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Abstract

Tudor Jebelean and Ken Weber introduced an algorithm for finding (a, b)-pairs satisfying au + bv ≡ 0 (mod k), with 0 <

|a|, |b| < √
k. It is based on Sorenson’s “k-ary reduction”. This algorithm does not preserve the GCD and its related GCD algorithm

has an O(n2) time bit complexity in the worst case. We present a modified version which avoids this problem. We show that
a slightly modified GCD algorithm has an O(n2/ logn) running time in the worst case, where n is the number of bits of the larger
input.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Given two integers a and b, the greatest common
divisor of a and b, denoted GCD(a, b), is the largest
integer which divides both a and b. Applications for
GCD algorithms include computer arithmetic, integer
factoring, cryptology and symbolic computation [7,15,
5]. In [10], Sorenson proposed the “right-shift k-ary al-
gorithm”. It is based on the following reduction. Given
two positive integers u > v relatively prime to k (i.e.,
(u, k) and (v, k) are coprime), pairs of integers (a, b)

can be found that satisfy

au + bv ≡ 0 (mod k),

with 0 < |a|, |b| < √
k. (1)

If we perform the transformation (also called “k-ary re-
duction”):
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(u, v) �→ (u′, v′) = (|au + bv|/k,min(u, v)
)
,

which replaces u with u′ = |au+ bv|/k, the size of u is
reduced by roughly 1

2 log2(k) bits since

|au + bv|/k � 2 max
(|a|, |b|)u

k
<

2u√
k
. (2)

Sorensen suggests table lookup to find sufficiently
small a and b satisfying (1). By contrast, Jebelean [4]
and Weber [16] both propose a simple algorithm, which
finds such small a and b that satisfy (1) with time
complexity O(n2). This latter algorithm we call the
“Jebelean–Weber algorithm”, or JWA, for short. A GCD
algorithm based on this reduction works very well in
practice and is included in Gnu MP multiprecision li-
brary [2]. However, this GCD algorithm does not pre-
serve the GCD, since for some α|a
GCD

(
v, |au + bv|/k

) = αGCD(u, v),

whence some spurious factors must be eliminated (see
example in Section 4). This drawback affects the effi-
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ciency of the GCD algorithm, at least for small inte-
gers (�1000 bits). In this present work we show how
a slightly modified version of JWA easily avoids this
problem. Not only is this modified version desirable
for GCD computations but it is also needed in many
other applications, such as Jacobi symbol computation
or modular inverse, to mention only a few [7].

The paper is organized as follows. Notations and de-
finitions are given in Section 2. In Section 3, we recall
the Jebelean–Weber algorithm and propose a modified
version. Section 4 deals with the correctness. In Sec-
tion 5 we describe our algorithm, study its time com-
plexity, and report on preliminary experiments. We con-
clude with some remarks in Section 6.

2. Notation

Throughout this paper, we restrict ourselves to the
set of non-negative integers. Let u and v be two such
(non-negative) integers; u and v are, respectively, n-bits
and p-bits numbers with u � v � 1. Let k be an integer
parameter s.t. k � 4.

Given a non-negative integer x ∈ N , �2(x) represents
the number of significant bits of an non-negative inte-
ger x, not counting leading zeros: �2(x) = �log2(x)	+1,
if x � 1 and �2(0) = 0. So n = �2(u), p = �2(v)

and p satisfies 2p−1 � v < 2p . We let ρ = ρ(u, v) =
�2(u) − �2(v) + 1. Thus, we obtain 2ρ−2 < u/v < 2ρ .

Let a, b be positive integers, the integer x = a mod b

is the unique non-negative integer x such that 0 � x �
b − 1 and x − a is divisible by b. Note that this nota-
tion still holds when a < 0. If b is relatively prime to k,
then r = a/b mod k is the unique non-negative integer
r such that 0 � r � k − 1 and rb ≡ a (mod k).

As noticed by many authors the main difficulty in
GCD algorithms happens when the input data u and
v are roughly of the same size [10,4,16]. So we shall
assume that when Sorenson’s reduction is applied:
u/v <

√
k. Otherwise, we usually apply a more effi-

cient reduction: an Euclidean step or the bmod, defined
as: bmod(u, v) = |u − (u/v mod 2ρ)v|/2ρ .

The extended version of Euclid GCD algorithm is
noted EEA [5]. It is tightly linked with continued frac-
tions [3,5] and is important for its multiple applications
in cryptology and computer algebra.

3. The algorithms

3.1. JWA: The Jebelean–Weber algorithm

First we recall the JWA as stated in [16].
Input: x, y > 0, k � 4, and gcd(k, x) = gcd(k, y) = 1.
Output: (n, d) such that 0 < n, |d| < √

k, and
ny ≡ dx mod k.
r := x/y mod k;
f1 = (n1, d1) := (k,0);
f2 = (n2, d2) := (r,1);

while n2 �
√

k do
f1 := f1 − �n1/n2	f2;
swap (f1, f2);

endwhile
return f2

Fig. 1. The Jebelean–Weber algorithm.

When (n, d) is the output result of JWA, the pair
(a, b) = (d,−n) (or (−d,n)) satisfies the property au+
bv = 0 mod k. The algorithm JWA is nothing but the
extended version of Euclid EEA applied to the pair
(k,u/v mod k), where only one column is added in-
stead of two for EEA (see [5]), and they only differ on
their exit test.

3.2. The modified Jebelean–Weber algorithm: M-JWA

We give in Fig. 2 a modified version that avoids spu-
rious factors introduced in JWA.

Input: x, y > 0, k � 4 such that gcd(k, x) = gcd(k, y) = 1.

Output: A 2 × 2 integer matrix M = M(x,y, k) =
(

n1 d1
n2 d2

)
such that 0 < n2, |d2| < √

k, n2y ≡ d2x (mod k) and
n1y ≡ d1x (mod k).
r := x/y mod k;
f1 = (n1, d1) := (k,0);
f2 = (n2, d2) := (r,1);

while n2 �
√

k do
f1 := f1 − �n1/n2	f2;
swap (f1, f2);

endwhile

return M =
(

n1 d1
n2 d2

)

Fig. 2. The modified Jebelean–Weber algorithm: M-JWA.

The new transformation associated with the output
matrix of M-JWA is defined by (u, v) ← (R1,R2) with:

R1 = |n1v − d1u|/k and (3)

R2 = |n2v − d2u|/k. (4)

We will prove in the next section that the transfor-
mation (u, v) ← (R1,R2) preserves the GCD, i.e.:
GCD(R1,R2) = GCD(u, v) and avoids the spurious
factors of algorithm JWA.
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4. Correctness

Before proving that indeed, M-JWA preserves the
GCD, we first recall below some well-known proper-
ties [3,5] of EEA that are also valid for JWA as well
as for M-JWA. Let (ns, ds)s�1 be the pair of sequences
corresponding to the successive results of f2 in JWA or
M-JWA and (n0, d0) = (k,0); then ∀s � 1 we have

• ns > 0 and dsds+1 < 0,
• ns/ds ≡ x/y (mod k),
• nsds+1 − ns+1ds = (−1)sk,
• (ns)s is decreasing and (|ds |)s is increasing.

Lemma 4.1. The output of JWA satisfies n2y − d2x ≡
0 (mod k) and 0 < n2, |d2| <

√
k � n1.

Proof. (See [16].) In the last iteration i of JWA or
M-JWA ni must meet the condition ni <

√
k < ni−1.

Hence, since ni−1|di | + ni |di−1| = k, ni−1|di | � k and
|di | < k/ni−1 �

√
k. Moreover, we have at the end of

the while loop n2 <
√

k � n1. �
We prove in the following that the output integer ma-

trix of M-JWA enjoys more interesting properties.

Lemma 4.2. Let u � v � 1 and k � 4 be three posi-
tive integers such that gcd(u, k) = gcd(v, k) = 1 and

u/v <
√

k. Let
(

c d
a b

)
be the output integer matrix of

M-JWA with (u, v) as inputs, then G = (|du− cv|)/k is
a positive integer such that 0 � G � v.

Proof. First, G is an integer since c/d ≡ a/b ≡
u/v mod k = r . Moreover, if r <

√
k then c = k, d = 0

and G = v. Otherwise k > r �
√

k and since |d| � |b|,
we proceed in two cases:

Case 1: If |b| = |d|, then this case only happens only
when b = −1, d = 1, c = r and �k/r	 = 1. Since k >

c >
√

k > u/v, we obtain

G = |u − cv|/k = |u/v − c|(v/k)

= (c − u/v)(v/k) < (c/k)v < v.

Case 2: If |b| > |d|. We have G � (|d|u + cv)/k =
(|d|u/kv+c/k)v. Let us prove that |d|u/kv+c/k < 1,
i.e., u/v < (k − c)/|d|. From |b| > |d| we obtain
(|b| − 1)/|d| � 1. From Lemma 4.1 we have c �

√
k

and using the relation k = c|b| + a|d|, we obtain the
result
k − c

|d| = c|b| + a|d| − c

|d|
= c

( |b| − 1

|d|
)

+ a �
√

k > u/v. �
Lemma 4.3. Let u � v � 1 and k � 1 be three integers

such that GCD(u, k) = GCD(v, k) = 1. Let M =
(

c d
a b

)
be an integer matrix with |detM| = |cb − ad| = k.

If there exist two integers R1, R2 satisfying k
(

R1
R2

)
=

M
( u

v

)
, then GCD(R1,R2) = GCD(u, v).

Proof. Let α = GCD(u, v) and β = GCD(R1,R2) then
kR1 = (cu + dv) so α|kR1 but GCD(u, k) = 1 then
GCD(α, k) = 1 and α|R1. Similarly kR2 = (au + bv)

and α|R2. Hence α|β . Moreover, since |cb − ad| =
k �= 0, M−1 exists and(

u

v

)
= k × M−1

(
R1
R2

)

= k × ε/k ×
(

bR1 − dR2
−aR1 + cR2

)
, with ε = ±1,

hence β|α and the result α = β . �
Example. If k = 2ρ , then the transformation (u, v) :=
(v,bmod(u, v)) preserves the GCD since the associated

matrix is M =
(

0 k
1 −r

)
, with r = u/v mod k.

Remark. It is worth to note that this lemma general-
izes a well-known result in the case k = ±1, i.e., if(

R1
R2

)
= M

( u
v

)
, and detM = ±1 then GCD(R1,R2) =

GCD(u, v). This situation occurs in EEA.
A similar method can be applied to eliminate spu-

rious factors for the left-shift k-ary GCD of Soren-
son [10]. Following the same approach, a pair of inte-

gers (c, d) can be found such that det
(

c d
a b

)
= ±1.

Proposition 4.1. Let M(u,v, k) =
(

n1 d1
n2 d2

)
be the output

integer matrix of M-JWA, given input u, v and k such
that u/v <

√
k. If(

R1
R2

)
=

( |n1v − d1u|/k

|n2v − d2u|/k

)
,

then R1 and R2 are two integers satisfying 0 � R1 � v,
0 � R2 � 2u/

√
k and GCD(R1,R2) = GCD(u, v).

Proof. We have

k

(
R1
R2

)
= N

(
u

v

)
,

where N is one of the four following matrices
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Table 1
Spurious factors in JWA with Fibonacci pair of inputs (FN ,FN−1)

N Spurious factor

300 5
1000 151875
2000 122542875
3000 ∼ 1.02 · 1015

4000 ∼ 2.37 · 1015

5000 ∼ 1.15 · 1019

6000 ∼ 2.74 · 1025

9000 ∼ 9.67 · 1043

N1 =
(−d1 n1

−d2 n2

)
, N2 =

(
d1 −n1
d2 −n2

)
,

N3 =
(−d1 n1

d2 −n2

)
or N4 =

(
d1 −n1

−d2 n2

)
.

Then the result derives straightforwards from Lem-
mas 4.2, 4.3 and relation (2). �
Example. Let (u, v) = (28865,19203) and k = 26

= 64. Note that GCD(u, v) = 1. We obtain in turn

u/v mod k = 1/3 mod 64 = 43, and M =
(

21 −1
1 3

)
.

Hence R1 = |u + 21v|/64 = 6752, and R2 = |3u − v|/
64 = 1053. The JWA algorithm uses the transfor-
mation (u, v) ← (v,R2). However GCD(v,R2) =
GCD(19203,1053) = 3 �= GCD(u, v), while, with
M-JWA algorithm, we obtain GCD(R1,R2) =
GCD(6752,1053) = GCD(u, v) = 1. The spurious fac-
tor 3 has been eliminated. Table 1 gives some examples
of spurious factors with Fibonacci pair inputs.

5. The M-JWA GCD algorithm

An easy GCD algorithm can be designed by simply
alternating M-JWA reductions and Euclidean reduc-
tions to achieve an O(n2/ logn) running time in the
worst case. This algorithm is similar to ModGenBin
algorithm of Sorenson [12], however the difference is
that there are no spurious factors at all. We first recall
some results on basic arithmetic (see [10,11] for more
details).

Lemma 5.1. Let x, y and k = 2m, m � 2 be three
positive integers with x > y. If y � k, then xy, �x/y	
and x mod y can be computed in O(logx) bit opera-
tions. If y > k, then xy can be computed in O(logx +
(logx logy)/ logk) bits operations. Moreover, �x/y	
and x mod y can be computed in O(logx + (log�x/y� ·
logy)/ log k) bits operations. These results require pre-
computed tables of size O(k2 logk) bits. It requires at
most O(k2 log2 k) bit operations to compute these ta-
bles.
Proof. See [12]. �
If the length n of the input u is such that logn >

W/2, where W = 32 or 64, then we allow the parame-
ter k to grow with the length n: logk = �(logn). For
example, as in [12,13], we can choose the parameter k

such that k = n0.4.

Input: u � v � 3, two odd integers.
Output: gcd(u, v).

k = 232 or k = 264;
n := �log2(u)	 + 1;
if (n0.4 > k) then

m := �0.4 log2 n	 + 1;
m := m + (m mod 2); k := 2m;
Precompute tables (see Lemma 5.1);

endif
while uv �= 0 do

if u < v then (u, v) := (v,u);
if u/v <

√
k then(

c d
a b

)
:= M-JWA(u, v, k);

u := |du − cv|/k;
v := |bu − av|/k;

else (u, v) := (v,u mod v);
makeodd(u); makeodd(v);

endwhile
return u + v;

Fig. 3. The modified Jebelean–Weber GCD algorithm: M-JWA-GCD.

The makeodd(x) function removes all the powers
of 2 from the integer x. M-JWA(u, v, k) is the output
matrix of M-JWA algorithm described in Fig. 2.

5.1. Complexity analysis

Theorem 5.2. If u and v are two positive integers
of at most n bits in length, then M-JWA-GCD com-
putes gcd(u, v) with a worst case running time of
O(n2/ logn).

Proof. The proof is similar to those described in [10–
12]. First we assume that only M-JWA reductions occur.
The computation of the matrix M-JWA(u, v, k) costs
O(log2 k). The computation of |du − cv| and |bu − av|
can be computed in O(n) time. Since there are, at most,
O(n/ logk) iterations, then we obtain O((n/ logk) ×
(n + log2 k)) = O(n2/ logn) running time.

Now, we assume that only Euclidean steps occur.
Let vi and qi , i = 1,2, . . . , s, be, respectively, the re-
mainders and quotients sequences obtained in Euclid
algorithm, with s = O(n/ logk). The running time is
bounded by (up to a constant)
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Table 2
CPU times in microseconds for M-JWA and JWA gcd algorithms with
104 random integers of SIZE words of 32 bits

SIZE M-JWA JWA

10 39.4 42.3
20 117.7 118.4
30 150.1 153.4
40 246.0 240.8
50 353.9 339.5
70 588.7 563.0

s∑
i=1

logvi logqi

log k
+ O(logvi) + O(logqi)

� n + 1

log k

s∑
i=1

logqi + sn

= O(n2/ logn),

since logk = �(logn) and
∏s

i=1 qi � 2n.
Finally, the precomputed tables require a memory

space of O(k2 logk) = O(n0.8 logn) bits, which is no
more than the length of the inputs u and v. It also needs
at most O(k2 log2 k) = O(n0.8 log2 n) bit operations in
time to compute these tables. �
5.2. Experiments

The implementation is written in GNU C Compiler
gcc, version 2.7 (Stallman, 1991 [2]) with the 3.1.1
GNU MP library on a Pentium IV, 3.1 GHz Dell PC,
running Linux system. The average times are in mi-
croseconds (µs). We used the same parameters for both
M-JWA-GCD and JWA-GCD and the code is not opti-
mized. The experiments were done on N = 104 ran-
dom numbers u and v of SIZE words of 32 bits, with
10 � SIZE � 70. We used k = 230 with M-JWA re-
duction for �2(u) − �2(v) � 4, and Euclidean step
otherwise.

The results described in Table 2 show that M-JWA-
GCD has a slightly better running time for integers of
size less than 30 words of 32 bits. For larger inputs,
the parameter k = 230 was not suitable and we suggest
to experiment it with more M-JWA reductions, i.e., for
�2(u) − �2(v) � C, with C > 4 and larger parameter k,
i.e.: k = 264.

6. Conclusion

We have shown that a slight modification easily
avoids the spurious factors introduced by JWA. Al-
though in our experiments M-JWA is faster only for
integers less then 30 words of 32 bits, it makes the
complexity analysis much easier and helps to design
other Jebelean like GCD algorithms. Sorenson also pro-
posed in [12] a small modification of the JWA algo-
rithm but its GCD algorithm has an O(n2/ logn) run-
ning time on average, and O(n2) running time in the
worst case. We improve this result, since our algorithm
has an O(n2/ logn) running time in the worst case.
On the other hand, for very large integers, there are
many half-gcd like algorithms [1,6,8,14,15,9] that com-
putes the GCD in O(n log2 n log logn) time, but all these
fast algorithms fall down to more basic algorithms at
some point of their recursion. Moreover, we observe
that Sorenson’s reduction (1) is basically a half-gcd like
procedure (consider k = 2n) and the cofactors a and b in
relation (1) depend only on the least significant bits of
u and v. Therefore, one may consider to built a half-gcd
like algorithm based on a recursive Sorenson’s reduc-
tion. This is the direction we intend to next take our
research.
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