve linear Diophantine equations.
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1 INTRODUCTION

The computation of the GCD of two integers is not known
to be in the NC class, nor it is known to be P-complete [2].
The best parallel performance with deterministic algorithms
was first obtained by Chor and Goldreich [5], then by Soren-
son [18] and Sedjelmaci [15] since they propose, with different
approaches, parallel integer GCD algorithms which can be
achieved in 𝑂(𝑛/ log𝑛) time with 𝑂(𝑛1+𝜖) number of proces-
sors, for any 𝜖 > 0, in Concurrent Read Concurrent Write
(CRCW) PRAM model (see [10] for the PRAM model of com-
putation). Table 1 summarizes some parallel GCD algorithms
for two integers.

The GCD computation for more than two integers is im-
portant in many applications, for example in computing
canonical normal forms of integer matrices [7]. There are
several papers dealing with sequential algorithms computing
the GCD of many integers (see [1, 3, 4, 9, 12, 13, 20]).
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This paper deals with fast parallel algorithms for computing
the GCD of many integers. Probabilistic approaches are given
in [6] and [8]. In [6], the authors show how the GCD com-
pution of 𝑛 integers can be reduced to the case of two integers,
by means of random linear combinations, with probability
> 1/2. This gives an efficient parallel algorithm with an extra
𝑂(log𝑛) time. However this algorithm is randomized.

The parallel deterministic case does not seem to be ad-
dressed. A naive approach, using a binary tree computation
to compute the GCD of 𝑛 integers of 𝑂(𝑛) bits would require
𝑂(𝑛) parallel time with 𝑂(𝑛2+𝜖) processors, for any 𝜖 > 0.
One may also use the existing parallel GCD algorithms of
two integers and try to adapt them to reach a fast parallel
GCD algorithm of many integers. However, it is not obvious
how to preserve the same 𝑂(𝑛/ log𝑛) parallel time as for
the GCD of two integers with 𝑂(𝑛2+𝜖) processors, which is
roughly the bit-size of all the 𝑛 input integers.

In [17] a first attempt to achieve a parallel algorithm with
this parallel performance was presented. The main idea is
to use under some conditions the pigeonhole principle on
the 𝑛 input integers of the vector 𝐴 = (𝑎0, · · · , 𝑎𝑛−1). There
exists two integers say (𝑎𝑖, 𝑎𝑗) that match in their 𝑂(log𝑛)
most significant bits. Their difference 𝛼 = |𝑎𝑖 − 𝑎𝑗 | is in fact
𝑂(log𝑛) bits smaller w.r.t. the larger size of input integers
𝑎𝑖’s. Then we reduce all the other components of 𝐴 modulo
𝛼 to obtain a new vector 𝐴′ where all its components are
𝑂(log𝑛) bits smaller. The algorithm just iterates this process.

However, there are some drawbacks to this algorithm:
The number of distinct integers is important. For example
if there are only 𝑂(log𝑛) distinct integers then the pigeon-
hole technique will reduce the bit size of the integers by
𝑂(log log 𝑛) (see Corollary 1) and the number of iteration
in the while loop will be 𝑂(𝑛/ log log𝑛) which is expensive.
So we cannot reach the 𝑂(𝑛/ log𝑛) parallel time. Moreover,
comparing the integers to zero and/or counting the number
of distinct integers will cost 𝑂(log𝑛) parallel time. All these
operations must be done at each iteration and will cost an
extra 𝑂(log𝑛) parallel time with a polynomial number so
that the time complexity of the algorithm will be 𝑂(𝑛) in par-
allel with polynomial number of processors. So two questions
remain unclear:

- Q1: What happens if 𝛼 = 0 ? For example, if 𝑛 = 8 and
𝐴 = (255, 255, 193, 161, 129, 97, 65, 65), then there are only
two pairs of integers that match in their 3 most significant
bits, namely (255, 255) and (65, 65). Unfortunately, in both
cases 𝛼 = 0. This is important since we must reduce modulo
𝛼, so how to do it if no such 𝛼 > 0 exists ?
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- Q2: Can we find such a small 𝛼 > 0 in 𝑂(1) parallel time
with only 𝑂(𝑛2+𝜖) processors, which is roughly the bit-size
of all the 𝑛 input integers ?

In this paper we present two new algorithms. We show how
to fix these two issues by adding a new transformation to the
algorithm presented in [17]. This new transformation is based
on the best rational approximations (continued fractions).
The second algorithm is much simpler than the first one since
it is only based on this new transformation.

The main results of the paper are summarized below :

∙ The GCD computation of 𝑛 integers of 𝑂(𝑛) bits
can be achieved in 𝑂(𝑛/ log𝑛) parallel time with
𝑂(𝑛2+𝜖) processors, for any 𝜖 > 0 in CRCW PRAM
model, in the worst case.

∙ More generally, the GCD computation of 𝑚 integers
of 𝑂(𝑛) bits can be achieved in 𝑂(𝑛 / log𝑛) parallel
time with 𝑂(𝑚𝑛1+𝜖 ) processors, for any 2 ≤ 𝑚 ≤
𝑛3/2/ log𝑛, i.e. the parallel time does not depend on
the number 𝑚 of integers considered in this range.
To our knowledge, it is the first time that we find
deterministic algorithms which compute the GCD
of many integers with this parallel performance and
polynomial work.

∙ We suggest an extended GCD version for many inte-
gers as well as an algorithm to solve linear Diophan-
tine equations.

We first restrict our study to the case of 𝑛 integers of 𝑂(𝑛)
bits. The general case of 𝑚 integers of 𝑂(𝑛) bits is similar.
It is addressed in Section 5. We recall the ∆-GCD algorithm
presented in [17] in Section 2. A modified version of ∆-
GCD algorithm as well as a new parallel GCD algorithm are
presented in Section 3. Section 4 is devoted to the correctness
of our new algorithms. Section 5 deals with the complexity
analysis of both algorithms. We suggest an extended GCD
version as well as an application to solve linear Diophantine
equations in Section 6.

2 THE Δ-GCD ALGORITHM

2.1 Notations

Throughout the paper, 𝐴 is a vector of 𝑛 integers 𝐴 =
(𝑎0, 𝑎1, · · · 𝑎𝑛−1), with 𝑎𝑖 ≥ 0, 𝑛 ≥ 4 (unless in Section 5.2
where 𝐴 may have 𝑚 integers of 𝑂(𝑛) bits). We use in Sec-
tion 3 an integer parameter 𝑘 satisfying log 𝑘 = 𝜃(log𝑛).
We note gcd(𝐴) = gcd(𝑎0, 𝑎1, · · · 𝑎𝑛−1) and 𝑡𝑖 is the inte-
ger formed by the 𝑂(log𝑛) most significant bits of 𝑎𝑖, i.e.:

𝑡𝑖 = 𝑎𝑖 div 2
𝑛−⌊log𝑛⌋ if 𝑛 is the bit size of the largest integer

𝑎𝑖 of 𝐴, 0 ≤ 𝑖 ≤ 𝑛 − 1. The integers of the input vector 𝐴
have 𝑂(𝑛) bits. We note gcd(0, 0) = 0.

We use the PRAM (Parallel Random Access Machine)
model of computation and CRCW PRAM (Concurrent Read
Concurrent Write) sub-model (see [10, 18] for more details
on PRAM model of computation). If many processors are
in write concurrency then we use the Arbitrary sub-model
of CRCW-PRAM (see [10] for more details). With this sub-
model, an arbitrary one of the multiple writes to the same

location succeeds. In this parallel model, the addition of two
𝑂(𝑛) bit integers can be achieved in 𝑂(1) parallel time using
𝑂(𝑛1+𝜖), for any 𝜖 > 0. Moreover, thanks to pre-computed
look-up tables, all the arithmetic operations of two 𝑂(log𝑛)
bits integers can be achieved in 𝑂(1) parallel time with
𝑂(𝑛1+𝜖) processors (see [18] for more details).

2.2 Basic results

The ∆-GCD algorithm is based on the following results which
are variant forms of the pigeonhole principle:

Lemma 1: Let 𝐴 = { 𝑎1, 𝑎2, · · · , 𝑎𝑛 } be a set of 𝑛 distinct
positive integers, such that 𝑛 ≥ 2 and 𝑎𝑛/𝑛 < 𝑎1 < 𝑎2 <
· · · < 𝑎𝑛. Then ∃ 𝑖 ∈ {1, 2, · · · , 𝑛− 1} s.t.: 𝑎𝑖+1−𝑎𝑖 < 𝑎𝑛/𝑛.
Proof :
By contradiction. If we assume that ∀ 𝑖 , 𝑎𝑖+1−𝑎𝑖 ≥ 𝑎𝑛

𝑛
, then

𝑎𝑛−𝑎1 = (𝑎𝑛−𝑎𝑛−1)+· · ·+(𝑎2−𝑎1) ≥ (𝑛−1)𝑎𝑛
𝑛

= 𝑎𝑛− 𝑎𝑛
𝑛
.

So 𝑎1 ≤ 𝑎𝑛/𝑛 : a contradiction with 𝑎1 > 𝑎𝑛/𝑛. �

A straightforward consequence is the following:

Corollary 1: Let 𝐴 = { 𝑎1, 𝑎2, · · · , 𝑎𝑛 } be a set of 𝑛 distinct
positive integers, with 𝑛 ≥ 2, then
min {𝑎𝑘 , | 𝑎𝑖 −𝑎𝑗 | > 0} ≤ max {𝑎𝑖}/𝑛, where 1 ≤ 𝑘, 𝑖, 𝑗 ≤ 𝑛.

We recall below the ∆-GCD algorithm presented in [17]:

Input: A vector 𝐴 = (𝑎0, 𝑎1, · · · , 𝑎𝑛−1) of 𝑛 positive
integers, 𝑛 ≥ 4 and max {𝑎𝑖} < 2𝑛.

Output: gcd(𝑎0, 𝑎1, · · · , 𝑎𝑛−1).

If 𝐴 = (𝑎0, 𝑎0, · · · , 𝑎0) then Return 𝑎0 ;
/* 𝐴 is a scalar vector */

𝛼 := 𝑎0 ; 𝐼 := 0 ; 𝑝 := 𝑛 ;
While (𝛼 > 1) Do

For (𝑖 = 0) to (𝑛− 1) ParDo
If (0 < 𝑎𝑖 ≤ 2𝑛/𝑝) then { 𝛼 := 𝑎𝑖 ; 𝐼 := 𝑖 ;}

Endfor
If (𝛼 > 2𝑛/𝑝) then

/* Compute in parallel 𝐼, 𝐽 and 𝛼 */
𝛼 := min { | 𝑎𝑖 − 𝑎𝑗 | > 0 } = 𝑎𝐼 − 𝑎𝐽 ; 𝑎𝐼 := 𝛼 ;

Endif /* Here 𝛼 ≤ 2𝑛/𝑝 */
For (𝑖 = 0) to (𝑛− 1) ParDo

/* Reduce all the 𝑎𝑖’s */
If (𝑖 ̸= 𝐼) then 𝑎𝑖 := 𝑎𝑖 mod 𝛼 ;

Endfor /* ∀ 𝑖 ̸= 𝐼 , 0 ≤ 𝑎𝑖 < 𝛼 */
If ( ∀ 𝑖 ̸= 𝐼 , 𝑎𝑖 = 0 ) then Return 𝛼 ;
𝑝 := 𝑛𝑝 ; /* 𝑝 is 𝑂(log𝑛) bits larger */

Endwhile

Return 𝛼.

The ∆-GCD Algorithm.

Remarks:

1) If the result 𝛼 is given after 𝑘 iterations then 𝛼 ≤ 2𝑛/𝑛𝑘,
with 0 ≤ 𝑘 ≤ 𝑛/ log𝑛.

2) A weak version of the function min is used based on the
pigeonhole principle, where only the 𝑂(log𝑛) most significant
bits of the integers are considered in [17].
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Table 1: Some Parallel GCD algorithms

Authors Time Nb. of proc. Parallel model

Brent-Kung (1983) 𝑂(𝑛) 𝑂(𝑛) Systolic array

Purdy (1983) 𝑂(𝑛) 𝑂(𝑛) Systolic array

Kannan et al. (1987) 𝑂(𝑛 log log𝑛
log𝑛

) 𝑂(𝑛2+𝜖) CRCW PRAM

Adleman et al. (random, 1988) 𝑂(log2 𝑛) e𝑂(
√
𝑛 log𝑛) CRCW PRAM

Chor-Goldreich (1990) 𝑂(𝑛 / log𝑛) 𝑂(𝑛1+𝜖) CRCW PRAM

Sorenson (1994) 𝑂(𝑛 / log𝑛) 𝑂(𝑛1+𝜖) CRCW PRAM

Sedjelmaci (2001) 𝑂(𝑛 / log𝑛) 𝑂(𝑛1+𝜖) CRCW PRAM

Sorenson (random, 2010) 𝑂(𝑛 log log𝑛
log𝑛

) 𝑂(𝑛6+𝜖) EREW PRAM

The following example shows how it works (see [17]):

Example 1:
Let 𝐴 = (912672, 815430, 721161, 565701, 662592). After 4
iterations, we obtain 𝐺𝐶𝐷(𝐴) = 3 (recall 𝛼 = 𝑎𝐼 − 𝑎𝐽).⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

912672
815430
721161
565701
662592

𝛼 = 58569
(𝐼, 𝐽) = (2, 4)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

34137
54033
58569
38580
18333

4443
(0, 3)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

4443
717
810
3036
561

93
(1, 2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

72
93
66
60
3

3
(4,−)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
3

3
STOP

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

3 TWO NEW PARALLEL GCD
ALGORITHMS

3.1 The Δ2-GCD algorithm

In Section 2, only the 𝑂(log𝑛) most significant bits are
considered for computing 𝛼. However, if we consider the case
when the only pair (𝑎𝑖, 𝑎𝑗) of integers that match with their
𝑂(log𝑛) most significant bits are all equals, i.e.: 𝑎𝑖 = 𝑎𝑗 ,
then 𝛼 = |𝑎𝑖 − 𝑎𝑗 | = 0 (see the illustrative example given in
Section 1, question Q1). So the answer of the first question
Q1 wheter or not the pigeonhole principle always provides a
non-zero 𝛼 is no.

Addressing the second question Q2: In the worst case, we
can have 𝑂(𝑛) integers that match with their 𝑂(log𝑛) most
significant bits. So we must compare all the 𝑂(𝑛2) pairs
(𝑎𝑖, 𝑎𝑗) to know if there exists among them a pair (𝑎𝑖, 𝑎𝑗)
such that 𝑎𝑖 ̸= 𝑎𝑗 . This can be done in 𝑂(1) parallel time but
with no less than 𝑂(𝑛3) processors, which is larger then the
expected 𝑂(𝑛2+𝜖) processors. So we must ask less. The idea is
to use only 𝑂(

√
𝑛) integers, so that all the 𝑂(𝑛) comparisons

can be achieved in 𝑂(1) parallel time with 𝑂(𝑛2) processors.
On the other hand, in case the pigeonhole principle holds,
then we can find a pair (𝑎𝑖, 𝑎𝑗) of distinct integers that

match roughly with their 1/2 log𝑛 most significant bits. So
we only introduce a factor 2 in the parallel time and only
𝑂(𝑛2) processors are needed. Roughly speaking, the first new
algorithm called ∆2-GCD uses three successive tests, starting
from the easiest one :

- Test 1: Is there a small enough 𝑎𝑖 > 0 so that we can
consider it straightforwardly as an 𝛼 ?
- Test 2:Does the pigeonhole algorithm provide an 𝛼 > 0 ?
- Test 3: Use a new transformation 𝑅 based on continued
fractions (see [16]) and test if 𝑅 = 0 ?

In case the third test fails, i.e.: 𝑅(𝑎𝑖, 𝑎𝑗) = 0 for all the
pairs of integers (𝑎𝑖, 𝑎𝑗), with 𝑖, 𝑗 ≤

√
𝑛, then this means that

gcd(𝑎𝑖, 𝑎𝑗) = gcd(𝑎𝑗 , 𝑅(𝑎𝑖, 𝑎𝑗)) = 𝑎𝑖 and the pair (𝑎𝑖, 𝑎𝑗) is
replaced by (0, 𝑎𝑖). This new transformation is called reduce.
So we reduce by half the number of 𝑂(

√
𝑛) positive integers

considered (the other half of integers are all zeroes). Moreover,
it could be iterated at most 𝑂(

√
𝑛) times since, at each

step, we add 𝑂(
√
𝑛) new zeros in the vector 𝐴 (see the

illustrative Example 5). Thus this new transformation reduce

will guarantee the termination and the parallel performance
𝑂(𝑛/ log𝑛) time with 𝑂(𝑛2+𝜖) processors (see Sections 4 and
5). We derive a new algorithm called ∆2-GCD which corrects
the ∆-GCD algorithm [17] described in Section 2.

Input: A vector 𝐴 = (𝑎0, 𝑎1, · · · , 𝑎𝑛−1) of 𝑛 positive
integers, 𝑛 ≥ 4 and max {𝑎𝑖} < 2𝑛.

Output: gcd(𝑎0, 𝑎1, · · · , 𝑎𝑛−1).

If 𝐴 = (𝑎0, 𝑎0, · · · , 𝑎0) then Return 𝑎0 ;
/* 𝐴 is a constant vector */

(𝛼, 𝐼) := (𝑎0, 0) ; 𝑝 := 𝑛 ; 𝑁 := ⌊
√
𝑛⌋ ;

While (𝛼 > 1) Do
For (𝑖 = 0) to (𝑛− 1) ParDo

If (0 < 𝑎𝑖 ≤ 2𝑛/𝑝) then
{(𝛼, 𝐼) := (𝑎𝑖, 𝑖) ; 𝑆 := 1 } ;

else 𝑆 := 0 ; /* No small 𝑎𝑖 */
Endfor
If (𝑆 = 0) then (𝛼, 𝐼) := pigeonhole(𝐴,𝑁) ;
If (𝐼 = −1) then

/* The pigeonhole algorithm fails */
𝑅 := 0 ;
For (𝑖, 𝑗 = 0) to (𝑁 − 1) ParDo

𝑥𝑖𝑗 := 𝑅𝐼𝐿𝐸(𝑎𝑖, 𝑎𝑗) ;
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If (𝑥𝑖𝑗 > 0) then
{ (𝛼, 𝐼) := (𝑥𝑖𝑗 , 𝑖) ; 𝑅 := 1 ; 𝑎𝐼 := 𝑥𝑖𝑗 }

/* We can divide all the 𝑎𝑖’s by 𝛼 = 𝑥𝑖𝑗 */
Endif

Endfor
If (𝑅 = 0) /* ∀ 𝑖, 𝑗 , 𝑅𝐼𝐿𝐸(𝑎𝑖, 𝑎𝑗) = 0 */

then 𝐴 := reduce(𝐴,𝑁) ;
Endif

Endif
If (𝐼 ≥ 0) then 𝐴 := remainder(𝐴,𝛼, 𝐼) ;

/* We divide all the 𝑎𝑖’s but 𝑎𝐼 by 𝛼 */
If (∃ 𝑎𝑘 ̸= 0 s.t.: ∀ 𝑖 ̸= 𝑘 ⇒ 𝑎𝑖 = 0) then

Return 𝑎𝑘 ;
𝑝 := 𝑛𝑝 ; /* 𝑝 is 𝑂(log𝑛) bits larger */

Endwhile

Return 𝛼.

The ∆2-GCD Algorithm Algorithm.

Remarks: The variables 𝑆, 𝐼 and 𝑅 are linked with Test 1,
Test 2 and Test 3. Their meanings are:

∙ 𝑆 = 1 if there exists a small 𝑎𝑖, i.e.: 0 < 𝑎𝑖 ≤ 2𝑛/𝑝 and
𝑆 = 0 otherwise.
∙ 𝐼 ≥ 0 if there exists 𝛼 > 0, s.t.: 0 < 𝛼 ≤ 2𝑛/𝑝 and 𝐼 = −1
otherwise.
∙ 𝑅 = 1 if there exists 𝑖, 𝑗, s.t.: 𝑅𝐼𝐿𝐸(𝑎𝑖, 𝑎𝑗) > 0 and 𝑅 = 0
otherwise.

The functions remainder(𝐴,𝛼, 𝐼), pigeonhole(𝐴,𝑁), 𝑅𝐼𝐿𝐸 ,
Par-Ext-ILE and reduce(𝐴,𝑁) are described below.

The remainder procedure just divides all the components of
𝐴 by 𝛼 and consider their remainders. It proceeds as follows:

Input: 𝐴 = (𝑎0, · · · , 𝑎𝑛−1) , with 𝑛 ≥ 4 , 0 ≤ 𝐼 ≤ 𝑛− 1,
and 𝛼 > 0 .

Output: 𝐴′ = (𝑎′
0, · · · , 𝑎′

𝑛−1), s.t.: 𝑎
′
𝑖 = 𝑎𝑖 mod 𝛼

for all 𝑖 ̸= 𝐼 and 𝑎′
𝐼 = 𝑎𝐼 = 𝛼.

𝑎𝐼 = 𝛼 ;
For (𝑖 = 0) to (𝑛− 1) ParDo

If (𝑖 ̸= 𝐼) then 𝑎𝑖 := 𝑎𝑖 mod 𝛼 ;
Endfor
Return 𝐴.

The remainder algorithm.

The pigeonhole algorithm is based on Corollary 1 with the
first 𝑂(

√
𝑛) integers of 𝐴, namely (𝑎0, 𝑎1, · · · , 𝑎𝑁−1), with

𝑁 = ⌊
√
𝑛⌋. The algorithm returns a pair (𝛼, 𝐼) such that

𝛼 = 𝑎𝐼 − 𝑎𝐽 > 0 is small enough or, in the case there is no
such pair, it returns (𝛼, 𝐼) = (𝑎0,−1). It is described below:

Input: 𝐴 = (𝑎0, · · · , 𝑎𝑛−1) , 𝑁 = ⌊
√
𝑛⌋, 𝑛 ≥ 4 .

/* Actually only the subset 𝐵 = (𝑎0, · · · , 𝑎𝑁−1)
is considered . */

Output: (𝛼, 𝐼), s.t.: 0 < 𝛼 = |𝑎𝑖 − 𝑎𝑗 | ≤ max {𝐵}/𝑁 ;
where 𝐵 = (𝑎0, · · · , 𝑎𝑁−1).
𝐼 = 𝑖 , if such pair (𝑎𝑖, 𝑎𝑗) exists

with 0 ≤ 𝑖, 𝑗 ≤ 𝑁 − 1 and
(𝛼, 𝐼) = (𝑎0,−1) otherwise.

For (𝑖, 𝑗 = 0) to (𝑁 − 1) ParDo
𝑡𝑖 := 𝑂(log𝑁) most significant bits of 𝑎𝑖 for
each 0 ≤ 𝑖 ≤ 𝑁 − 1 ;
/* 𝑡𝑖 = 𝑎𝑖 div 2𝑠−⌊log𝑁⌋ */
/* where 𝑠 = ⌊logmax {𝐵}⌋+ 1 */
If (𝑡𝑖 = 𝑡𝑗 and 𝑎𝑖 ̸= 𝑎𝑗) then

(𝛼, 𝐼) := (|𝑎𝑖 − 𝑎𝑗 |, 𝑖) ;
else (𝛼, 𝐼) := (𝑎0,−1) ;

/* The pigeonhole test fails: 𝐼 = −1 */
Endfor
Return (𝛼, 𝐼).

The pigeonhole algorithm.

Example 2: (pigeonhole)
We consider the example given in the Introduction, Q1, where
𝐴 = (255, 255, 65, 65, 193, 161, 129, 97, 65), and 𝑛 = 9, we
choose 𝑁 = 4 (instead of 𝑁 = 3 just to illustrate what
happens). So 𝐵 = (255, 255, 65, 65) and two pairs of integers
match with their 3 most significant bits, namely (255, 255)
and (65, 65). Unfortunately, in both cases 𝑎𝑖 = 𝑎𝑗 , so the
pigeonhole algorithm returns (𝛼, 𝐼) = (255,−1).

The 𝑅𝐼𝐿𝐸 and Par-Ext-ILE algorithms are described in [15,
16]. ILE stands for Improved Lehmer Euclid and Par-Ext-ILE

stands for a parallelization of an extended version of ILE.
We just have added some special cases to the original version
of 𝑅𝐼𝐿𝐸 : 𝑅𝐼𝐿𝐸(0, 𝑣) = 𝑅𝐼𝐿𝐸(𝑢, 0) = 0 and 𝑅𝐼𝐿𝐸(0, 0) =
0. Roughly speaking, 𝑅𝐼𝐿𝐸(𝑢, 𝑣) computes the continued
fractions of order 𝑂(𝑛) for the rational 𝑣/𝑢.

We note by 𝑛 and 𝑝, respectively the number of significant bits
of 𝑢 and 𝑣. We use the parameter 𝑘 = 2𝑚 with 𝑚 = 𝑂(log𝑛).
We recall below the reductions 𝑅𝐼𝐿𝐸 and Par-Ext-ILE.

Input: 𝑢 ≥ 𝑣 ≥ 0 , 𝑘 = 2𝑚 ; 𝑚 = 𝑂(log𝑛), s.t.:
𝑛− 𝑝+ 1 < 𝑚 and 2𝑝 > 2𝑚+ 𝑛+ 2 .

Output: 𝑅𝐼𝐿𝐸(𝑢, 𝑣) = |𝑠𝑢+ 𝑡𝑣| < 2𝑣/𝑘, with 1 ≤ |𝑠| ≤ 𝑘.

If (𝑢 = 0 or 𝑣 = 0) then Return 𝑅𝐼𝐿𝐸 = 0 ;
Step 1:

𝑛 := The number of significant bits of 𝑢 ;
𝑝 := The number of significant bits of 𝑣 ;
𝜆 := 2𝑚+ 𝑛− 𝑝+ 2 ;
𝑢1 := ⌊𝑢/2𝑝−𝜆⌋ ; 𝑣1 := ⌊𝑣/2𝑝−𝜆⌋ ;

Step 2: For (𝑖 = 0) to 𝑘 ParDo
𝑞𝑖 := ⌊𝑖𝑢1/𝑣1⌋ ; 𝑟𝑖 := 𝑖𝑢1 − 𝑞𝑖𝑣1 ;
If (𝑟𝑖 < 𝑣1/𝑘) then (𝑠, 𝑡) := (𝑖,−𝑞𝑖) ;
If (𝑣1 − 𝑟𝑖 < 𝑣1/𝑘) then (𝑠, 𝑡) := (−𝑖, 𝑞𝑖 + 1) ;
End ParDo

Step 3: Compute in parallel 𝑅𝐼𝐿𝐸 = |𝑠𝑢+ 𝑡𝑣| ;

Return 𝑅𝐼𝐿𝐸 .
The parallel version of 𝑅𝐼𝐿𝐸 algorithm.
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Example 3: (𝑅𝐼𝐿𝐸 , see [15]) Let 𝑢 = 1, 759, 291 and 𝑣 =
1, 349, 639. Their binary representations are respectively:

11010110 1100000111011 = 1, 759, 291
10100100 1100000000111 = 1, 349, 639

We have 𝑛 = 𝑝 = 21 (the number of significant bits of 𝑢 and
𝑣). If we take 𝑚 = 3, we obtain 𝑘 = 8, 𝜆 = 2𝑚 + 2 = 8,
𝑢1 = 214 and 𝑣1 = 164 (the bits representing 𝑢1 and 𝑣1
are in bold). The extended Euclidean algorithm (EEA) with
𝑢1 and 𝑣1 yields the first successive integers 𝑞, 𝑟, 𝑡 and 𝑠
(𝑟 = 𝑠𝑢+ 𝑡𝑣).

𝑞 𝑟 𝑠 𝑡

214 1 0

164 0 1

1 50 1 −1

3 14 −3 4

3 8 10 −13

In our example, we obtain 𝑠 = −3, 𝑡 = 4, 𝑟 = 14 < 𝑣1/𝑘 =
164/8 = 20.50 and 𝑅𝐼𝐿𝐸 = | − 3𝑢+ 4𝑣| = 120, 683 < 2𝑣/𝑘.

It is proved in [15], that the computation of 𝑅𝐼𝐿𝐸 can be
achieved in 𝑂(1) parallel time with 𝑂(𝑛1+𝜖) processors in
CRCW PRAMmodel, thanks to pre-computed look-up tables.
These table look-up perform all the arithmetic operations of
two 𝑂(log𝑛) bits integers in 𝑂(1) parallel time with 𝑂(𝑛1+𝜖)
processors.

Par-Ext-ILE stands for Parallel Extended ILE. It is similar
to 𝑅𝐼𝐿𝐸 since it returns 𝑅𝐼𝐿𝐸 and the associated Bézout
matrix 𝑀 with the same parallel performance in CRCW
PRAM model [16]. The matrix 𝑀 satisfies det(𝑀) = ±1,
𝑀×(𝑢, 𝑣)𝑇 = (𝑅,𝑅𝐼𝐿𝐸)

𝑇 with 0 ≤ 𝑅𝐼𝐿𝐸 < 2𝑣/𝑘, 1 ≤ 𝑅 ≤ 𝑣
and gcd(𝑢, 𝑣) = gcd(𝑅,𝑅𝐼𝐿𝐸) (see [16], for more details).

Example 4: (Par-Ext-ILE)
The previous example 3 yields Par-Ext-ILE(𝑢, 𝑣) = (𝑀,𝑅),

with 𝑅 = 𝑅𝐼𝐿𝐸(𝑢, 𝑣) = 120, 683 and 𝑀 =

(︂
−3 4
10 −13

)︂
.

Unlike the pigeonhole principle, the transformation reduce

will guarantee the termination and the parallel performance
of the ∆2-GCD algorithm (see Section 4 and 5). In fact, it
could be iterated at most 𝑂(

√
𝑛) times since, at each step, we

add 𝑂(
√
𝑛) new zeros in the vector 𝐴. The reduce procedure

is the following:

Input: 𝐴 = (𝑎0, · · · , 𝑎𝑁−1, . . . , 𝑎𝑛−1); 𝑛 ≥ 4, s.t.:
𝑅𝐼𝐿𝐸(𝑎2𝑖, 𝑎2𝑖+1) = 0 for all 0 ≤ 𝑖 ≤ 𝑁 − 1
with 𝑁 = ⌊

√
𝑛⌋.

Output: 𝐴′ = (𝑎′
0, · · · , 𝑎′

𝑁−1, 𝑎
′
𝑁 , · · · , 0, . . . , 0)

with gcd(𝐴′) = gcd(𝐴). /* The last 𝑛−𝑁
components of 𝐴′ are all zero. */

Step 1: /* Use parallel 𝑅𝐼𝐿𝐸 transformation */
For (𝑖 = 0) to (𝑁 − 1) ParDo
(𝑀,𝑅2𝑖+1) := Par-Ext-ILE(𝑎2𝑖, 𝑎2𝑖+1) ;
(𝑅2𝑖, 𝑅2𝑖+1)

𝑇 := 𝑀 (𝑎2𝑖, 𝑎2𝑖+1)
𝑇 ;

/* 𝑅2𝑖+1 = 𝑅𝐼𝐿𝐸(𝑎2𝑖, 𝑎2𝑖+1) = 0 */
(𝑎𝑖, 𝑎𝑖+𝑁 ) := (0, 𝑅2𝑖) ;

Endfor

/* 𝐴 = (0, · · · , 0, 𝑅0, · · · , 𝑅2𝑁−2, . . . , 𝑎𝑛−𝑁−1) */
Step 2: /* Left-shift 𝑁 times 𝐴 */
For (𝑖 = 0) to (𝑛− 1−𝑁) ParDo 𝑎𝑖 := 𝑎𝑖+𝑁 ;
For (𝑖 = 𝑛−𝑁) to (𝑛− 1) ParDo 𝑎𝑖 := 0 ;

Return 𝐴.
/* 𝐴 = (𝑅0, · · · , 𝑅2𝑁−2, 𝑎2𝑁 , . . . , 0, · · · , 0) */

The Reduce algorithm.

Example 5: (reduce) Let 𝑛 = 10 and 𝑁 = ⌊
√
𝑛⌋ = 3.

Let 𝐴 = (350, 150, 260, 390, 330, 550, 343, 411, 503, 739), with
max {𝐴} < 2𝑛 = 1024. We only consider the first 6 = 2𝑁
integers of 𝐴, i.e.: (350, 150, 260, 390, 330, 550). We obtain for

(𝑎0, 𝑎1) = (350, 150), the Bézout matrix 𝑀 =

(︂
1 −2

−3 7

)︂
and𝑀×(350, 150) = (𝑅0, 𝑅1) = (50, 0). Similarly (𝑅2, 𝑅3) =
(130, 0), (𝑅4, 𝑅5) = (110, 0) and we have in turn:
Step 1 yields 𝐴 = (0, 0, 0, 50, 130, 110, 343, 411, 503, 739).
Step 2 yields 𝐴 = (50, 130, 110, 343, 411, 503, 739, 0, 0, 0).

So reduce(𝐴, 3) gives rise to 3 zeroes in 𝐴.

3.2 The BA-GCD algorithm

The second new algorithm called BA-GCD is based on the
Par-Ext-ILE transformation [16]. BA stands for Best Ap-
proximation. It is similar but simpler than ∆2-GCD since it
does not use the pigeonhole algorithm.

Input: A vector 𝐴 = (𝑎0, 𝑎1, · · · , 𝑎𝑛−1) of 𝑛 positive
integers, 𝑛 ≥ 4 and max {𝑎𝑖} < 2𝑛.

Output: gcd(𝑎0, 𝑎1, · · · , 𝑎𝑛−1).

If 𝐴 = (𝑎0, 𝑎0, · · · , 𝑎0) then Return 𝑎0 ;
/* 𝐴 is a constant vector */

(𝛼, 𝐼) := (𝑎0, 0) ; 𝑝 := 𝑛 ; 𝑁 := ⌊
√
𝑛⌋ ;

While (𝛼 > 1) Do
For (𝑖 = 0) to (𝑛− 1) ParDo

If (0 < 𝑎𝑖 ≤ 2𝑛/𝑝) then (𝛼, 𝐼) := (𝑎𝑖, 𝑖) ;
else 𝐼 := −1 ;

Endfor
If (𝐼 = −1) then /* No small 𝑎𝑖 */

𝑅 := 0 ;
For (𝑖, 𝑗 = 0) to (𝑁 − 1) ParDo

𝑥𝑖𝑗 := 𝑅𝐼𝐿𝐸(𝑎𝑖, 𝑎𝑗) ;
If (𝑥𝑖𝑗 > 0) then

{ (𝛼, 𝐼) := (𝑥𝑖𝑗 , 𝑖) ; 𝑅 := 1 ; 𝑎𝐼 := 𝑥𝑖𝑗 } ;
/* We can divide all the 𝑎𝑖’s by 𝑥𝑖𝑗 */

Endif
Endfor
If (𝑅 = 0) then 𝐴 := reduce(𝐴,𝑁) ;

/* 𝑅 = 0 means ∀ 𝑖, 𝑗 , 𝑅𝐼𝐿𝐸(𝑎𝑖, 𝑎𝑗) = 0 */
Endif
If (𝐼 ≥ 0) then 𝐴 := remainder(𝐴,𝛼, 𝐼) ;

/* We divide all the 𝑎𝑖’s but 𝑎𝐼 by 𝛼 > 0 */
If (∃ 𝑎𝑘 ̸= 0 s.t.: ∀ 𝑖 ̸= 𝑘 ⇒ 𝑎𝑖 = 0) then
Return 𝑎𝑘 ;
𝑝 := 𝑛𝑝 ;

Endwhile

Return 𝛼.
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The BA-GCD Algorithm.

4 CORRECTNESS

We prove in the following that all the transformations used
in algorithm 𝐵𝐴 or ∆2 preserve the GCD.

Lemma 4.1: Let 𝑛, 𝐼 be two integers, 𝑛 ≥ 2 and 0 ≤ 𝐼 ≤ 𝑛−1.
Let 𝐴 = (𝑎0, 𝑎1, · · · , 𝑎𝑛−1)

𝑇 and 𝑉 = (𝑣0, 𝑣1, · · · , 𝑣𝑛−1)
𝑇

be two integral vectors defined by 𝑣𝐼 = 𝑎𝐼 and ∀𝑖 ̸= 𝐼,
𝑣𝑖 = 𝑎𝑖 − 𝑞𝑖𝑎𝐼 for some integers 𝑞𝑖. Let 𝑀 be the associated
matrix defined by 𝑉 = 𝑀 𝐴, then det(𝑀) = ± 1.

Proof: By induction on the size 𝑛 of the matrice 𝑀 . �

Lemma 4.2: Let 𝑛 ≥ 2 be an integer. Let𝐴 = (𝑎0, · · · , 𝑎𝑛−1)
𝑇

and 𝑉 = (𝑣0, 𝑣1, · · · , 𝑣𝑛−1)
𝑇 be two integral vectors. Let 𝑀

be a square 𝑛 × 𝑛 matrix with integral entries, such that
𝑉 = 𝑀 𝐴. If 𝑀 is unimodular, i.e.: det(𝑀) = ± 1, then
gcd(𝑎0, , · · · , 𝑎𝑛−1) = gcd(𝑣0, · · · , 𝑣𝑛−1).

Proof: Let 𝑑 = gcd(𝑎0, · · · , 𝑎𝑛−1) and 𝛿 = gcd(𝑣0, · · · , 𝑣𝑛−1).
Since each 𝑣𝑖 is a linear combination of the 𝑎𝑗 ’s, then 𝑑 | 𝑣𝑖 for
all index 𝑖, so 𝑑 | 𝛿. The matrix 𝑀−1 exists and has integral
entries because det(𝑀) = ±1, so 𝐴 = 𝑀−1𝑉 . Similarly, each
𝑎𝑖 is a linear combination of the 𝑣𝑖’s, so 𝛿 | 𝑑 and 𝛿 = 𝑑.

Proposition 4.1: (Correctness) Let 𝐴𝑘 be the vector ob-
tained at the end of the 𝑘-th while loop iteration (in both
∆2-GCD and BA-GCD) and let gcd(𝐴) = gcd(𝑎0, · · · , 𝑎𝑛−1).
Then ∀ 𝑘 ≥ 1 , gcd(𝐴𝑘) = gcd(𝐴).

Proof: We consider two cases 𝛼 = 𝑎𝐼 or 𝛼 = |𝑎𝐼 − 𝑎𝐽 | > 0.
Case 1: Let 𝛼 = 𝑎𝐼 and the transformation 𝑎′

𝑖 = 𝑎𝑖 mod 𝑎𝐼

for 𝑖 ≠ 𝐼 and 𝑎′
𝐼 = 𝑎𝐼 . Then, by Lemma 4.1 and Lemma 4.2,

we have gcd(𝑎′
0, 𝑎

′
1, · · · , 𝑎′

𝑛−1) = gcd(𝑎0, 𝑎1, · · · , 𝑎𝑛−1). In
fact, if 𝑖 ̸= 𝐼, then 𝑎′

𝑖 = 𝑎𝑖 mod 𝑎𝐼 and the matrix associated
to this transformation has determinant ± 1.

Case 2: Let 𝛼 = |𝑎𝐼 −𝑎𝐽 | for some indices 𝐼, 𝐽 with 0 ≤ 𝐼 <
𝐽 < 𝑛 and let 𝑇 be the transformation defined by 𝑎′

𝑖 = 𝑎𝑖

mod 𝛼 for 𝑖 ̸= 𝐼 and 𝑎′
𝐼 = 𝛼. We split this transformation 𝑇

in two parts 𝑇 = 𝑇2 ∘𝑇1. 𝑇1 is the elementary transformation:
𝑎′
𝐼 = 𝛼 = |𝑎𝐼 − 𝑎𝐽 | and 𝑎′

𝑖 = 𝑎𝑖, for 𝑖 ̸= 𝐼. The determinant
of the matrix associated to 𝑇1 is obviously ± 1. The transfor-
mation 𝑇2 is similar to that of Case 1, since 𝛼 becomes one
of the component of the vector 𝐴 = (𝑎𝑖).

5 COMPLEXITY ANALYSIS

Since BA and ∆2 algorithms use the same reductions except
the pigeonhole in BA, it is enough to only analyse the ∆2-
GCD algorithm. Pre-computed look-up tables perform all
the arithmetic operations of two 𝑂(log𝑛) bits integers in
𝑂(1) parallel time with 𝑂(𝑛1+𝜖) processors, for any 𝜖 > 0
(see [15, 18] for more details).

5.1 The case of 𝑛 integers :

The following Lemma shows why the total number of iteration
in the while loop in ∆2 and BA is 𝑂(𝑛/ log𝑛) and sum of
the bit length of all the quotients involved in both algorithms
∆2 and BA is 𝑂(𝑛).

Lemma 5.1: Let 𝑆 be total number of iteration of the while
loop in ∆2 and BA, and let 𝑘𝑖 be the maximum bit length of
the quotient 𝑞𝑗 = ⌊𝑎𝑗/𝛼⌋ at the iteration 𝑖, with 0 ≤ 𝑗 ≤ 𝑛−1,
0 ≤ 𝑖 ≤ 𝑆. Then
(𝑖) 𝑆 = 𝑂(𝑛/ log𝑛) , (𝑖𝑖)

∑︀𝑆
𝑖=0 𝑘𝑖 = 𝑂(𝑛).

Proof: We observe that there are three kind of reductions
in both algorithms ∆2 and BA:
(1) Dividing by 𝛼 with a small 𝑎𝐼 = 𝛼 < max{𝐴}/𝑛.
(2) using a pigeonhole technique 𝑎𝐼 = 𝛼 = |𝑎𝐼 − 𝑎𝑗 |, where
𝑎𝐼 is not small enough and 𝛼 < max{𝐴}/𝑛.
(3) using 𝑅𝐼𝐿𝐸 reduction where 𝛼 = 𝑥𝑖𝑗 = 𝑅𝐼𝐿𝐸 ̸= 0.

Proof of (𝑖): First we consider the cases (1) and (2). For each

iteration 𝑖, 0 ≤ 𝑖 ≤ 𝑆, 𝐴(𝑖) = (𝑎
(𝑖)
0 , · · · , 𝑎(𝑖)

𝑛−1) denotes the

current vector 𝐴. We define 𝛼𝑖 = min {𝑎(𝑖)
𝑗 , |𝑎(𝑖)

𝑝 − 𝑎
(𝑖)
𝑞 | > 0},

and 𝛽𝑖 = max {𝑎(𝑖)
𝑗 }, where 0 ≤ 𝑗, 𝑝, 𝑞 ≤ 𝑛− 1.

At iteration 𝑖+1, all (but one) the integers 𝑎
(𝑖)
𝑗 are divided by

𝛼𝑖, with 𝑗 ̸= 𝐼, so that 𝑎
(𝑖+1)
𝑗 = 𝑎

(𝑖)
𝑗 mod 𝛼𝑖 and 𝑎

(𝑖+1)
𝐼 = 𝛼𝑖.

Now 𝑎
(𝑖+1)
𝐼 becomes the largest integer at iteration 𝑖 + 1,

i.e.: 𝛽𝑖+1 = 𝑎
(𝑖+1)
𝐼 = 𝛼𝑖 and we have 𝛼𝑖 < 𝛽𝑖/𝑛. So 𝛼𝑖+1 <

𝛽𝑖+1/𝑛 = 𝛼𝑖/𝑛 and 𝛼𝑖 < 𝛼0/𝑛
𝑖. For 𝑖 = 𝑆, we obtain 1 ≤

𝛼𝑆 < 𝛼0/𝑛
𝑆 ≤ 2𝑛/𝑛𝑆 , 𝑛𝑆 < 2𝑛 and 𝑆 log𝑛 < 𝑛.

In case Lehmer like 𝑅𝐼𝐿𝐸 reduction with (𝑎
(𝑖)
𝐼 , 𝑎

(𝑖)
𝐼+1), then

𝛼𝑖 = 𝑅𝐼𝐿𝐸(𝑎
(𝑖)
𝐼 , 𝑎

(𝑖)
𝐼+1) < (2/𝑘) max{𝑎(𝑖)

𝐼 , 𝑎
(𝑖)
𝐼+1} < (2/𝑘)𝛽𝑖.

So at iteration 𝑖 + 1, we have 𝑎
(𝑖+1)
𝑗 = 𝑎

(𝑖)
𝑗 mod 𝛼𝑖, for all

𝑗 ̸= 𝐼 and 𝛽𝑖+1 = 𝑎
(𝑖+1)
𝐼 = 𝑎

(𝑖)
𝐼 = 𝛼𝑖 < (2/𝑘)𝛽𝑖, hence

𝛽𝑖+1 < (2/𝑘)𝛽𝑖 and 𝛽𝑖 < (2/𝑘)𝑖𝛽0, where 𝑘 is such that
log 𝑘 = 𝜃(log𝑛). For 𝑖 = 𝑆, we obtain 1 ≤ 𝛽𝑆 < (2/𝑘)𝑆𝛽0 <
(2/𝑘)𝑆2𝑛. Then (𝑘/2)𝑆 < 2𝑛 and 𝑆 < 𝑛/ log(𝑘/2). Since
log 𝑘 = 𝜃(log𝑛) then we obtain 𝑆 = 𝑂(𝑛/ log𝑛).

Proof of (𝑖𝑖): The maximum bit length of the quotient at the
iteration 𝑖 is 𝑘𝑖 = 1 + ⌊log⌊𝛽𝑖/𝛼𝑖⌋⌋ ≤ 1 + log(𝛽𝑖/𝛼𝑖).

For all the three cases we have 𝛽𝑖+1 = 𝛼𝑖. So for all 𝑖 ≥ 1,
we have 𝛽𝑖/𝛼𝑖 = 𝛼𝑖−1/𝛼𝑖 and 𝑘𝑖 ≤ 1 + log(𝛼𝑖−1/𝛼𝑖). Hence∑︀𝑆

𝑖=0 𝑘𝑖 ≤ 𝑆 + log(𝛽0/𝛼0) +
∑︀𝑆

𝑖=1 log(𝛼𝑖−1/𝛼𝑖)
< 𝑆+log 𝛽0 = 𝑂(𝑛/ log𝑛)+𝑂(𝑛) = 𝑂(𝑛). �

Proposition 5.1: (Complexity analysis of remainder)
The computation of all the quotients ⌊𝑎𝑖/𝑎𝐼⌋ during the whole
∆2-GCD algorithm costs 𝑂(𝑛/ log𝑛) time with 𝑂(𝑛2+𝜖) pro-
cessors in CRCW PRAM model, for any 𝜖 > 0.

Proof: We consider the worst case (maximum of divisions)
and recall that the algorithm terminates after 𝑂(𝑛/ log𝑛)
iterations of the while loop (Lemma 5.1).

Let 𝑡𝑖 be the time cost at iteration 𝑖, 1 ≤ 𝑖 ≤ 𝑆, with
𝑆 = 𝑂(𝑛/ log𝑛). So the total parallel time is 𝑡(𝑛) =

∑︀𝑆
𝑖=1 𝑡𝑖.

Arithmetic operations with 𝑂(log𝑛) bits can be done in 𝑂(1)
parallel time with table look-up [15, 18].

Let 𝑘𝑖 be the maximum bit length of all the quotients 𝑞𝑗 =

⌊𝑎𝑗

𝛼
⌋ at iteration 𝑖, with

∑︀𝑆
𝑖=1 𝑘𝑖 ≤ 𝑛. Then

𝑡𝑖 = 𝑂(min { 𝑘𝑖/ log𝑛 , log𝑛 } ). In fact, if 𝑘𝑖 ≤ log𝑛 then
𝑡𝑖 = 𝑂(1) parallel time with table look-up. If 𝑘𝑖 > log2 𝑛, then
a division between two 𝑛 bits integers costs 𝑡𝑖 = 𝑂(log𝑛).
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Otherwise, if log𝑛 < 𝑘𝑖 < log2 𝑛, then each quotient 𝑞𝑖 has
roughly 𝑘𝑖/ log𝑛 digits of 𝑂(log𝑛) bits, so 𝑡𝑖 = 𝑂( 𝑘𝑖

log𝑛
). The

total number of processors is 𝑛×𝑂(𝑛1+𝜖) = 𝑂(𝑛2+𝜖) and the

parallel time is, up to a constant (recall that
∑︀𝑆

𝑖=1 𝑘𝑖 ≤ 𝑛)

𝑡(𝑛) =

𝑆∑︁
𝑖=1

min ({ 𝑘𝑖
log𝑛

, log𝑛}) =∑︁
𝑘𝑖<log𝑛

1+
∑︁

log𝑛<𝑘𝑖<log2 𝑛

𝑘𝑖
log𝑛

+
∑︁

𝑘𝑖>log2 𝑛

log𝑛 = 𝐴+𝐵+𝐶.

We have 𝐴 ≤
∑︀𝑆

𝑖=1 1 = 𝑆 = 𝑂( 𝑛
log𝑛

) and

𝐵 ≤
∑︀𝑆

𝑘𝑖<log2 𝑛
𝑘𝑖

log𝑛
= 1

log𝑛

∑︀
𝑖=1 𝑘𝑖 ≤

𝑛
log𝑛

.

𝐶 =
∑︀𝑆

𝑘𝑖>log2 𝑛 log𝑛 = log𝑛
∑︀

𝑘𝑖>log2 𝑛 1. Let 𝑃 be the

number of all the 𝑘𝑖’s satisfying 𝑘𝑖 > log2 𝑛. Then 𝑃 log2 𝑛 ≤
𝑘1 + 𝑘2 + · · ·+ 𝑘𝑃 < 𝑛, so 𝑃 < 𝑛

log2 𝑛
, hence 𝐶 ≤ 𝑛

log𝑛
and

𝑡(𝑛) = 𝑂( 𝑛
log𝑛

). �

Theorem 5.1: The ∆2-GCD algorithm computes in parallel
the GCD of 𝑛 integers of 𝑂(𝑛) bits in length, in 𝑂(𝑛/ log𝑛)
time using 𝑂(𝑛2+𝜖) processors in CRCW PRAM model, for
any 𝜖 > 0.

Proof: The algorithm is correct thanks to Proposition 4.1.
Testing if there are any small 𝑎𝑖, i.e.: 0 < 𝑎𝑖 ≤ 2𝑛/𝑝 can be
done easily in 𝑂(1) parallel time with 𝑂(𝑛 log𝑛) processors.

∙ Cost of the pigeonhole algorithm: We consider the 𝑂(
√
𝑛)

first terms 𝑎𝑖 of 𝐴. There are only 𝑂(𝑛) pairs to compare
and each comparison costs 𝑂(1) parallel time with 𝑂(𝑛)
processors, so the total of all the comparisons 𝑡𝑖 = 𝑡𝑗 and
𝑎𝑖 ̸= 𝑎𝑗 cost 𝑂(1) parallel time with 𝑂(𝑛2) processors.

∙ Cost of the reduce algorithm: Thanks to look-up tables,
the computation of all 𝑅𝐼𝐿𝐸(𝑎𝑖, 𝑎𝑗) and Par-Ext-ILE cost
𝑂(1) parallel time with 𝑂(𝑛1+𝜖) processors (see [16] for more
details). The cost of left-shift 𝑁 times the vector 𝐴 is similar.
There are 𝑂(𝑁2) = 𝑂(𝑛) pairs (𝑎2𝑖, 𝑎2𝑖+1) considered. On the
other hand reduce can be called at most 𝑂(

√
𝑛) times since,

at each step, we add 𝑂(
√
𝑛) new zeros in the vector 𝐴. So

the total cost of the reduce algorithm is 𝑂(
√
𝑛) parallel time

with 𝑂(𝑛2+𝜖) processors. Note that the case where reduce is
called 𝑂(

√
𝑛) times is obvious. It will remain 𝑂(1) non zero

integers and their GCD can be achieved in 𝑂(𝑛/ log𝑛) time
with 𝑂(𝑛1+𝜖) processors.

∙ Cost of the remainder algorithm for the whole ∆2-GCD al-
gorithm: By Proposition 5.1, the total complexity of remainder
algorithm is 𝑂(𝑛/ log𝑛) time with 𝑂(𝑛2+𝜖) processors. �

5.2 The case of 𝑚 integers :

We have similar results for the GCD computation of 𝑚 inte-
gers of 𝑂(𝑛) bits with some adjustments.

Proposition 5.2: If we consider the case of 𝑚 integers,
then the computation of all the quotients ⌊𝑎𝑖/𝑎𝐼⌋ during
the whole ∆2-GCD algorithm costs 𝑂(𝑛/ log𝑛) parallel time
with 𝑂(𝑚𝑛1+𝜖 ) processors in CRCW PRAM model, for any

𝜖 > 0 and 𝑚 s.t.: 2 ≤ 𝑚 ≤ 𝑛3/2/ log𝑛.

Proof: First, if 𝑚 is a constant w.r.t. 𝑛, the result is obvious.
Moreover, if 𝑚 <

√
𝑛, then just add zeros to 𝐴 to reach

𝑂(
√
𝑛) integers, i.e.: set 𝑎𝑚+1 = · · · = 𝑎𝑁−1 = 0 with

𝑁 = ⌊
√
𝑛⌋. This is necessary because pigeonhole, 𝑅𝐼𝐿𝐸 and

reduce need 𝑁 integers. So WLOG we assume 𝑚 ≥
√
𝑛.

The proof is similar to the proof of Proposition 5.1 with
some adjustments. We consider the worst case (maximum
of divisions) and assume that, at each iteration, there exists
𝛼 > 0 so that the size of all the integers in 𝐴 are reduced
by 𝑂(log𝑛) bits. The only difference is the number of calls
of reduce. Since reduce adds 𝑂(

√
𝑛) zeroes in 𝐴 and 𝐴

has initially 𝑚 integers, so the number of calls is at most
𝑂(𝑚/

√
𝑛). Thanks to the upper bound of 𝑚, the number

of calls of reduce as well as the number of iterations of the
while loop in ∆2-GCD are both bounded by 𝑂(𝑛/ log𝑛). In

fact 𝑚/
√
𝑛 ≤ 𝑛3/2/(

√
𝑛 log𝑛 ) = 𝑛/ log𝑛. If 𝑡𝑖 is the time

cost at iteration 𝑖, with 1 ≤ 𝑖 ≤ 𝑆, then 𝑆 = 𝑂(𝑛/ log𝑛).
The remainder of the proof is the same as in Proposition 5.1.

Consequently we derive the following result.

Theorem 5.2: The ∆2-GCD and BA algorithms compute
in parallel the GCD of 𝑚 integers of 𝑂(𝑛) bits in length,
in 𝑂(𝑛/ log𝑛) time using 𝑂(𝑚𝑛1+𝜖) processors in CRCW
PRAM model, for any 𝜖 > 0 and 𝑚, such that: 2 ≤ 𝑚 ≤
𝑛3/2/ log𝑛.

Proof: Straightforward from Proposition 4.1, Proposition 5.2
and the proof of Theorem 5.1 since the cost of pigeonhole,
𝑅𝐼𝐿𝐸 and reduce are quite similar in both cases. �

5.3 Some comments about BA and Δ2

As mentioned in the Introduction section, the main drawback
of the pigeonhole technique is that it becomes inefficient when
there are only a few distinct integers. So we have to combine
it with another technique. We have chosen the Lehmer like
reduction 𝑅𝐼𝐿𝐸 . On the other hand the Lehmer like reduction
is efficient and a fast parallel integer GCD can be designed
without the pigeonhole technique. So, the natural question is
why keep both algorithms rather than presenting only the
algorithm based on the Lehmer like reduction 𝑅𝐼𝐿𝐸 ? The
reason is that the pigeonhole technique is a new technique.
It is suitable for parallel algorithms when there are enough
distinct integers, say 𝑂(𝑛𝑐), 𝑐 > 0. It is worthwhile in itself
so that it must be studied even with its drawbacks.

6 APPLICATIONS

We suggest below two applications of ∆2 (or 𝐵𝐴) algorithm,
namely an extended GCD and an algorithm for solving linear
Diophantine equations.

6.1 Extended GCD algorithm

With the same idea, a straightforward Blankinship like algo-
rithm [1] can be designed to compute an extended GCD of 𝑛
integers. We just add the identity matrix 𝐼𝑛 to the first row
𝐴, i.e.: consider the 𝑛+1×𝑛 matrix (𝐴𝐼𝑛). The only difference
with Blankinship algorithm is that, at each step, we divide
by 𝛼 instead of the smallest non-zero integer of the first row.
The algorithm is the following:

Input: A vector 𝐴 = ( 𝑎0, 𝑎1, · · · , 𝑎𝑛−1 ) of 𝑛 integers of
𝑂(𝑛) bits, 𝑛 ≥ 4 and max {𝑎𝑖} < 2𝑛.
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Output: 𝑛 integers 𝑥0, 𝑥1, · · · , 𝑥𝑛−1 such that∑︀𝑛−1
𝑖=0 𝑥𝑖 𝑎𝑖 = gcd(𝐴).

𝛼 := 𝑎0 ; 𝐼 := 0 ;
Let 𝑉𝑖 = (𝑎𝑖, 0, · · · , 1, · · · , 0)𝑇 for 𝑖 ̸= 𝐼 and

𝑉𝐼 = (𝛼, 0, · · · , 1, · · · , 0)𝑇 ;

While (∃𝑗 ̸= 𝐼 s.t.: 𝑎𝑗 ̸= 0) Do
Compute 𝐼 and 𝛼 (as in ∆2-GCD algorithm) ;
If (𝐼 ≥ 0) then /* 𝛼 > 0 */

𝑉𝐼 := 𝑉𝐼 − 𝑉𝐽 = (𝛼, · · · , 𝑎𝑖, · · · )𝑇 ;
For (𝑖 = 0) to (𝑛− 1) ParDo

If (𝑖 ̸= 𝐼) then
𝑞𝑖 := ⌊𝑎𝑖/𝛼⌋ ; 𝑉𝑖 := 𝑉𝑖 − 𝑞𝑖𝑉𝐼 ;

Endif
Endfor

Else reduce the columns 𝑉𝑖 instead of 𝑎𝑖 with
0 ≤ 𝑖 ≤ 𝑁 ;

Endwhile

Return 𝑉𝐼 = (gcd(𝐴), 𝑥0, 𝑥1, · · · , 𝑥𝑛−1)
𝑇 .

Extended GCD algorithm.

With the example 1, where
𝐴 = (912672, 815430, 721161, 565701, 662592),

we obtain the coefficient vector (−2, 6,−83, 2, 84), i.e.:
−2𝑎0 + 6𝑎1 − 83𝑎2 + 2𝑎3 + 84𝑎4 = 3 = gcd(𝐴).

6.2 Solving linear Diophantine equation

We can design a parallel algorithm similar to Rosser’s algo-
rithm [11, 14] to solve linear Diophantine equation: Given (𝑛+
1) integers 𝑎0, 𝑎1, · · · , 𝑎𝑛−1, 𝑏, find 𝑛 integers 𝑥0, 𝑥1, · · · , 𝑥𝑛−1,
such that 𝑎0𝑥0 + 𝑎1𝑥1 + · · · + 𝑎𝑛−1𝑥𝑛−1 = 𝑏. Here we add
the identity matrix 𝐼𝑛+1 to the row 𝐴′ = (𝑎0, · · · , 𝑎𝑛−1,−𝑏).
Then, run the extended GCD algorithm described above.

7 CONCLUSION

This paper confirms an early result of Cooperman et al. [6]
showing that the GCD computation of many integers does not
cost much more than the GCD computation of two integers
with a good probability. It also generalizes the parallel per-
formance of computing the GCD of two integers ([5, 15, 18])
to the case of many integers. In fact we propose two algo-
rithms for computing the GCD of 𝑛 integers of 𝑂(𝑛) bits in
𝑂(𝑛/ log𝑛) parallel time with 𝑂(𝑛2+𝜖) processors, for any
𝜖 > 0 in CRCW PRAM model, in the worst case. More gener-
ally, the parallel time for computing the GCD of 𝑚 integers
of 𝑂(𝑛) bits can be achieved in 𝑂(𝑛 / log𝑛) parallel time
with 𝑂(𝑚𝑛1+𝜖 ) processors, i.e. the parallel time does not
depend on the number 𝑚 of integers considered satisfying
2 ≤ 𝑚 ≤ 𝑛3/2/ log𝑛. We suggest an extended GCD version
for many integers as well as an algorithm to solve linear
Diophantine equations. To our knowledge, it is the first time
that we find deterministic algorithms which compute the
GCD of many integers with this parallel performance and
polynomial work.
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