
ACM Communications in Computer Algebra, TBA TBA

Fast parallel GCD algorithm of many integers

Sidi M. SEDJELMACI
LIPN, CNRS UMR 7030
University of Paris-Nord

Av. J.-B. Clément, 93430 Villetaneuse, France
sms@lipn.univ-paris13.fr

Abstract

We present a new parallel algorithm which computes the GCD of n integers of O(n) bits
in O(n/ log n) time with O(n2+ε) processors, for any ε > 0 in CRCW PRAM model.

1 Introduction

The computation of the GCD of two integers is not known to be in the NC parallel, nor it is known to
be P-complete [2]. The best parallel performance was first obtained by Chor and Goldreich [3], then
by Sorenson [10] and Sedjelmaci [9] since they propose, with different approaches, parallel integer
GCD algorithms which can be achieved in O(n/ log n) time with O(n1+ε) number of processors, for
any ε > 0, in PRAM CRCW model (see [6] for CRCW model of computation). A naive approach,
using a binary tree computation to compute the GCD of n integers of O(n) bits would require O(n)
parallel time with O(n2+ε) processors. One may also use the existing parallel GCD algorithms of
two integers and try to adapt them to reach the GCD of many integers. However, it is not obvious
how to conserve the same parallel time with O(n2+ε) processors, which is roughly the bit-size of all
the n input integers. In this paper, we prove that we can compute the GCD of O(n) integers of
n bits in only O(n/ log n) parallel time with O(n2+ε) processors, for any ε > 0 in CRCW PRAM
model, in the worst case. Other probabilistic approaches are given in [4, 5]. To our knowledge, it
is the first deterministic algorithm which computes the GCD of many integers with this parallel
performance and polynomial work.

1.1 The ∆-GCD algorithm

Input: A vector A = (a0, a1, · · · , an−1) of n positive integers, n ≥ 4.
Output: gcd(a0, a1, · · · , an−1).

If A = (a0, a0, · · · , a0) Then Return a0 ; /* A is a constant vector */
α := a0 ; I := 0 ; p := n ;
While (α > 1) Do

For (i = 0) to (n− 1) ParDo
If (0 < ai ≤ 2n/p) Then { α := ai ; I := i ; }

Endfor

1

Fast parallel GCD algorithm of many integers TBA

If (α > 2n/p) Then /* Compute in parallel I, J and α */
α := min { | ai − aj | > 0 } = aI − aJ ; aI := α ;

Endif
For (i = 0) to (n− 1) ParDo /* Reduce all the ai’s */

If (i 6= I) Then ai := ai mod α ;
Endfor /* ∀ i 6= I , 0 ≤ ai < α */
If (∀ i 6= I , ai = 0) Then Return α ; /* Here α = gcd(a0, · · · , an−1) */
p := np ;

Endwhile

Return α.

Remarks:
We use a weak version of the function min based the pigeonhole principle, where only the O(log n)
leading bits of the integers are considered. The integer α is, at each while iteration, O(log n) bits
less. More details for the computations of I, J and α are given in APPENDIX, as well as a first C
program checking the correctness of the ∆-GCD algorithm.

1.2 Complexity analysis

Lemma 1: Let n, I be two integers, n ≥ 2 and 0 ≤ I ≤ n − 1. Let A = (a0, a1, · · · , an−1)t and
V = (v0, v1, · · · , vn−1)t be two integral vectors defined by vI = aI and ∀i 6= I, vi = ai − qiaI for
some integers qi. Let M be the associated matrix defined by V = M A, then det(M) = 1.

Proof: By induction on the size of the matrices n ≥ 2.

Lemma 2: Let n ≥ 2 be an integer and let A = (a0, a1, · · · , an−1)t and V = (v0, v1, · · · , vn−1)t be
two integral vectors. and let M be a square n×n matrix with integral entries, such that V = M A.
If M is unimodular, i.e.: det(M) = ±1, then gcd(a0, a1, · · · , an−1) = gcd(v0, v1, · · · , vn−1).

Proof: Let d = gcd(a0, a1, · · · , an−1) and δ = gcd(v0, v1, · · · , vn−1). Since each vi is a linear
combination of the aj’s, then d | vi for all index i, so d | δ. The matrix M−1 exists and has integral
entries because det(M) = ±1, so A = M−1V . Similarly, each ai is a linear combination of the vi’s,
so δ | d and δ = d.

Proposition 1 (Correctness) Let Ak be the vector obtained at the end of the k-th while loop
iteration and let denote gcd(A) = gcd(a0, a1, · · · , an−1). Then ∀k ≥ 1 , gcd(Ak) = gcd(A0).

Proof: We consider two cases α = aI or α = |aI − aJ | > 0.
Case 1: Let α = aI and the transformation a′i = ai modaI for i 6= I and a′I = aI . Then, by
Lemma 1 and Lemma 2, we have gcd(a′0, a

′
1, · · · , a′n−1) = gcd(a0, a1, · · · , an−1). In fact, if i 6= I,

then a′i = ai mod aI and the matrix associated to this transformation has determinant ± 1.
Case 2: Let α = |aI −aJ | for some indices I, J with 0 ≤ I < J < n and let T be the transformation
defined by a′i = ai modα for i 6= I and a′I = α. We split this transformation T in two parts
T = T2 ◦ T1. T1 is the elementary transformation: a′I = α = |aI − aJ | and a′i = ai, for i 6= I. The
determinant of the matrix associated to T1 is obviously ± 1. The transformation T2 is similar to the
transformation described in Case 1, since α becomes one of the component of the vector A = (ai).

Theorem 1 The ∆−GCD algorithm computes in parallel the GCD of n integers of O(n) bits in
length, in O(n/ log n) time using O(n2+ε) processors in CRCW PRAM model, with ε > 0.

2

Sidi M. SEDJELMACI

Proof: The algorithm is correct thanks to Proposition 1. We use CRCW PRAM model of com-
putations and additions/subtractions can be done in O(1) time with O(n1+ε) processors with table
look-up [9, 10]. We only consider the O(log n) leading bits of the ai’s and use the pigeonhole
principle to reduce α, at each while step, by O(log n) bits. It costs O(1) parallel time with O(n)
processors (see details of the computation of α in Appendix). So the algorithm terminates after
O(n/ log n) iterations of the while loop and we have to prove that each iteration can be achieved in
constant time with O(n2+ε) processors. Obviously, the most expensive operation is the computation
of the remainders. Thus it remains to prove that the total cost of all the remainder computations
can be achieved in O(1) parallel time with the same number of processors, at each iteration. Let
ti be the time cost at iteration i, 1 ≤ i ≤ N , with N = O(n/ log n). So the total parallel time is
t(n) =

∑N
i=1 ti. Let ki be the maximum bit length of all the quotients qj = baj

α
c, with

∑N
i=1 ki ≤ n.

Then we have ti = O(min { ki
logn

, log n }). In fact, if ki ≤ log n then ti = O(1). If ki > log2 n, then

one division between two n bits integers costs ti = O(log n). Otherwise, if log n < ki < log2 n, then
each quotient qi has ki/ log n digits of O(log n) bits, so ti = O(ki

logn
) since arithmetic operations

with O(log n) bits can be done in O(1) parallel time with table look-up [9, 10]. The total number
of processors is n×O(n1+ε) = O(n2+ε) and the parallel time is then (recall that

∑N
i=1 ki ≤ n)

t(n) =
N∑
i=1

min ({ ki
log n

, log n}) =
∑

ki<logn

1 +
∑

logn<ki<log2 n

ki
log n

+
∑

ki>log2 n

log n = A+B + C.

We have A ≤
∑N

i=1 1 = N = O(n
logn

) and B ≤
∑N

ki<log2 n
ki

logn
= 1

logn

∑
i=1 ki ≤

n
logn

.

C =
∑N

ki>log2 n log n = log n
∑

ki>log2 n 1. Let P be the number of all the ki’s satisfying ki > log2 n.

Then P log2 n ≤ k1 + k2 + · · ·+ kP < n, so P < n
log2 n

, hence C ≤ n
logn

and t(n) = O(n
logn

). 2

Concluding remarks and directions for future research:

• Based on the same ideas, one may consider a fast sequential GCD algorithm for n integers of
O(n) bits in O(n2/ log n).

• An improvement can be done by dividing systematically α by all primes of O(log n) bits as
described in a recent paper of Sorenson [11].

• Similarly, a least Significant Bit first approach (LSB) may be considered.

• Similarly to Blankinship algorithm [1], an extended GCD may be computed with identity
matrix juxtaposed to vector A, as well as an upper bound of the multipliers [5] should be
considered.

• We can improve the Rosser’s algorithm [8, 7] to solve linear Diophantine equation. Instead of
division by the first smallest non-zero integer of the columns, one may consider division by α.
The resulting algorithm should be O(log n) faster.

References
[1] W. A. Blankinship, A new version of the Euclidean algorithm, Amer. Math. Monthly, 70 (1963),

742-745

3

Fast parallel GCD algorithm of many integers TBA

[2] A. Borodin, J. von zur Gathen and J. Hopcroft, Fast parallel matrix and GCD computations Infor-
mation and Control 52, 3, 1982, 241–256

[3] B. Chor and O. Goldreich, An improved parallel algorithm for integer GCD, Algorithmica,5, 1990,
1-10

[4] G. Cooperman, S. Feisel, J. von zur Gathen and G. Havas, GCD of many integers, Lect. Notes in
Comp. Sci., Springer-Verlag, Berlin, 1627 (1999), 310–317

[5] G. Havas, S. Majewski, Extended gcd calculation, Congressus Numerantium, 111, 1627 (1998), 104-
114

[6] R. M. Karp, V. Ramachandran, Parallel algorithms for shared-memory machines, Handbook of
Theoretical Computer Science (Vol. A): Algorithms and Complexity, J. van Leeuwen, Ed., New York,
Elsevier (1991), 869-941

[7] M. Khorramizadeh and N. Mahdavi-Amiri, On solving linear Diophantine systems using generalized
Rosser’s algorithm, Bulletin of the Iranian Mathematical Society, 34, 2, (2008), 1-25

[8] J.B. Rosser, A note on the linear Diophantine equation, Amer. Math. Monthly, 48 (1941), 662-666

[9] S.M. Sedjelmaci, On a Parallel Lehmer-Euclid GCD Algorithm, in Proc. of the International Sympo-
sium on Symbolic and Algebraic Computation (ISSAC’2001), 2001, 303-308

[10] J. Sorenson, Two Fast GCD Algorithms, J. of Algorithms, 16, 1994, 110-144

[11] J. Sorenson, A Randomized Sublinear Time Parallel GCD Algorithm for the EREW PRAM, Infor-
mation Processing Letters, 110, 2010, 198-201

2 Appendix
Here are some details for the computation of (I, J), and then we compute α = |aI − aJ |.

Lemma A: Let t0, t1, · · · , tn−1 be n positive integers i.e.: 0 < ti < n, so that there exists at least two
terms tI and tJ such that tI = tJ with 0 ≤ I, J < n and I 6= J . The determination of I and J can be
achieved in O(1) parallel time with O(n) number of processors in CRCW PRAM model.

Proof: The main idea is described by the following function pigeonhole which, for a given array (t[i])i,
0 ≤ i < n, with 0 < ti < n, returns a pair of integers (I, J), s.t.: tI = tJ with 0 ≤ I, J < n and I 6= J .

Step 1: (Initialization)
For k = 0 to n− 1 ParDo
s[k] = 0 ;

Endfor ;

Step 2: (Detecting write concurrencies)
For i = 0 to n− 1 ParDo
s[t[i]] = t[i] ;
If (write concurrency and processor i is chosen) Index[t[i]] = i ;
Else Index[t[i]] = −1 ;

Endfor ;

/* We have s[j] = j if j is a value reached by the array t, and s[j] = 0 otherwise. In case of write
concurrency, we use the Arbitrary submodel of PRAM CRCW. Let i be the index of the processor allowed

4

Sidi M. SEDJELMACI

to write the common value t[i] = k. At this point we may have several write concurrency and Index integers
as well. In the next step, we will choose arbitrarily one of them called I: */

Step 3: (Select one write concurrency: I)
For i = 0 to n− 1 ParDo

If (Index[i] > 0) I = Index[i] ;
/* Use Arbitrary submodel of PRAM CRCW if write concurrency */

Endfor ;

Step 4: (Determine J)
For j = 0 to n− 1 ParDo

If (j 6= I and t[j] = t[I]) J = j ;
Endfor ;

Return (I, J).

Note finally that testing equality between two n bits integers can be done easily in O(1) parallel time with
O(n) number of processors in Arbitrary CRCW PRAM model.
Example: With n = 10.

i 0 1 2 3 4 5 6 7 8 9

t 9 5 3 4 3 7 9 9 7 1

s 0 1 0 3 4 5 0 7 0 9

Index -1 -1 -1 4 -1 -1 -1 5 -1 6

If I = 6 is selected, we obtain J = 0 and return (6, 0). We have indeed t[6] = t[0] = 9.

Remark: Only O(nc) distinct integers of A, 0 < c < 1, are needed for the function pigeonhole. In case
there is not enough distinct integers in the set A, one can easily generate n new distinct integers in parallel:
ak = kβ cmod α, for 1 ≤ k < n. In fact, if there are not all distinct, then there exists 0 ≤ p, q < n, p 6= q
such that ap = aq, and pβ ≡ qβ mod α, so (p − q)β ≡ 0 mod α with 0 < |p − q| < n. But in that case,
gcd(α, β) can be easily computed in parallel since mβ = kα with 0 < m < n (only O(log n) Euclidean
steps are needed).

5

