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Abstract

We propose a new GCD algorithm called Accelerated Euclidean Algorithm, or AEA for
short, which matches the O(n log2 n log log n) time complexity of the Schönhage algorithm
for n-bit inputs. This new GCD algorithm is designed for both integers and polynomials.
We only focus our study to the integer case, the polynomial case is currently addressed [3].
The algorithm is based on a half-gcd like procedure, but unlike Schönhage’s algorithm, it
is iterative and therefore avoids the penalizing calls of the repetitive recursive procedures.
The new half-gcd procedure reduces the size the integers at least a half word-memory bits
per iteration and, by a dynamic updating process, we obtain the same recurrence and the
same time performance as in the Schönhage approach.
In order to explain how our algorithm works, the following notation is used. W is a word
memory, i.e.: 32 or 64. Let u ≥ v > 2 be positive integers where u has a n bits with
n ≥ 32. Given a non-negative integer x ∈ N , `(x) is the number of its significant bits,
`(x) = dlog2(x + 1)e. Integers U and V are represented as a concatenation of l sets of
W bits integers (except for the last set which may be shorter), with l = dn/W e, i.e.: if

U =
∑l−1

i=0 2iW Ul−i with U1 6= 0 and V =
∑l−1

i=0 2iW Vl−i, then we write symbolically
U = U1 • U2 . . . • Ul ; V = V1 • V2 . . . • Vl.

We use a specific vectors which represent interval subsets from of U and V , by:

X [i..j] =

(

Ui • Ui+1 • · · · • Uj

Vi • Vi+1 • · · · • Vj

)

; X [i] =

(

Ui

Vi

)

; for 1 ≤ i < j ≤ l.

Let M(x) be the cost of a multiplication of two x-bit integers. The fast Schönhage-
Strassen algorithm [6] performs these multiplications in M(x) = O(n log n log log n). The
algorithm AEA is based on two main ideas:

• The computations are done in a Most Significant digit First (MSF) way.
• We update by multiplying, with the current matrix, ONLY twice the number of

leading bits we have already chopped, NOT the others leading bits. The multiplica-
tion with the other leading bits is postponed.

The algorithm starts straightforward from the leading bits. Let r be a given integer
parameter, r ≥ 1. Let t(r) denotes the time cost for reducing 2r-bit inputs to their
half, i.e.: r bits, by running a Lehmer-like GCD algorithm ([2, 7]). Suppose we want
to reduce the 2r leading bits from the n-bits inputs say u and v. Observe that we
only need to consider the 4r leading bits, not any other bit. We suggest to do it as follows.
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Begin

• Step 1: First, we consider the 2r leading bits and reduce them to their half, it costs
t(r). We obtain also a matrix N1 of length r, i.e.: `(N1) = r.

• Step 2: Update the 2r next leading bits by multiplying them with the matrix N1.
A possible carry must be added in O(r) time. It costs O(M(r) + O(r)) = O(M(r))
in time. We observe that similarly, we just have to repeat the same process as before
by considering the new 2r next leading bits, hence the next steps:

• Step 3: Consider the 2r new leading bits and reduce them to their half, it costs
t(r). We obtain then a new matrix N2 of length r.

• Step 4: Update the new r next leading bits with the O(r)-bit length matrix N2

which costs O(M(r)) in time.

• Step 5: Compute the matrix M = N2 ×N1, this matrix will be used to reduce the
next 4r leading to their half. It costs O(M(r)) in time.

End.
Hence the relation t(2r) = 2t(r) + O(M(n)) for any r > 1 and the total time complexity
is t(n) = O(log n M(n)) = O(n log2 n log log n).
The four first steps are summarized in Figure 1. Each line represents the size of the two
inputs u and v at each step, starting from the top. The leading bits we want to halve are
under a circular line. After each reduction, the updated bits are represented by black
segments. It is worth to notice that the fundamental idea is that we do not multiply
the matrix N1 or N2 with all the bits of the inputs, but only with few of them, just for
computing the next first quotients. The multiplication with the other bits is postponed.
The iterative algorithm AEA, described below, follows these ideas.

Input : u ≥ v > 2 with u ≥ 8W ;
Output : a 2× 2 matrix M and (U ′, V ′) such that M × (U, V ) = (U ′, V ′),
with `(V ′) ≤ `(U)− 2blog2

(n/W )c−1W and GCD(U ′, V ′) = GCD(U, V ).
Begin

1. (U, V )← (u, v); s← blog2(n/W )c;
2. if `(V ) ≤ d`(U)/2e+ 1 return I ;
3. if `(V ) > d`(U)/2e+ 1
4. For i = 1 to 2s−1

5. if Ui = 0 or Vi 6= 0 (Regular case)
6. h← 0;
7. if (i odd) L0 ← ILE(X [i..i + 1]); updateL(i, h);
8. else

9. R0 ← ILE(X [i..i + 1]); updateR(i, h);
10. x← i/2; h← h + 1;
11. While (x even)
12. Rh ← Rh−1 × Lh−1; updateR(i, h);
13. x← x/2; h← h + 1;
14. Endwhile

15. Lh ← Rh−1 × Lh−1; updateL(i, h);
16. Endelse

17. else Irregular(i) (Ui 6= 0 and Vi = 0) ;
18. EndFor

19. Return Lh and (U, V );
End
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Figure 1: The new half-gcd principle.

The algorithm ILE ([7]) runs the extended Euclidean algorithm and stops when the
remainder has roughly the half size of the inputs. Lh and Rh stand for left and right
matrix and are computed at the depth level h of the binary tree computations of AEA.
The functions updateL or updateR update only the next few leading bits of the current
vectors, in order to compute the next matrices. When the function Irregular is called
(Vi = 0), more updated bits are computed in order to perform a correct euclidean
division and continue the process.

Unlike the recursive versions of GCD algorithms (see [1, 4]), our aim is not to balance
the computations on each leaf of the binary tree computations, but to make full of single
precision every time, computing therefore the maximum of quotients in single precision.
This lead to different computations. Moreover the fundamental difference between AEA
and Schönhage’s approach is that AEA starts straightforward with the most significant
leading bits first (MSF computation). Consequently, we can stop the algorithm AEA
at any time and still obtain the leading bits of the result. Thus AEA is a strong MSF
algorithm and can be considered for ”on line” arithmetics. Finally, the derived GCD
algorithm deals with many applications where long euclidean divisions scheme is needed.
We have identified and started to study many applications such as subresultants and
Cauchy index computation, Pade-approximates or LLL-algorithms.
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