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Abstract

We consider the problem of approximating the b-chromatic number of a graph. We
show that there is no constant ε > 0 for which this problem can be approximated within
a factor of 120/113− ε in polynomial time, unless P = NP. This is the first hardness
result for approximating the b-chromatic number.
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1 Introduction

We consider finite undirected graphs without loops or multiple edges. A coloring (i.e. proper
coloring) of a graph G = (V,E) is an assignment of colors to the vertices of G, such that
any two adjacent vertices have different colors. A coloring is called a b-coloring, if for each
color i there exists a vertex xi of color i such that for every color j 6= i, there exists a
vertex yj of color j adjacent to xi (such a vertex xi is called a dominating vertex for the
color class i). The b-chromatic number ϕ(G) of a graph G is the largest number k such that
G has a b-coloring with k colors. The b-chromatic number of a graph was introduced by
R.W. Irving and D.F. Manlove [3] when considering minimal proper colorings with respect
to a partial order defined on the set of all partitions of the vertices of a graph. They
proved that determining ϕ(G) is NP-hard for general graphs, but polynomial-time solvable
for trees. Recently, Kratochvil et al. [5] have shown that determining ϕ(G) is NP-hard even
for bipartite graphs. Some bounds for the b-chromatic number of a graph are given in [3, 6].

In this paper we prove that there is no constant ε > 0 for which this problem can
be approximated within a factor of 120/113 − ε in polynomial time, unless P = NP. No
hardness of approximation was previously known for this problem.

The organization of the paper is as follows. In Section 2 we give the preliminaries. In
Section 3 we present the hardness of approximation result. We end in Section 4 with some
concluding remarks.

∗This work was supported by the Facultad de Ciencias de la Universidad de los Andes, Bogotá, Colombia.
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2 Preliminaries

Let P be a maximization problem and let α ≥ 1. For an instance x of P let OPT (x) be
the optimal value. An α-approximation algorithm for P is a polynomial time algorithm A
such that on each input instance x of P it outputs a number A(x) such that OPT (x)/α ≤
A(x) ≤ OPT (x).

To show the hardness of approximating the b-chromatic number we relate it to the
hardness of approximating the optimization version of the k-ESAT problem. Let k be an
integer greater than 1.

k-ESAT problem.

Instance: A set X = {x1, x2, . . . , xn} of boolean variables, a collection C = {c1, c2, . . . , cp} of
disjunctive clauses with exactly k different literals, where a literal is a variable or a negated
variable in X.
Question: Does there exist a truth assignment for the variables in X such that each clause
in C is satisfied?

The decision version of the k-ESAT problem is NP-complete for k ≥ 3 [1]. Johnson
showed in [4] the following result.

Theorem 1 (Theorem 3 in [4]) Let (X,C) be an instance of the k-ESAT problem. Then,
there is a deterministic polynomial time algorithm that finds a truth assignment for variables
in X which satisfies at least |C|(1 − 1/2k) clauses in C.

The MAX k-ESAT problem is the optimization version of the k-ESAT problem in
which, given an instance of k-ESAT, the goal consists of finding the maximum number of
clauses that can be satisfied simultaneously by any truth assignment of the boolean variables.
The MAX k-ESAT problem is NP-hard [1].

Note that in the case k = 3, Theorem 1 gives an 8/7-approximation algorithm for the
MAX 3-ESAT problem. Moreover, H̊astad showed in [2] the following inapproximability
result for the MAX 3-ESAT problem.

Theorem 2 (Theorem 6.1 in [2]) The MAX 3-ESAT problem is not approximable within
8/7 − ε for any ε > 0, unless P = NP.

In the following section, we use Theorem 2 restricted to a special kind of instances in order
to obtain an inapproximability result for the b-chromatic number problem of a graph.

Definition 1 We say that an instance (X,C) of MAX 3-ESAT is non-trivial if |C| > 4,
and for all x ∈ X

• There is no c ∈ C such that x, x ∈ c,

• There are c, d ∈ C such that x ∈ c and x ∈ d.

We now show that Theorem 2 holds when restricted to non-trivial instances of MAX
3-ESAT.

Corollary 1 The MAX 3-ESAT problem is not approximable within 8/7− ε for any ε > 0,
even when restricted to non-trivial instances.
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Proof : We present a proof by contradiction. Assume that there is an (8/7−ε)-approximation
algorithm running in polynomial time p(|X| + |C|) for non-trivial instances (X,C) of the
MAX 3-ESAT problem, for some 0 < ε ≤ 1/7. We prove that there is an (8/7 − ε)-
approximation algorithm for the MAX 3-ESAT problem. This contradicts Theorem 2.

We prove this by induction on |X| + |C|. The base case is trivial. Now, let k > 1 and
assume that the statement holds for all instances (X,C) such that |X| + |C| < k, and let
(X,C) be an instance of MAX 3-ESAT such that |X|+|C| = k. If the instance is non-trivial,
the statement follows from our initial assumption. If not we have three possible cases:

• There is x ∈ X such that there is c ∈ C with x, x ∈ c. Let C ′ = C \ {c}. By induction
hypothesis applied to (X,C ′), we can get, in polynomial time, a truth assignment for

the variables in X that satisfies at least |C′|
8/7−ε clauses in C ′. This assignment also

satisfies c and therefore satisfies at least

|C ′|

8/7 − ε
+ 1 ≥

|C|

8/7 − ε

clauses of C.

• There is x ∈ X such that no clause c ∈ C contains x. Let X ′ = X \ {x} and
C ′ = C \ {c ∈ C : x ∈ c}. By induction hypothesis we can get, in polynomial time,

a truth assignment for the variables in X ′ that satisfies at least |C′|
8/7−ε clauses in C ′.

Now we assign the value True to x, and all clauses in C containing it are satisfied.
Therefore we have a truth assignment satisfying at least

|C ′|

8/7 − ε
+ |C \ C ′| ≥

|C|

8/7 − ε

clauses.

• There is x ∈ X such that no clause c ∈ C contains x. This case is analogous to the
previous one.

Therefore, there is a (8/7− ε)-approximation algorithm for the MAX 3-ESAT problem run-
ning in polynomial-time O(k2)p(k), where the O(k2) term represents the time needed to
find the desired x and construct X ′ and C ′ and is certainly not the best possible. �

3 Hardness of approximation

In this section we prove the hardness result for approximating the b-chromatic number
problem of a graph.

Let (X,C) be an instance of the 3-ESAT problem. We define G(X,C) = (V,E) to be
the graph constructed as follows:

Let X = {x1, x2, . . . , xn} be the set of boolean variables, and let C = {c1, c2, . . . , cp}
be the collection of disjunctive clauses, with ci = {li,1, li,2, li,3} for i = 1, 2, . . . , p, where
li,j = xk or li,j = xk for some 1 ≤ k ≤ n.

Let

V ={v} ∪ {zi : 1 ≤ i ≤ p − 1} ∪ {wj : 1 ≤ j ≤ 2p}

∪ {yi : 1 ≤ i ≤ p} ∪ {xi,j, xi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ p},
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and let

E ={{zi, wj} : 1 ≤ i ≤ p − 1, 1 ≤ j 6= i ≤ 2p}

∪ {{v, zi} : 1 ≤ i ≤ p − 1} ∪ {{v, yi} : 1 ≤ i ≤ p}

∪ {{yi, yj} : 1 ≤ i < j ≤ p}

∪ {{xi,j , xi,k} : 1 ≤ i ≤ n, 1 ≤ j, k ≤ p}

∪ {{yi, xj,k} : 1 ≤ i ≤ p, 1 ≤ j ≤ n, 1 ≤ k ≤ p, xj ∈ ci}

∪ {{yi, xj,k} : 1 ≤ i ≤ p, 1 ≤ j ≤ n, 1 ≤ k ≤ p, xj ∈ ci}.

Notice that |V | = 2np + 4p.

The resulting graph G(X,C) = (V,E) is shown in Figure 1.
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Figure 1: Partial construction of G from (X,C), where the clause ci ∈ C contains the literals
x1 and xn.

Theorem 3 Let (X,C) be a non-trivial instance of the 3-ESAT problem, where |X| = n
and |C| = p. Then, ϕ(G(X,C)) = p+ t where t is the maximum number of clauses that can
be satisfied in C.

The proof of Theorem 3 requires Propositions 1 and 2 below.

Proposition 1 Let (X,C) be a non-trivial instance of the 3-ESAT problem, where |X| = n
and |C| = p. Let t be the maximum number of clauses that can be satisfied in C. Then there
is a b-coloring of G(X,C) with p + t colors.

Proof : Fix a truth assignment of the variables that satisfies exactly t clauses. W.l.o.g.
assume that the clauses satisfied in C are c1, c2, . . . , ct.

Color the vertices of G(X,C) with p + t colors as follows:

• for 1 ≤ i ≤ p − 1, assign color i to vertex zi,

• assign color p to vertex v,

• for 1 ≤ i ≤ t, assign color p + i to vertex yi.
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The previous vertices will be the dominating vertices of each one of the p + t color classes.
For 1 ≤ j ≤ p + t, assign color j to vertex wj , and for 1 ≤ j ≤ p − t, assign color p + t

to vertex wp+t+j. In this way, the vertex zi is dominating for the color class i.
Vertex v is already a dominating vertex for the color class p.
For t + 1 ≤ i ≤ p, assign to vertex yi the color i − t.
For every 1 ≤ i ≤ n, do the following. If xi is true, choose 1 ≤ s ≤ p such that xi ∈ cs.

Notice that cs is satisfied and therefore s ≤ t. Assign to each xi,j color j and to xi,j color
p + s, for 1 ≤ j ≤ p. If xi is false then xi is true, and proceed in the analogous way.

Now, we just need to check that the coloring is proper and that for 1 ≤ i ≤ t, yi is a
dominating vertex for its color class.

The coloring is not proper only if there are 1 ≤ i ≤ p, 1 ≤ j ≤ n and 1 ≤ k ≤ p such that
there is an edge between yi and lj,k, where lj,k = xj,k or lj,k = xj,k, with yi and lj,k of the
same color (all the other edges are taken care of directly by the construction). Without loss
of generality we assume lj,k = xj,k, because the other case is analogous. By construction of
G(X,C), we know that xj ∈ ci. There are two cases. If 1 ≤ i ≤ t, as the color of xj,k is the
same as the color of yi, and this is p + i > p, then xj is false, so xj is true. Therefore by
the construction of the coloring xj ∈ ci, but then xj , xj ∈ ci contradicting the non-triviality
of the instance. If t < i ≤ p, as the color of xj,k is the same as the color of yi, and this is
i − t < p, xj is true. Therefore ci is satisfied, but this contradicts our assumption that the
truth assignment satisfies exactly the first t clauses.

Now, consider 1 ≤ i ≤ t, and let li be a literal in clause ci such that the truth assignment
satisfies li. Notice that yi is adjacent to the p vertices that correspond to this literal, and
they received colors 1, . . . , p. Since vertex yi is also adjacent to every other vertex yj, for
1 ≤ j 6= i ≤ t, vertex yi is a dominating vertex. �

Proposition 2 Let (X,C) be a non-trivial instance of MAX 3-ESAT and let 1 < t. If there
is a b-coloring of G(X,C) with p + t colors, Then there exists a truth assignment for X
such that at least t clauses are satisfied in C.

Proof : Fix a b-coloring of G(X,C) with p + t colors. There are three possible cases:

• There exist 1 ≤ j ≤ n and 1 ≤ k ≤ p such that xj,k is a dominating vertex. In this
case, vertex xj,k is adjacent at least to p + t − 1 other vertices and therefore xj,k is
adjacent to at least t − 1 of the vertices y ′

is. This implies xj belongs to at least t − 1
of the c′is. If xj belongs to at least t of the c′is, any truth assignment where xj is true
will satisfy t clauses in C. If xj belongs to exactly t − 1 y′

is, take c ∈ C such that
xj 6∈ c, and let j ′ 6= j, 1 ≤ j′ ≤ n, be such that xj′ ∈ c (or xj′ ∈ c ). Then any truth
assignment where xj is true and xj′ is true (resp. xj′ is false) will satisfy at least t
clauses in C.

• There are 1 ≤ j ≤ n and 1 ≤ k ≤ p such that xj,k is a dominating vertex. This case
is completely analogous to the first one.

• For every 1 ≤ j ≤ n and 1 ≤ k ≤ p neither xj,k nor xj,k is a dominating vertex. In this
case the dominating vertices are among the set {v} ∪ {zi : 1 ≤ i ≤ p − 1} ∪ {yi : 1 ≤
i ≤ p}. Now let B the set of dominating vertices belonging to {yi : 1 ≤ i ≤ p}. Then
|B| ≥ t. Without loss of generality assume that for 1 ≤ i ≤ p the color of each yi is i
and that the color assigned to v is p + 1. Now define the following truth assignment
for the boolean variables:
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σ(xj) is True if and only if for all 1 ≤ k ≤ p the color of xj,k is not p + 2.

Now, let 1 ≤ i ≤ p be such that yi ∈ B. As yi is a dominating vertex, it has to be
connected to some vertex of color p + 2, and this one has to be one of the xj,k or xj,k

for some 1 ≤ j ≤ n and 1 ≤ k ≤ p. Notice that if xj,k has color p + 2 then for all
1 ≤ l ≤ p, the color of xj,l is not p + 2 and thus σ(xj) is True. On the other hand if
xj,k has color p + 2 then σ(xj) is False. In either case σ satisfies ci. �

Proof of the Theorem 3. From Theorem 1, t ≥ 7p/8 > 1, and the result follows from
Propositions 1 and 2. �

By Corollary 1 and Theorem 3, the hardness approximation result for the b-chromatic
number problem now follows.

Theorem 4 The b-chromatic number problem is not approximable within 120/113 − ε for
any ε > 0, unless P = NP.

Proof : Suppose that the b-chromatic number problem can be approximated within a
factor of 120/113 − ε, for some ε > 0. Let (X,C) be a non-trivial instance of 3-ESAT, as
defined in Section 2. Let p be the number of clauses in C, and let t be the maximum number
of clauses of C that can be satisfied by a truth assignment to X. By Theorem 3, we can
construct in polynomial time a graph G, namely G(X,C), such that ϕ(G) = p + t. By the
assumption, we can compute in polynomial time a b-coloring for G with l colors such that

ϕ(G)

120/113 − ε
≤ l ≤ ϕ(G),

and by Proposition 2, we can derive a truth assignment of (X,C) which satisfies at least
l − p clauses. Then

p + t

120/113 − ε
− p ≤ l − p ≤ t.

113t − 7p + 113pε

120 − 113ε
≤ l − p ≤ t

But, from Theorem 1, p ≤ 8t/7, therefore

t

8/7 − ε
=

105t

120 − 105ε
≤

105t + 113pε

120 − 113ε
≤

113t − 7p + 113pε

120 − 113ε
≤ l − p ≤ t

Thus, we can get a 8/7 − ε approximation to t which contradicts Corollary 1. �

4 Conclusion

We have shown that the b-chromatic number of a graph is hard to approximate in polynomial
time within a factor of 120/113 − ε, for any ε > 0, unless P = NP. This is the first
hardness result for approximating the b-chromatic number. An interesting open problem is
the existence of a constant-factor approximation algorithm for the b-chromatic number in
general graphs.
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