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Abstract: We generalize a formula of B. Litow [7] and propose several new formula
linked with the parallel Integer Coprimality, Integer GCD and Modular Inverse prob-
lems as well. Particularly, we find a new trigonometrical definition of the GCD of two
integers a, b ≥ 1 :

gcd(a, b) =
1
π

∫ π

0

cos[ (b− a)x ]
sin2(abx)

sin(ax) sin(bx)
dx.

We also suggest a generalization of the GCD function to real numbers.
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1 Introduction

1.1 Parallel Complexity of Integer GCD

The problems of the parallel computation of the Integer GCD (Greatest Com-
mon Divisor), coprimality and modular inverse of integers are still open: we do
not know if they belong to the NC class [6]. As far as we know, there are only a
few works dealing with these questions, since first being stated by A. Borodin et
al. [1] in 1982. Although the sequential case is satisfactory (subquadratic GCD
algorithm [8, 3]), the parallel case is still resistant. It seems to be hard to find
a fast parallel GCD algorithm. The best presently known parallel performance
is O(n/ log n)ε time with O(n1+ε) processors on the CRCW PRAM model, for
any ε > 0, by Chor and Goldriech [2], Sorenson [11] and the author [9], where
n is the the number of bits of the larger integer. All the presently known GCD
algorithms are based on reduction steps which reduce the size of the pair of
integers until they reach 0, the previous one being the GCD. It seems that this
approach has reached its limit and new ideas must be explored to improve the
parallel complexity of the Integer GCD and its related problems.
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1.2 A new Approach

Throughout the paper, a and b are two positive integers, their GCD is denoted
by d = gcd(a, b). The pair of integers a and b are said to be coprime if and only
if gcd(a, b) = 1. The Kronecker symbol δ of two reals x, y is defined as follows:
δyx = 1 if x = y and 0 otherwise. The expression exp(z) means the exponential
of a complex z, i.e.: exp(z) = ez. The ceil and floor functions of a real x are
defined by dxe = min { integer k | k ≥ x} and bxc = max { integer k | k ≤ x}.

B. Litow [7] suggested a sieve function related to the coprimality problem. It
is defined as follows (0 < ρ < 1):

S(a, b) =
∫ 1

0

ds

z(1− ρaza)(1− ρb/zb)
, (1)

where z = exp(2πιs), ι is the complex number such that ι2 = −1 and ρ =
1− 1/ab. It is easy to prove (see Lemma 2.3) that, if a and b are coprime and
ρ =exp(−1/2ab), then S(a, b) > 0.58, otherwise S(a, b) = 0 when gcd(a, b) ≥ 2.

In this paper we present a closed formula of S(a, b) as well as tight lower
bound. Moreover, we prove that the sieve function defined in (1) can be used
to compute Bézout coefficients and modular inverse as well. We generalize this
formula and propose several new formula linked with these problems. Partic-
ularly, we find a new trigonometrical definition of the GCD of two integers
a, b ≥ 1 :

gcd(a, b) =
1
π

∫ π

0
cos[ (b− a)x ]

sin2(abx)
sin(ax) sin(bx)

dx. (2)

This definition shows that the GCD of two integers a, b ≥ 1 is nothing but the
|b− a|-th coefficient of the cosine Fourier series for the function

P (x) =
sin2(abx)

sin(ax) sin(bx)
.

Moreover, we also show that the |b− a− 2|-th coefficient of the cosine Fourier
series for the same function P (x) gives a coprimality sieve function.

Our aim is not to compute exactly the GCD by the trigonometrical in-
tegral (Eq. 2), but rather to find a parallel algorithm which approximate its
value with a good error control. As a matter of fact, if such approximation
can be done by an NC algorithm, i. e.: a parallel algorithm running in a poly-
logarithmic time with a polynomial number of processors, then we will prove
simultaneously that Integer GCD, Coprimality and Modular Inverse problems
will be all in the NC class.

1.3 The main idea:

Let n be an integer. The starting point is the following orthogonality formula:

In =
∫ 1

0
zn ds =

{
0 if n 6= 0,
1 if n = 0, where z = exp(2πιs).
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This formula is the basis for the residue theorem, Cauchy formula for complex
function and Fourier analysis as well. Moreover, if instead of n, we use any
discrete function F (n1, . . . , np), then it may be used to give the number of so-
lutions of the Diophantine equation F (n1, . . . , np) = 0. As a matter of fact,
it was successfully used to attack the Goldbach conjecture first by Ramanujan
and Hardy [4], then by Hardy-Littlewood [5] early in 1918-1919 and later on
by Vinogradov [12] for a weak version of Goldbach conjecture. The aim of this
paper is to apply this approach to some open questions in parallel computation
problems like, integer GCD, modular inverse and coprimality.

This paper is organized as follows: Section 2 deals with weighted series
related to coprimality and integer GCD. Section 3 is devoted to finite sums
approach following Vinogradov’s ideas [12]. We conclude with some remarks
and open questions.

2 Weighted Series

First, we give two Lemmas which are frequently used throughout the paper:

Lemma 2.1 Let a, b ≥ 1 be two integers and let d = gcd(a, b), then the equation{
pa− qb = 0
0 ≤ p < b and 0 ≤ q < a.

have exactly d solutions given by{
p = λ× (b/d)
q = λ× (a/d) with λ = 0, 1, 2, . . . , d− 1.

Proof: Let a1 = a/d and b1 = b/d, then gcd(a1, b1) = 1 and since d ≥ 1
we obtain pa1 = qb1. Since gcd(a1, b1) = 1, b1 must divides p, so we let
p = λb1 = λ × (b/d) for some integer λ and q = λa1 = λ × (a/d). Moreover,
0 ≤ p = λb1 = λ× (b/d) < b, then 0 ≤ λ ≤ d− 1. QED

Lemma 2.2 Let a, b ≥ 2 be two integers and let d = gcd(a, b), then the equation{
pa− qb = 1
0 ≤ p < b and 0 ≤ q < a.

have no solution if gcd(a, b) ≥ 2 and a unique solution if gcd(a, b) = 1.

Proof: Let d = gcd(a, b), then d | (pa − qb) = 1 so d = 1, since d is positive.
Thus, there is no solution if d ≥ 2. We assume d = 1. There exists, by Bézout
theorem, a pair (p1, q1) of integers such that p1a− q1b = 1. Moreover, for every
integer λ, we have (p1 − λb)a − (q1 − λa)b = p1a − q1b = 1, so there is an
infinity pair of integers (p, q) satisfying pa−qb = 1 . We may assume p1, q1 > 0,
otherwise just consider λ = −d−p1/be and the pair (p′, q′) = ( (p1− λb)a, (q1−
λa)b ). Moreover, for λ = bp1/bc, we obtain the pair (p1 − (bp1/bc)b, q1 −
(bp1/bc)a) = (p0, q0) satisfying p0a − q0b = 1. But 0 < p0 = p1 mod b < b and
q0 = (1/b)(p0a− 1) < (1/b)(ab− 1) = a− 1/b < a. QED
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2.1 A Coprimality Sieve:

We assume that a ≥ 3 and b ≥ 3 are coprime, i.e.: gcd(a, b) = 1, so there exists
a pair of integer p, q ≥ 1 such that: pa− qb = 1 (called Bézout relation). If we
consider F (p, q) = pa− qb− 1, for any pair of integers (p, q) and z =exp(2πιs),
then

J(p, q) =
∫ 1

0
zpa−qb−1 ds =

{
0 if pa− qb 6= 1,
1 if pa− qb = 1.

In order to interchange integrals and series, it is convenient to consider the
associated weighted series which are uniformly convergent on the circle |z| = 1:

1
1− (ρz)a

=
∑
p≥0

(ρz)pa and
1

1− (λ/z)b
=

∑
q≥0

λqbz−qb,

where ρ and λ are any real numbers such that 0 < ρ, λ < 1, so that

1
z (1− (ρz)a) (1− (λ/z)b)

=
∑
p≥0

∑
q≥0

ρpaλqbzpa−qb−1, (3)

and, if we choose λ = ρ, we obtain the coprimality sieve function studied by B.
Litow [7]:

S(a, b) =
∫ 1

0

ds

z(1− ρaza)(1− ρb/zb)
.

This sieve function S enjoys some interesting properties

Lemma 2.3 If a, b ≥ 3 and 0 < ρ < 1, then we have

S(a, b) = 0, if gcd(a, b) ≥ 1

S(a, b) =
ρap0+bq0

1− ρ2ab
=

ρ2ap0−1

1− ρ2ab
, if gcd(a, b) = 1

S(a, b) >
1

e− 1
∼ 0.58 if gcd(a, b) = 1 and ρ = exp(−1/2ab),

where (p0, q0) is the unique pair of integers such that 1 ≤ p0 < b and 1 ≤ q0 < a,
satisfying ap0 − bq0 = 1.

Proof: Since all the expansions in Eq.(3) are uniformly convergent for |z| = 1,
then

S(a, b) =
∑
p≥0

∑
q≥0

∫ 1

0
ρap+bq zap−bq−1 ds ,

where z = exp(2πιs), but
∫ 1
0 zn ds = 0 for every integer n 6= 0 and equal to 1

if n = 0, so
S(a, b) =

∑
p,q≥1 with ap−bq=1

ρap+bq .

If gcd(a, b) ≥ 2, then, by Lemma 2.2, there is no pair (p, q) such that ap−bq = 1
and S(a, b) = 0. Otherwise, if gcd(a, b) = 1 then there exists an infinity of pairs
(p, q) such that p, q ≥ 1 and pa− bq = 1 (see Proof of Lemma 2.2), namely{

p = p0 + k × b
q = q0 + k × a with k ≥ 0.
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with 1 ≤ p0 < b and 1 ≤ q0 < a, hence

S(a, b) =
∑
k≥0

ρa(p0+kb)+b(q0+ka) =
ρap0+bq0

1− ρ2ab
=

ρ2ap0−1

1− ρ2ab
.

Moreover, if ρ =exp(−1/2ab), then

S(a, b) >
ρ2ab

1− ρ2ab
=

1
e− 1

∼ 0.58.

QED

Remark: As noticed in Section 1.2, if one can approximate the value of S(a, b)
in Eq. (1), not only the function S is a coprimality sieve, but it also allows to
compute the modular inverse of a, modulo b, namely p0, in case a and b are
coprime. Moreover, if such approximation can be done by an NC algorithm,
i. e.: a parallel algorithm running in a polylogarithmic time with polynomial
number of processors, then we will prove simultaneously that both Coprimality
and Modular Inverse problems will be in the NC class.

2.2 A GCD formula:

One can follow the same idea with the function F (p, q) = pa − qb and obtain
the following result:

Theorem 2.1 Let a, b be two integer such that a, b ≥ 2 and ρ = exp (−1
2ab). Let

T be the function defined by

T (a, b) =
∫ 1

0

ds

(1− ρaza)(1− ρb/zb)
, where z = exp(2πιs) ,

then
bT (a, b)c = gcd(a, b).

Proof : As for Lemma 2.3, we have

T (a, b) =
∑
p,q≥0

ρpa+qb
∫ 1

0
zpa−qb ds ,

and
T (a, b) =

∑
p,q≥0, with pa=qb

ρpa+qb .

Let d = gcd(a, b), then the solutions of the equation pa = qb are{
p = k × (b/d)
q = k × (a/d), for k ≥ 0.

So
T (a, b) =

∑
k≥0 s.t.: p=k×(b/d)

ρ2pa =
∑
k≥0

ρ2kab/d =
1

1− ρ2ab/d
.
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For ρ = exp (−1
2ab), we obtain

T (a, b) =
1

1− e−1/d
,

hence the result since

∀ d ≥ 1, d <
1

1− e−1/d
< d+ 1.

QED

Remark: The residu theorem gives

T (a, b) =
1
ρb

b−1∑
k=0

1
1− ρ2aτak

.

3 The Finite Sums Approach

Following Vinogradov’s idea [12], instead of using series, one may consider fi-
nite sum of exponentials. We prove that the GCD and a coprimality sieve
function are respectively the first and the second non negative coefficients in
the expansion series of a same rational function.

Theorem 3.1 Let a, b be two positive integers and z = z(s) = exp (2πιs), with
0 ≤ s < 1. Let G be the complex function defined by

G(z) =
1

zb(a−1)
(
b−1∑
p=0

zpa) (
a−1∑
q=0

zqb) =
a(b−1)∑

n=−b(a−1)

g(n) zn

Then we have

1) g(0) =
∫ 1

0
G(z) ds = gcd(a, b) ∀a, b ≥ 1.

2) g(1) =
∫ 1

0

G(z)
z

ds =

{
1 if gcd(a, b) = 1,
0 if gcd(a, b) ≥ 2, ∀a, b ≥ 2.

Proof: Consider the polynomials

fa(z) =
b−1∑
p=0

zpa, fb(z) =
a−1∑
q=0

zqb,

and the polynomial F defined by

F (z) = fa(z)× fb(z) =
2ab−a−b∑
n=0

c(n) zn.

So

G(z) =
F (z)
zb(a−1)

=
1

zb(a−1)
(
b−1∑
p=0

zpa) (
a−1∑
q=0

zqb) =
a(b−1)∑

n=−b(a−1)

g(n) zn.
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If we set k = (a− 1)− q, then 0 ≤ k ≤ a− 1, and

G(z) =
b−1∑
p=0

a−1∑
q=0

zpa+qb−b(a−1) =
b−1∑
p=0

a−1∑
k=0

zpa−kb,

so, for any integer n, such that −b(a − 1) ≤ n ≤ a(b − 1), we obtain (with q
instead of k)

g(n) =
∑

0≤p<b, 0≤q<a ; pa−qb=n
1.

Two special cases are important:
From Lemma 2.1, for a, b ≥ 1,

g(0) =
∑

0≤p<b, 0≤q<a ; pa=qb

1 = gcd(a, b),

and, from Lemma 2.2, for a, b ≥ 2,

g(1) =
∑

0≤p<b, 0≤q<a ; pa−qb=1

1 , so

g(1) =

{
1 if gcd(a, b) = 1,
0 if gcd(a, b) ≥ 2,

since g(0) and g(1) represent respectively, the number of solution for the equa-
tions pa− qb = 0 and pa− qb = 1, with 0 ≤ p < b and 0 ≤ q < a. On the other
hand, the coefficient c(n) can be obtained by the Cauchy formula

∀n ≥ 0, c(n) =
1

2πι

∫
|z|=1

F (z)
zn+1

dz =
∫ 1

0

F (z)
zn

ds, with z = e2πιs.

It is easy to see that the coefficient c(n) and g(n) are linked with the relation
g(n) = c( n + b(a − 1) ), so g(0) = c( b(a − 1) ) = d = gcd(a, b) and c( b(a −
1) + 1 ) = g(1) = δ1d , where δmn = 1 if m = n, and equal to 0 otherwise.
Consequently, ∀a, b ≥ 2 and z = exp(2πιs):

∫ 1

0

(
∑b−1
p=0 z

pa) (
∑a−1
q=0 z

qb)
zb(a−1)

ds = gcd(a, b) (4.1)

∫ 1

0

(
∑b−1
p=0 z

pa) (
∑a−1
q=0 z

qb)
zb(a−1)+1

ds =

{
1 if gcd(a, b) = 1,
0 if gcd(a, b) ≥ 2. (4.2)

QED

Examples:

1) If (a, b) = (5, 3), then G(z) = z−12 (1 + z5 + z10)(1 + z3 + z6 + z9 + z12),
so the constant term of G(z) is g(0) = 1 = gcd(5, 3).

2) If (a, b) = (6, 2), then G(z) = z−10 (1 + z6)(1 + z2 + z4 + z6 + z8 + z10), so
the constant term of G(z) is g(0) = 2 = gcd(6, 2).
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3.1 A Trigometrical Formula for the Integer GCD

Using the relation (for any real θ)

eιθ − 1 = eιθ/2( eιθ/2 − e−ιθ/2 ) = eιθ/2 × 2 ι sin (θ/2) ,

we obtain (if za 6= 1 and zb 6= 1)

G(z) = z−b(a−1) z
ab − 1
za − 1

zab − 1
zb − 1

= z(b−a)/2 sin(πabs)
sin(πas)

sin(πabs)
sin(πbs)

.

So, ∫ 1

0
G(z) ds = I + ι J =

∫ 1

0
eπιs(b−a)

sin2(πabs)
sin (πas) sin (πbs)

ds = gcd(a, b).

Since gcd(a, b) is a real number, then

I =
∫ 1

0
cos[πs(b− a)]

sin2(πabs)
sin (πas) sin (πbs)

ds = gcd(a, b), (5.1)

or (Formula (2), proposed in the introduction)

I =
1
π

∫ π

0
cos[(b− a)x)]

sin2(abx)
sin(ax) sin(bx)

dx = gcd(a, b), (5.2)

and J =
∫ 1

0
sin[πs(b− a)]

sin2(πabs)
sin (πas) sin (πbs)

ds = 0.

This last result can be obtained straightforward. Let

H(s) = sin[πs(b− a)]
sin2(πabs)

sin (πas) sin (πbs)
,

then H(1− s) = −H(s) for 0 < s < 1 and J =
∫ 1
0 H(s) ds = 0.

Similarly, we also obtain a new coprimality sieve (d = gcd(a, b)):∫ 1

0
cos [ (b− a− 2)πs ]

sin2(πabs)
sin (πas) sin (πbs)

ds = δ1d , (6.1)

or
1
π

∫ π

0
cos [ (b− a− 2)x ]

sin2(abx)
sin (ax) sin (bx)

ds = δ1d . (6.2)

Example: If a = b = n ≥ 1, then we obtain:

gcd(n, n) =
1
π

∫ π

0

sin2(n2x)
sin2(nx)

dx =
1
nπ

∫ nπ

0

sin2(ny)
sin2(y)

dy =
1
nπ

(n2π) = n.

Remark:

We observe that Formula (5.2) and (6.2) show that gcd(a, b) and the integer
comprimality functions are, respectively, the |b − a|-th and the |b − a − 2|-th
coefficients of the cosine Fourier series for the function

P (x) =
sin2(abx)

sin(ax) sin(bx)
.
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Note that all the integrals are well defined since P (x) can be extended to a
continuous function P ∗ in all the interval [0, π]. Actually, P ∗ is analytic for all
reals, since P ∗ is the product of two Dirichlet kernels which are finite sums of
trigonometrical cosine functions (see formula (8)).

Other equivalent formula for the GCD: (∀a, b ≥ 1)

gcd(a, b) = 1/2 +
∫ 1

0
cot(πas) cot(πbs) sin2(πabs) ds (7.1)

gcd(a, b) = 1/2 +
1
π

∫ π

0
cot(ax) cot(bx) sin2(abx) dx (7.2)

3.2 Link with Dirichlet kernels:

Let n ≥ 1 be an integer and x be a real number. The Dirichlet kernel function
Dn is defined by

Dn(x) =
n∑

k=−n
eikx = 1 + 2

n∑
k=1

cos(kx) =
sin [ (2n+ 1)(x/2) ]

sin(x/2)
,

where the last equality is valid only for x 6= 0 mod 2π, but we have Dn(2kπ) =
2n+ 1, for any integer k. Hence, for all odd integers a, b ≥ 3:

gcd(a, b) =
1
π

∫ π

0
cos [ (b− a)x) ] ×D(a−1)/2(2bx) ×D(b−1)/2(2ax) dx. (8)

Note that Dirichlet Dn kernels are linked with Chebyshev polynomials of second
order Un:

Dn(x) = 1 + 2
n∑
k=1

cos(kx) =
sin [ (2n+ 1)(x/2) ]

sin(x/2)

= U2n(cos(x/2)) with Un(cos(x)) =
sin[(n+ 1)x]

sin(x)
.

3.3 A GCD function for real numbers:

We observe that the integral of formula (2) may be well defined for some pairs
of real numbers. We suggest to extend the definition of the GCD to the pairs
of reals for which the integral formula is well defined.

Examples:

gcd(1/2, 1/2) =
1
π

∫ π

0

sin2(x/4)
sin2(x/2)

dx =
4
π

∫ π/4

0

sin2(t)
sin2(2t)

dt =
1
π
.

gcd(1, 1/2) =
1
π

∫ π

0
cos(x/2)

sin(x/2)
sin (x)

dx =
1
π

∫ π

0

1
2
dx =

1
2
.

More generally, the GCD function is well defined for all pairs (a, b) ∈ ]0, 1[2,
since the only singularity in formula (2) will be x = 0.
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4 Conclusion

• If our integral definition of GCD given in (2) (or one of the others equiva-
lent to it) can be evaluated numerically in NC, with a good error control,
then the GCD and its related problems will belong to the NC class. So
our next step of research is to find numerical approximation algorithms
for our formula.

• Another way to address this issue is to consider an adapted fast parallel
computation of Fourrier coefficients.

• One may try to prove that, at least, the Integer GCD is in RNC (random
NC class) by random computations methods for integrals.
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