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Abstract. A b-coloring of a graph is a coloring such that every color class admits a vertex
adjacent to at least one vertex receiving each of the colors not assigned to it. The b-chromatic
number of a graph G, denoted by χb(G), is the maximum number t such that G admits a b-
coloring with t colors. A graph G is b-continuous if it admits a b-coloring with t colors, for
every t = χ(G), . . . , χb(G). We define a graph G to be b-monotonic if χb(H1) ≥ χb(H2) for every
induced subgraph H1 of G, and every induced subgraph H2 of H1. In this work, we prove that
P4-sparse graphs (and, in particular, cographs) are b-continuous and b-monotonic. Besides, we
describe a dynamic programming algorithm to compute the b-chromatic number in polynomial
time within these graph classes.
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1. Introduction

We consider finite undirected graphs without loops or multiple edges. A graph with
only one vertex will be called trivial. A coloring (i.e. proper coloring) of a graph G is an
assignment of colors (or natural numbers) to the vertices of G such that any two adjacent
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vertices are assigned different colors. The smallest number t such that G admits a coloring
with t colors is called the chromatic number of G and is denoted by χ(G).

Given a coloring of a graph G with t colors, a vertex v is said to be dominant or
t-dominant if v is adjacent to at least one vertex receiving each of the t − 1 colors not
assigned to v. A b-coloring of a graph is a coloring such that every color class admits
a dominant vertex. Note that every coloring of G with χ(G) colors is a b-coloring. The
b-chromatic number of a graph G, denoted by χb(G), is the maximum number t such that
G admits a b-coloring with t colors. This parameter has been introduced by R. W. Irving
and D. F. Manlove [12], by considering proper colorings that are minimal with respect to
a partial order defined on the set of all the partitions of the vertex set of G. They proved
that determining χb(G) is NP-hard for general graphs, but polynomial-time solvable for
trees. In [20], Kratochvil, Tuza and Voigt show that determining χb(G) is NP-hard even
if G is a connected bipartite graph. More results on algorithmic aspects and bounds for
some graph classes can be found in [6,7,19].

Recently, several related concepts concerning b-colorings of graphs have been studied
in [1,8–10,17,18,21]. A graph G is defined to be b-continuous [8] if it admits a b-coloring
with t colors, for every t = χ(G), . . . , χb(G). For example, the graph in Figure 1 is not
b-continuous since it admits b-colorings with 2 colors and 4 colors, but no b-coloring with
3 colors. In [17] (see also [8]) it is proved that chordal graphs and some planar graphs are
b-continuous.

Fig. 1. A non-b-continuous graph, admitting b-colorings with 2 and 4 colors but no b-coloring
with 3 colors.

Hoàng and Kouider [9] defined the concept of b-perfectness of a graph. A graph G is b-

perfect if χb(H) = χ(H) for every induced subgraph H of G. The property χb(G) = χ(G)
is not hereditary: the graph in Figure 2 has χb(G) = χ(G) = 3 but it contains an induced
subgraph H with χb(H) = 4 and χ(H) = 3. Also a graph G is b-imperfect if it is not b-
perfect, and minimally b-imperfect if it is b-imperfect and every proper induced subgraph
of G is b-perfect (see [18,10,21] and references therein).

We define a graph G to be b-monotonic if χb(H1) ≥ χb(H2) for every induced subgraph
H1 of G, and every induced subgraph H2 of H1. This property does not hold in general,
see Figure 2. Notice that, by the monotonicity of the chromatic number, both b-perfect
and minimally non b-perfect graphs are b-monotonic.

A cograph is a P4-free graph, i.e. a graph that does not contain a path with four
vertices P4 as an induced subgraph. A graph is P4-sparse if every 5-vertex subset contains
at most one P4. Cographs and P4-sparse graphs have been much studied. In this paper,
we prove that P4-sparse graphs (and, in particular, cographs) are b-continuous and b-
monotonic. Besides, we describe a dynamic programming algorithm to compute the b-
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Fig. 2. A non-b-monotonic graph G. We have χb(G) = 3, but the subgraph H obtained from
G by deleting the central vertex has χb(H) = 4.

chromatic number in polynomial time within these graph classes. These algorithms rely
on the structural properties of the corresponding classes, and are based on the notion
of dominance vector that we will introduce below. Before proving the results mentioned
here, we shall need to introduce a few definitions and preliminary results.

1.1. Definitions and preliminary results

Given a graph G, the dominance sequence domG ∈ Z
N≥χ(G) , is defined such that domG[t]

is the maximum number of distinct color classes admitting dominant vertices in any
coloring of G with t colors, for every t ≥ χ(G). Note that it suffices to consider this
sequence until t = |V (G)|, since domG[t] = 0 for t > |V (G)|. The algorithmic treatment
of this sequence will be based on this observation, i.e., we shall consider the dominance

vector (domG[χ(G)], . . . , domG[|V (G)|]) instead of the whole sequence. For example, the
dominance vector of the graph in Figure 3 is (3, 3, 2, 0).
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Fig. 3. A pyramid and its coloring with 3, 4, 5 and 6 colors admitting 3, 3, 2 and 0 distinct
color classes with dominant vertices, respectively.

Notice that a graph G admits a b-coloring with t colors if and only if domG[t] = t.
Moreover, it is clear that domG[χ(G)] = χ(G).

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with V1 ∩ V2 = ∅. The union of G1

and G2 is the graph G1 ∪G2 = (V1 ∪ V2, E1 ∪E2), and the join of G1 and G2 is the graph
G1 ∨ G2 = (V1 ∪ V2, E1 ∪ E2 ∪ V1 × V2) (i.e., G1 ∨ G2 = G1 ∪ G2).

Cographs were defined in [4]. Many NP-complete problems are polynomial time solvable
on cographs; but there are some exceptions, e.g., achromatic number [3], list coloring [16],
etc. The b-coloring problem on cographs was studied in [18], where b-perfect cographs have
been characterized. Nevertheless, the complexity of computing the b-chromatic number
of a cograph was not known. Cographs have a really nice structure, since they admit a
full decomposition theorem.

Proposition 1. [4] Every non-trivial cograph is either union or join of two smaller cographs.
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To each cograph G one can associate a corresponding decomposition rooted tree T ,
called the cotree of G, in the following way. Each non-leaf node in the tree is labeled with
either “∪” (union-nodes) or “∨” (join-nodes) and each leaf is labeled with a vertex of
G. Each non-leaf node has two or more children. Let Tx be the subtree of T rooted at
node x and let Vx be the set of vertices corresponding to the leaves in Tx. Then, each
node x of the cotree corresponds to the graph Gx = (Vx, Ex). An union-node (join-node)
corresponds to the disjoint union (join) of the cographs associated with the children of
the node. Finally, the cograph that is associated with the root of the cotree is just G, the
cograph represented by this cotree. The cotree associated to a cograph can be computed
in linear time [5].

The chromatic number of a cograph can be recursively calculated from its cotree by
applying the following result.

Theorem 1. [5] If G is the trivial graph, then χ(G) = 1. Let G1 = (V1, E1) and G2 =
(V2, E2) be two graphs such that V1 ∩ V2 = ∅. Then,

(i) χ(G1 ∪ G2) = max{χ(G1), χ(G2)}.
(ii) χ(G1 ∨ G2) = χ(G1) + χ(G2).

For b-coloring there is a similar result, but the relation between the b-chromatic number
of two graphs and the b-chromatic number of their union is weaker.

Theorem 2. [18] If G is the trivial graph, then χb(G) = 1. Let G1 = (V1, E1) and G2 =
(V2, E2) be two graphs such that V1 ∩ V2 = ∅. Then,

(i) χb(G1 ∪ G2) ≥ max{χb(G1), χb(G2)}.
(ii) χb(G1 ∨ G2) = χb(G1) + χb(G2).

The graph H in Figure 2 is an example of a graph verifying the strict inequality in
Theorem 2: χb(H1) = χb(H2) = 3, but χb(H) = 4.

A spider is a graph whose vertex set can be partitioned into S, C and R, where
S = {s1, . . . , sk} (k ≥ 2) is a stable set; C = {c1, . . . , ck} is a complete set; si is adjacent
to cj if and only if i = j (a thin spider), or si is adjacent to cj if and only if i 6= j (a thick

spider); R is allowed to be empty and if it is not, then all the vertices in R are adjacent
to all the vertices in C and non-adjacent to all the vertices in S. Clearly, the complement
of a thin spider is a thick spider, and viceversa. The triple (S,C,R) is called the spider

partition, and can be found in linear time [13].
P4-sparse graphs were introduced in [11]. They generalize cographs, can be recognized

in linear time [13], and are a subclass of perfect graphs [11]. Besides, b-perfect P4-sparse
graphs have been characterized in [9]. P4-sparse graphs have also a nice decomposition
theorem.

Theorem 3. [11,14] If G is a non-trivial P4-sparse graph, then either G or G is not

connected, or G is a spider.

In fact, Theorem 3 says that if G is a non-trivial P4-sparse graph, then either (i)
G1, . . . , Gp (p > 1) are the connected components of G (G) and G is the disjoint union
(join) of Gi’s (Gi’s), or (ii) G and G are connected and G is a spider.

Let G be a graph and A ⊂ V (G). Denote by G[A] the subgraph of G induced by A. In
[14] it is observed that if G is a spider with vertex partition (S,C,R), then G is P4-sparse
if and only if G[R] is P4-sparse.
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In [15], the following lemma is implicitly stated, which allows to recursively compute
the chromatic number of a P4-sparse graph in linear time.

Lemma 1. [15] Let G be a spider with spider partition (S,C,R). If R is empty, then

χ(G) = |C|. Otherwise, χ(G) = |C| + χ(G[R]).

The algorithm is based on the decomposition theorem and the recognition algorithm,
which finds the decomposition tree in linear time.

2. b-continuity in cographs

Minimally b-imperfect cographs, i.e., graphs G such that χb(G) > χ(G) but χb(H) =
χ(H) for every proper induced subgraph H of G, are characterized in [18]. Such graphs
are the disjoint union of two diamonds and the disjoint union of three P3. In both cases
χb(G) = χ(G) + 1 holds. It is natural to ask whether there exist cographs with a bigger
difference between their chromatic number and their b-chromatic number.

Let Bn be the graph composed by n+1 copies of the star K1,n. We have that χ(Bn) = 2
and χb(Bn) = n + 1. A b-coloring with n + 1 colors is obtained by coloring each of the
n + 1 central vertices with a different color and, for every star, coloring each of the n

non-central vertices with a different color (such that this color does not coincide with
the color assigned to the corresponding central vertex). In such a coloring, all the central
vertices are (n + 1)-dominant, and each color class admits a dominant vertex.

Since there are cographs with arbitrarily large difference between their b-chromatic
number and their chromatic number, it makes sense to analyze b-continuity in cographs.

Lemma 2. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs such that V1 ∩ V2 = ∅. If

G1 and G2 are b-continuous and G = G1 ∪ G2, then G is b-continuous.

Proof. Assume G admits a b-coloring with t + 1 colors such that t + 1 > χ(G). We shall
show that there exists a b-coloring of G with t colors. Since χ(G) = max{χ(G1), χ(G2)}
by Theorem 1, then t + 1 > χ(Gi) for i = 1, 2. We are going to eliminate color t + 1
and obtain a b-coloring of G with t colors. To this end, consider the following cases for
i = 1, 2:

(a) If Gi does not admit dominant vertices assigned the color t + 1, recolor every vertex
v ∈ Gi receiving color t + 1 with some color between 1 and t not used by any neighbor
of v.

(b) If Gi admits dominant vertices assigned the color t+1 but no dominant vertex assigned
color j for some j 6= t + 1, then swap the colors t + 1 and j, and then resort to Case
(a), since now there are no dominant vertices with color t + 1 in Gi.

(c) If Gi admits dominant vertices for every color, then we have a b-coloring of Gi with
t + 1 colors, where t + 1 > χ(Gi). Since Gi is b-continuous, there exists a b-coloring of
Gi with t colors.

After these operations, it is clear that the resulting coloring is a b-coloring of G with t

colors (since we have yet dominant vertices with every color from 1 to t).

Lemma 3. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs such that V1 ∩ V2 = ∅. If

G1 and G2 are b-continuous and G = G1 ∨ G2, then G is b-continuous.
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Proof. Assume G admits a b-coloring with t + 1 colors such that t + 1 > χ(G). We shall
show that there exists a b-coloring of G with t colors. We have that χ(G) = χ(G1)+χ(G2)
and χb(G) = χb(G1) + χb(G2) by Theorems 1 and 2. Furthermore, any b-coloring of G1

and G2 generates a b-coloring of G by renaming the colors assigned to G2 starting by the
largest color assigned to G1 plus one, and any b-coloring of G restricted to G1 (resp. G2)
is also a b-coloring. Therefore, in the b-coloring of G with t + 1 colors, either G1 or G2

(perhaps both) is colored with more colors than its chromatic number. Suppose without
loss of generality that this is the case for G1. By restricting the coloring of G to G1,
we obtain a b-coloring of G1 with k + 1 colors such that k + 1 > χ(G1). Since G1 is
b-continuous, there exists a b-coloring of G1 with k colors. Combine this coloring with
the original b-coloring of G restricted to G2, thus constructing a b-coloring of G with t

colors.

Theorem 4. Cographs are b-continuous.

Proof. We proceed by induction, using Proposition 1, Lemma 2, and Lemma 3, since the
trivial graph is b-continuous.

3. A polynomial time algorithm for b-coloring cographs

Theorem 2 does not lead to an algorithm to compute the b-chromatic number of a
cograph. In fact, it is not difficult to build examples showing that the b-chromatic number
of the graph G1 ∪ G2 does not depend only on the b-chromatic numbers of G1 and G2.
For this reason, the notion of dominance vector is introduced. Our goal is to recursively
compute this vector using the decomposition theorem for cographs, hence obtaining the
b-chromatic number of the graph as the maximum t such that domG[t] = t.

Theorem 5. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs such that V1 ∩ V2 = ∅. If

G = G1 ∪ G2 and t ≥ χ(G), then

domG[t] = min{t, domG1 [t] + domG2 [t]}.

Proof. Let t ≥ χ(G). If t > |V (G)|, then t > |V (G1)| and t > |V (G2)|, hence domG[t] =
0 = min{t, domG1 [t] + domG2 [t]}. If t ≤ |V (G)|, we take a coloring of G with t colors and
domG[t] color classes with dominant vertices. Let a1 be the number of color classes with
dominant vertices in G1, and let a2 be the number of color classes with dominant vertices
in G2 not having dominant vertices in G1. Then domG[t] = a1+a2. Notice that, for i = 1, 2,
if ai > 0 then the t colors are used in Gi. Therefore, by restricting the coloring to G1

(resp. G2) we obtain domG1 [t] ≥ a1 and domG2 [t] ≥ a2, so domG[t] ≤ domG1 [t]+domG2 [t].
Since clearly domG[t] ≤ t, we conclude domG[t] ≤ min{t, domG1 [t] + domG2 [t]}.

On the other hand, since t ≥ χ(G) then t ≥ χ(G1) and t ≥ χ(G2). If t > |V (G1)|
and t > |V (G2)|, then domG[t] = 0 = min{t, domG1 [t] + domG2 [t]}. If t > |V (G1)| but
t ≤ |V (G2)|, then domG1 [t] = 0 and domG[t] = domG2 [t] = min{t, domG1 [t] + domG2 [t]}
holds. If t ≤ |V (G1)| and t ≤ |V (G2)|, take a coloring of G1 (resp. a coloring of G2) with
t colors and domG1 [t] (resp. domG2 [t]) color classes with dominant vertices. If domG1 [t] +
domG2 [t] ≤ t, then we can rename the colors in G2 in such a way that the dominant
vertices use domG2 [t] color classes differing from the domG1 [t] color classes with dominant
vertices in G1. This implies domG[t] ≥ domG1 [t]+domG2 [t] = min{t, domG1 [t]+domG2 [t]}.
If domG1 [t] + domG2 [t] > t, then we can rename the colors in G2 in such a way that the
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dominant vertices use the t − domG1 [t] color classes differing from the domG1 [t] color
classes with dominant vertices in G1 plus some additional colors. We conclude, therefore,
that domG[t] ≥ t = min{t, domG1 [t] + domG2 [t]}.

Theorem 6. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs such that V1 ∩ V2 = ∅.
Let G = G1 ∨ G2 and χ(G) ≤ t ≤ |V (G)|. Let a = max{χ(G1), t − |V (G2)|} and b =
min{|V (G1)|, t − χ(G2)}. Then a ≤ b and

domG[t] = max
a≤j≤b

{domG1 [j] + domG2 [t − j]}.

Proof. We will show first four inequalities that imply a ≤ b. By Theorem 1, χ(G1) +
χ(G2) = χ(G) ≤ t, so χ(G1) ≤ t − χ(G2); on the other hand, χ(G1) ≤ |V (G1)| and
χ(G2) ≤ |V (G2)|, so t− |V (G2)| ≤ t− χ(G2); finally, t ≤ |V (G)| = |V (G1)|+ |V (G2)|, so
t − |V (G2)| ≤ |V (G1)|.

Consider any t-coloring of G with domG[t] color classes with dominant vertices. Let
t1 (resp. t2) be the number of colors used by this coloring in G1 (resp. G2), and let
a1 (resp. a2) be the number of color classes with dominant vertices in G1 (resp. G2).
Notice that any coloring of G assigns disjoint color sets to G1 and G2, so t = t1 + t2
and domG[t] = a1 + a2. Since the t1 colors from G1 are not used in G2, the t-dominant
vertices in G which are in G1 are t1-dominant vertices in the coloring restricted to G1,
hence a1 ≤ domG1 [t1]. Similarly, the t-dominant vertices in G which are in G2 are t2-
dominant vertices in the coloring restricted to G2. Since t2 = t − t1, we obtain a2 ≤
domG2 [t − t1], implying domG[t] = a1 + a2 ≤ domG1 [t1] + domG2 [t − t1]. As t1 ≥ χ(G1),
t1 ≥ t − |V (G2)|, t1 ≤ |V (G1)| and t1 ≤ t − χ(G2), then a ≤ t1 ≤ b. Therefore, we have
domG[t] ≤ maxa≤j≤b{domG1 [j] + domG2 [t − j]}.

Consider any t1 such that a ≤ t1 ≤ b. Since χ(G1) ≤ t1 ≤ |V (G1)|, there exists
some coloring of G1 with exactly t1 colors. Take any such coloring having domG1 [t1]
color classes with dominant vertices. Let t2 = t − t1. Since χ(G2) ≤ t2 ≤ |V (G2)|,
there exists some coloring of G2 with exactly t2 colors. Take any such coloring having
domG2 [t2] color classes with dominant vertices, and rename these t2 colors in such a
way that only colors in {t1 + 1, . . . , t} are used in the new coloring. By combining these
two colorings for G1 and G2, we obtain a coloring of G with exactly t colors. Each t1-
dominant vertex in G1 has in G all the vertices in G2 as neighbors, hence it admits
a neighbor with every color in {t1 + 1, . . . , t} and, therefore, it is a t-dominant vertex
in G. Similarly, each t2-dominant vertex in G2 can be shown to be t-dominant in G.
Conversely, every t-dominant vertex in G is either t1-dominant in G1 or t2-dominant in
G2. Moreover, since the color sets corresponding to G1 and G2 are disjoint, the number of
t-dominant vertices in such a coloring of G is domG1 [t1]+domG2 [t2]. Therefore, domG[t] ≥
maxa≤j≤b{domG1 [j] + domG2 [t − j]}.

Theorem 7. The dominance vector and the b-chromatic number of a cograph can be com-

puted in O(n3) time.

Proof. The previous results give a dynamic programming algorithm to compute the dom-
inance vector of a cograph from its cotree. If G = G1 ∪ G2 (as in Theorem 5) the value
of domG[t] is obtained directly from domG1 [t] and domG2 [t]. If G = G1 ∨ G2 (as in Theo-
rem 6), then at most n values of j must be examined. Moreover, each of these two theorems
reduces the computation of domG[t] to the computation on two disjoint subgraphs. Thus
there are at most n occurrences of such reduction steps. In total, the computation time is
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O(n2) for every value of t, and so O(n3) for all possible values of t. From the dominance
vector of a graph G, the b-chromatic number can be computed easily as the maximum t

such that domG[t] = t.

4. b-monotonicity in cographs

The monotonicity on induced subgraphs is a desirable property that holds for many
known optimization parameters of a graph, like chromatic number, maximum clique,
maximum degree. This is not the case for the b-chromatic number in general, so it is
interesting to analyze the monotonicity of the b-chromatic number within different classes
of graphs. In this section we study the b-monotonicity in cographs. We first state some
preliminary properties of the dominance vector of a graph, and then use the decomposition
theorem to analyze the b-monotonicity in this class of graphs.

Lemma 4. If G is a graph and t ≥ χ(G), then either domG[t+1] = t+1 or domG[t+1] ≤
domG[t].

Proof. If t+1 > |V (G)|, then 0 = domG[t+1] ≤ domG[t]. Assume, therefore, t+1 ≤ |V (G)|
and domG[t+1] < t+1. Take any coloring of G with t+1 colors having domG[t+1] color
classes with dominant vertices. Since domG[t+1] < t+1, there exists some color class with
no dominant vertices, say the color t+1. For every vertex v with color t+1, change the color
of v to any color in {1, . . . , t} not used by any of the neighbors of v. The resulting coloring
is a coloring of G with t colors. Note that every dominant vertex in the original coloring
is dominant in the new coloring, and that the number of color classes with dominant
vertices in the new coloring is at least the same. Therefore, domG[t] ≥ domG[t + 1].

A direct consequence of this lemma is the following.

Corollary 1. Let G be a graph. The maximum value of domG[t] is attained in t = χb(G).

Lemma 5. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs such that V1 ∩V2 = ∅, and

let G = G1 ∪ G2. Assume that for every t ≥ χ(Gi) and every induced subgraph H of Gi

we have domH [t] ≤ domGi
[t], for i = 1, 2. Then, for every t ≥ χ(G) and every induced

subgraph H of G, domH [t] ≤ domG[t] holds.

Proof. Let H be an induced subgraph of G and let t ≥ χ(G). By Theorem 5, we have
domG[t] = min{t, domG1 [t] + domG2 [t]}. If domG[t] = t, then domH [t] ≤ domG[t] clearly
holds. Assume, therefore, domG[t] = domG1 [t] + domG2 [t]. If H is completely contained in
Gi, for i = 1 or i = 2, then domH [t] ≤ domGi

[t] ≤ domG[t]. Otherwise, H = H1∪H2, where
Hi is an induced subgraph of Gi, for i = 1, 2. By the hypothesis, domHi

[t] ≤ domGi
[t],

hence domH1 [t] + domH2 [t] ≤ domG1 [t] + domG2 [t]. Therefore, we conclude domH [t] ≤
domG[t].

Lemma 6. Let G1 = (V1, E1) and G2 = (V2, E2) be two b-continuous graphs such that

V1 ∩V2 = ∅, and let G = G1 ∨G2. Assume that for every t ≥ χ(Gi) and for every induced

subgraph H of Gi we have domH [t] ≤ domGi
[t], for i = 1, 2. Then, for every t ≥ χ(G)

and for every induced subgraph H of G, domH [t] ≤ domG[t] holds.

Proof. Let H be an induced subgraph of G, and let t ≥ χ(G). By hypothesis, G1 and
G2 are b-continuous. So, by Theorem 3, we have that G is b-continuous. Hence it suf-
fices to consider t > χb(G), otherwise t = domG[t] ≥ domH [t]. Recall that, by The-
orem 2, χb(G) = χb(G1) + χb(G2), so t > χb(G1) + χb(G2). By Theorem 6, we have
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domG[t] = maxa≤j≤b{domG1 [j] + domG2 [t − j]}, where a = max{χ(G1), t − |V (G2)|} and
b = min{|V (G1)|, t − χ(G2)}, and a ≤ b holds.

If H is completely contained in G1 or G2, say G1, by the hypothesis we have domH [t] ≤
domG1 [t]. Let j′ = max{a, χb(G1)}. We know that a ≤ b, and χb(G1) ≤ |V (G1)|. Further-
more, χb(G1) < t − χb(G2) ≤ t − χ(G2), hence a ≤ j′ ≤ b. Finally, t > χb(G1) ≥ χ(G1)
and clearly t ≥ t − |V (G2)|, hence t ≥ j′. Since t ≥ j′ ≥ χb(G1) and domG1 [t] < t,
by Lemma 4, domG1 [t] ≤ domG1 [j

′], and since domG2 [t − j′] ≥ 0, we have domG[t] =
maxa≤j≤b{domG1 [j] + domG2 [t − j]} ≥ domG1 [j

′] + domG2 [t − j′] ≥ domG1 [j
′] ≥ domG1 [t]

≥ domH [t]. Therefore, domH [t] ≤ domG[t].

If H is not completely contained in G1 or G2, then H = H1 ∨ H2, where Hi is an
induced subgraph of Gi, for i = 1, 2. By the hypothesis, domHi

[j] ≤ domGi
[j] for each

j ≥ χ(Gi). By Theorem 6, we have domH [t] = maxa′≤j≤b′{domH1 [j]+domH2 [t−j]}, where
a′ = max{χ(H1), t − |V (H2)|} and b′ = min{|V (H1)|, t − χ(H2)}, and a′ ≤ b′ holds. Let
j′ ∈ {a′, . . . , b′} be the color realizing such maximum, and consider the following three
possible cases:

(a) If a ≤ j′ ≤ b, then domH1 [j
′] ≤ domG1 [j

′] and domH2 [t − j′] ≤ domG2 [t − j′], hence
domG[t] = maxa≤j≤b{domG1 [j]+domG2 [t−j]} ≥ domG1 [j

′]+domG2 [t−j′] ≥ domH1 [j
′]+

domH2 [t − j′] = domH [t].
(b) If j′ < a, then in particular a′ < a and, since t − |V (H2)| ≥ t − |V (G2)|, we have

a = χ(G1). Therefore, domH1 [j
′] ≤ j′ < a = domG1 [a]. Since t > χb(G1) + χb(G2) and

a ≤ χb(G1), it holds t − a > χb(G2). Since t − j′ > t − a > χb(G2), then Lemma 4
implies domG2 [t − j′] ≤ domG2 [t − a]. Finally, as domH2 [t − j′] ≤ domG2 [t − j′], we
obtain domG[t] = maxa≤j≤b{domG1 [j] + domG2 [t − j]} ≥ domG1 [a] + domG2 [t − a] ≥
domH1 [j

′] + domH2 [t − j′] = domH [t].
(c) If j′ > b the argumentation is similar. We have b′ > b and, since |V (H1)| ≤ |V (G1)|, we

have b = t − χ(G2). Therefore, domH2 [t − j′] ≤ t − j′ < t − b = χ(G2) = domG2 [t − b].
Following the same argument as in Case (b), we conclude that domH1 [j

′] ≤ domG1 [b],
hence domG[t] = maxa≤j≤b{domG1 [j] + domG2 [t − j]} ≥ domG1 [b] + domG2 [t − b] ≥
domH1 [j

′] + domH2 [t − j′] = domH [t].

In the three cases we obtain domH [t] ≤ domG[t].

Theorem 8. Cographs are b-monotonic.

Proof. As cographs are hereditary, it is enough to prove that given a cograph G, χb(G) ≥
χb(H), for every induced subgraph H of G. By applying Proposition 1, Theorem 4,
Lemma 5, and Lemma 6, an induction argument shows that for every cograph G, ev-
ery t ≥ χ(G), and every induced subgraph H of G, domH [t] ≤ domG[t] holds. Let
G be a cograph, and let H be an induced subgraph of G. If χb(H) < χ(G), then
χb(H) < χb(G). Otherwise, χb(H) = domH [χb(H)] ≤ domG[χb(H)], and by Corollary 1
domG[χb(H)] ≤ domG[χb(G)] = χb(G). Hence χb(G) ≥ χb(H).

5. P4-sparse graphs

In this section we extend the results about cographs to a superclass of them: P4-sparse
graphs. For the b-chromatic number of a spider, a result similar to Lemma 1 can be
proved.
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Lemma 7. Let G be a spider with spider partition (S,C,R). If R is empty then χb(G) =
|C|. Otherwise, χb(G) = |C| + χb(G[R]).

Proof. Let G be a spider with spider partition (S,C,R), where |S| = |C| = k ≥ 2. If R is
empty then χ(G) = k, and the vertices in S have degree at most k − 1, thus they cannot
be dominant in a coloring with more than k colors. So, χb(G) = k = |C|. Assume now
that R is non-empty. Then, by Lemma 1, χb(G) ≥ χ(G) = k + χ(G[R]) ≥ k + 1. Any
b-coloring of G[R] with p colors generates a b-coloring of G with p + k colors, by using
k new colors on C and coloring each vertex in S with a color used by a non-neighbor of
it in C, thus χb(G) ≥ k + χb(G[R]); conversely, any b-coloring of G with t colors, when
restricted to G[R] is also a b-coloring with t − k colors, since the color sets used in C

and R are disjoint and vertices in S cannot be dominant in a coloring with more than k

colors, so χb(G) ≤ k + χb(G[R]). Hence, the lemma holds.

Nevertheless, in order to compute recursively the b-chromatic number of a P4-sparse
graph, we will need to calculate the dominance vector of a spider instead.

Theorem 9. Let G be a spider with spider partition (S,C,R), and k = |S| = |C| ≥ 2.

(a) If R is empty and G is a thin spider, then domG[k] = domG[k+1] = k, and domG[j] = 0
for j > k + 1.

(b) If R is non-empty and G is a thin spider, then domG[k + r] = k + domG[R][r] for

χ(G[R]) ≤ r ≤ |R|, domG[k + |R| + 1] = k, and domG[j] = 0 for j > k + |R| + 1.
(c) If R is empty and G is a thick spider, then domG[k+s] = min{k, 2k−2s} for 0 ≤ s ≤ k,

and domG[j] = 0 for j > 2k.

(d) If R is non-empty and G is a thick spider, then domG[k + r] = k + domG[R][r] for

χ(G[R]) ≤ r ≤ |R|, domG[k + |R| + s] = min{k, 2k − 2s} for 1 ≤ s ≤ k, and

domG[j] = 0 for j > 2k + |R|.

Proof. Let G be a spider with spider partition (S,C,R), and k = |S| = |C| ≥ 2. Let
C = {c1, . . . , ck} and S = {s1, . . . , sk}.

(a) If R is empty and G is a thin spider, then χ(G) = k, implying domG[k] = k. The k

vertices in C have degree k and the vertices in S have degree 1, hence domG[k +1] ≤ k

and domG[j] = 0 for j > k + 1, since G does not admit any vertex with degree at least
k + 1. Finally, a coloring of G with k + 1 colors and k colors with dominant vertices
can be obtained by assigning colors 1 to k to the vertices in C, and color k + 1 to the
vertices in S.

(b) If R is non-empty and G is a thin spider, then, by Lemma 1, χ(G) = k + χ(G[R]),
implying domG[k +χ(G[R])] = k +χ(G[R]). The k vertices c1, . . . , ck in C have degree
k + |R|, the vertices in R have degree at most k + |R| − 1 and the vertices in S have
degree 1, hence domG[k + |R| + 1] ≤ k and domG[j] = 0 for j > k + |R| + 1. On the
other hand, a coloring of G with k + |R| + 1 colors and k color classes with dominant
vertices can be obtained by assigning the colors 1, . . . , k to the vertices in C, the colors
k +1, . . . , k + |R| to the vertices of R, and the color k + |R|+1 to the vertices of S. For
χ(G[R]) < r ≤ |R|, in a coloring with k+r colors, the vertices of S cannot be dominant.
Moreover, if they use a color non present in C∪R, then at most the k vertices in C can
be dominant. Suppose now that all the colors used in S are also present in C∪R. Then
all the vertices in C are dominant, and they have pairwise different colors. In fact, they
are dominant also in the coloring restricted to G[C∪R] as well as the dominant vertices
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in R, since there are no edges between R and S. Besides, any coloring of G[C ∪R] can
be extended to G without introducing new colors. So, domG[k + r] = domG[C∪R][k + r],
and, by Theorem 6, domG[k + r] = k + domG[R][r].

(c) If R is empty and G is a thick spider, then χ(G) = k, implying domG[k] = k. Further-
more, the vertices in S have degree k − 1 and the vertices in C have degree 2k − 2,
hence domG[j] = 0 for j ≥ 2k. Finally, for s = 1, . . . , k, the vertices in S cannot be
dominant in a coloring of G with k + s colors, thus domG[k + s] ≤ k. In any coloring
of G the vertices in C are assigned pairwise different colors, say the colors 1, . . . , k.
Moreover, the vertex ci is dominant if and only if the color assigned to si is also as-
signed to some other vertex in G. In a coloring of G with k + s colors, at least s

vertices from S must be assigned the s colors between k + 1 and k + s. By symme-
try, without loss of generality we may assume that s1, . . . , ss are assigned the colors
k + 1, . . . , k + s. If k < 2s then at least s − (k − s) of them get a color not used
by any other vertex in G. This implies domG[k + s] ≤ k − (s − (k − s)) = 2k − 2s.
As in the case k ≥ 2s we have 2k − 2s ≥ k and this already is an upper bound for
domG[k + s], we obtain domG[k + s] ≤ min{k, 2k − 2s}. A coloring attaining this
bound is obtained by assigning the colors 1, . . . , k to the vertices in C, and the colors
k + 1, . . . , k + s to the vertices s1, . . . , ss. If k ≥ 2s, the vertices ss+1, . . . , s2s receive
the colors k + 1, . . . , k + s, and for i > 2s, si gets the same color as ci. In this case,
we have k color classes with dominant vertices, since every vertex from C is dominant.
If k < 2s, the vertices ss+1, . . . , sk are assigned the colors k + 1, . . . , 2k − s. Here, we
get 2k − 2s color classes with dominant vertices ({c1, . . . , ck−s} ∪ {cs+1, . . . , ck} are
dominant vertices). Therefore, domG[k + s] = min{k, 2k − 2s}.

(d) If R is non-empty and G is a thick spider, then, by Lemma 1, χ(G) = k + χ(G[R]),
implying domG[k+χ(G[R])] = k+χ(G[R]). Furthermore, the vertices in S have degree
k − 1, the vertices in C have degree 2k + |R| − 2, and the vertices in R have degree
at most k + |R| − 1, hence domG[j] = 0 for j ≥ 2k + |R|. For s = 1, . . . , k, neither the
vertices in S nor the vertices in R can be dominant in a coloring of G with k + |R|+ s

colors, hence domG[k + |R| + s] ≤ k. In any coloring of G, the vertices from C are
assigned pairwise different colors, say the colors 1, . . . , k. Moreover, the vertex ci is
dominant if and only if the color assigned to si is also assigned to some other vertex
in G. In a coloring of G with k + |R|+ s colors, since the vertices in R can use at most
|R| colors, say k + 1, . . . , k + |R|, then at least s vertices from S must be assigned the
s colors between k + |R| + 1 and k + |R| + s. By symmetry, without loss of generality
we may assume that s1, . . . , ss are assigned the colors k + |R| + 1, . . . , k + |R| + s. If
k < 2s, at least s − (k − s) of them are assigned a color not used by any other vertex
in G. Therefore, domG[k + |R|+ s] ≤ k− (s− (k− s)) = 2k− 2s. As in the case k ≥ 2s
we have 2k − 2s ≥ k and this already is an upper bound domG[k + |R|+ s], we obtain
domG[k+|R|+s] ≤ min{k, 2k−2s}. A coloring attaining this bound can be constructed
by assigning the colors 1, . . . , k to the vertices in C, the colors k +1, . . . , k + |R| to the
vertices in R, and the colors k+|R|+1, . . . , k+|R|+s to the vertices s1, . . . , ss. If k ≥ 2s,
the vertices ss+1, . . . , s2s are assigned the colors k + |R|+1, . . . , k + |R|+ s, and si gets
the same color as ci, for i > 2s. In this case, we obtain k color classes with dominant
vertices, since all the vertices in C are dominant. If k < 2s, the vertices ss+1, . . . , sk

are assigned the colors k + |R|+ 1, . . . , 2k + |R| − s. In this case, we have 2k− 2s color
classes with dominant vertices ({c1, . . . , ck−s} ∪ {cs+1, . . . , ck} are dominant vertices).
Therefore, domG[k+1+s] = min{k, 2k−2s}. For domG[k+r] with χ(G[R]) < r ≤ |R|,
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we can use the same argumentation as in case (b), so domG[k+r] = domG[C∪R][k+r] =
k + domG[R][r].

Theorem 10. The dominance vector and the b-chromatic number of a P4-sparse graph

can be computed in O(n3) time.

Proof. By combining Theorem 5, Theorem 6, Theorem 3, and Theorem 9, and since P4-
sparse graphs are a hereditary class, we can recursively calculate the dominance vector
and, consequently, the b-chromatic number of a P4-sparse graph in O(n3) time. The
complexity analysis is the same as for Theorem 7, noting that for the base cases (spiders)
the computation of domG[t] for each value of t is given directly in the proof Theorem 9.

Now, we study the b-continuity on P4-sparse graphs.

Theorem 11. P4-sparse graphs are b-continuous.

Proof. We proceed by induction, using Theorem 3 and Lemmas 2 and 3. So, it remains
to analyze the case of spiders. Suppose that G is a spider P4-sparse graph, with spider
partition (S,C,R), where |S| = |C| = k ≥ 2. Assume G admits a b-coloring with t + 1
colors such that t + 1 > χ(G). We shall show that there exists a b-coloring of G with
t colors. We have that χ(G) = k + χ(G[R]) and χb(G) = k + χb(G[R]) by Lemmas 1
and 7. So, R must be non-empty and χb(G[R]) > χ(G[R]). As observed in the proof of
Lemma 7, any b-coloring of G[R] with p colors generates a b-coloring of G with p+k colors
and, conversely, any b-coloring of G restricted to G[R] is also a b-coloring. Therefore, by
restricting the b-coloring of G with t + 1 colors to G[R], we obtain a b-coloring of G[R]
with t+1−k colors, and t+1−k > χ(G[R]). Since P4-sparse is a hereditary graph class,
G[R] is a P4-sparse graph, and by inductive hypothesis, there exists a b-coloring of G[R]
with t − k colors. As observed before, this b-coloring of G[R] generates a b-coloring of G

with t colors.

Finally, we analyze the b-monotonicity on P4-sparse graphs.

Lemma 8. Let G be a spider with spider partition (S,C,R). Assume that for every t ≥
χ(G[R]) and for every induced subgraph H of G[R] we have domH [t] ≤ domG[R][t]. Then,

for every t ≥ χ(G) and for every induced subgraph H of G, domH [t] ≤ domG[t] holds.

Proof. Let G be a spider with spider partition (S,C,R), where |S| = |C| = k ≥ 2, and let
H be an induced subgraph of G. For convenience, if a graph is empty define its dominance
sequence as the zero sequence, beginning at zero. Let RH be V (H) ∩ R. By hypothesis,
domG[RH ][r] ≤ domG[R][r], for each r ≥ χ(G[R]). Following the arguments used in the
proof of Theorem 9, it can be seen that:

- If G is a thin spider, then domH [k+r] ≤ k+domG[RH ][r] ≤ k+domG[R][r] = domG[k+r]
for χ(G[R]) ≤ r ≤ |R|, domH [k + |R| + 1] ≤ k = domG[k + |R| + 1], and domH [j] =
0 = domG[j] for j > k + |R| + 1.

- If G is a thick spider, then domH [k+r] ≤ k+domG[RH ][r] ≤ k+domG[R][r] = domG[k+r]
for χ(G[R]) ≤ r ≤ |R|, domH [k + |R| + s] ≤ min{k, 2k − 2s} = domG[k + |R| + s] for
1 ≤ s ≤ k, and domH [j] = 0 = domG[j] for j > 2k + |R|.

We conclude domG[t] ≥ domH [t], for every t ≥ χ(G).
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Theorem 12. P4-sparse graphs are b-monotonic.

Proof. As P4-sparse graphs are hereditary, it is enough to prove that given a P4-sparse
graph G, χb(G) ≥ χb(H), for every induced subgraph H of G. By applying Lemma 5,
Theorem 11, Lemma 6, Lemma 8, and Theorem 3, since P4-sparse graphs is a hereditary
class, we can inductively show that for every P4-sparse graph G, every induced subgraph H

of G, and every t ≥ χ(G), domH [t] ≤ domG[t] holds. Let G be a P4-sparse graph, and let H

be an induced subgraph of G. If χb(H) < χ(G), then χb(H) < χb(G). Otherwise, χb(H) =
domH [χb(H)] ≤ domG[χb(H)] and by Corollary 1, domG[χb(H)] ≤ domG[χb(G)] = χb(G)
implying that χb(G) ≥ χb(H).

6. Concluding remarks

In this paper, we have proved that cographs and P4-sparse graphs are b-continuous and
b-monotonic. Besides, we have designed a dynamic programming algorithm to compute
the b-chromatic number in polynomial time within these graph classes. One interesting
problem is to extend our results to superclasses of these graph families, as for example,
the class of distance-hereditary graphs. Finally, it would be an interesting problem to
characterize b-monotonic graphs by forbidden induced subgraphs.

Note added in proof. Results similar to Theorem 5, Theorem 6, and Theorem 7 have
been obtained independently in [1,2], by resorting to similar proof techniques.
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