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Abstract

A k-tuple coloring of a graph G assigns a set of k colors to each vertex of G such that if
two vertices are adjacent, the corresponding sets of colors are disjoint. The k-tuple chromatic
number of G, χk(G), is the smallest t so that there is a k-tuple coloring of G using t colors.
It is well known that χ(G�H) = max{χ(G), χ(H)}. In this paper, we show that there exist
graphs G and H such that χk(G�H) > max{χk(G), χk(H)} for k ≥ 2. Moreover, we also show
that there exist graph families such that, for any k ≥ 1, the k-tuple chromatic number of their
cartesian product is equal to the maximum k-tuple chromatic number of its factors.
keyword: k-tuple colorings, Cartesian product of graphs, Kneser graphs, Cayley graphs, Hom-
idempotent graphs.

1 Introduction

A classic coloring of a graph G is an assignment of colors (or natural numbers) to the vertices of G
such that any two adjacent vertices are assigned different colors. The smallest number t such that
G admits a coloring with t colors (a t-coloring) is called the chromatic number of G and is denoted
by χ(G). Several generalizations of the coloring problem have been introduced in the literature, in
particular, cases in which each vertex is assigned not only a color but a set of colors, under different
restrictions. One of these variations is the k-tuple coloring introduced independently by Stahl [11]
and Bollobás and Thomason [3]. A k-tuple coloring of a graph G is an assignment of k colors to
each vertex in such a way that adjacent vertices are assigned distinct colors. The k-tuple coloring
problem consists into finding the minimum number of colors in a k-tuple coloring of a graph G,
which we denote by χk(G).

The cartesian product G�H of two graphs G and H has vertex set V (G)× V (H), two vertices
being joined by an edge whenever they have one coordinate equal and the other adjacent. This
product is commutative and associative up to isomorphism. There is a simple formula expressing
the chromatic number of a cartesian product in terms of its factors:

χ(G�H) = max{χ(G), χ(H)}. (1)
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The identity (1) admits a simple proof first given by Sabidussi [10].
The Kneser graph K(m,n) has as vertices all n-element subsets of the set [m] = {1, . . . ,m}

and an edge between two subsets if and only if they are disjoint. We will assume in the rest of
this work that m ≥ 2n, otherwise K(m,n) has no edges. The Kneser graph K(5, 2) is the well
known Petersen Graph. Lovász [9] showed that χ(K(m,n)) = m−2n+ 2. The value of the k-tuple
chromatic number of the Kneser graph is the subject of an almost 40-year-old conjecture of Stahl
[11] which asserts that: if k = qn − r where q ≥ 0 and 0 ≤ r < n, then χk(K(m,n)) = qm − 2r.
Stahl’s conjecture has been confirmed for some values of k, n and m [11, 12].

An homomorphism from a graph G into a graph H, denoted by G→ H, is an edge-preserving
map from V (G) to V (H). It is well known that an ordinary graph coloring of a graph G with m
colors is an homomorphism from G into the complete graph Km. Similarly, an n-tuple coloring of
a graph G with m colors is an homomorphism from G into the Kneser graph K(m,n). A graph G
is said hom-idempotent if there is an homomorphism G�G → G. We denote by G 6→ H if there
exists no homomorphism from G to H. The clique number of a graph G, denoted by ω(G), is the
maximum size of a clique in G (i.e., a complete subgraph of G). Clearly, for any graphs G and H, we
have that χ(G) ≥ ω(G) (and so, χk(G) ≥ χk(Kω(G)) = kω(G)) and, if there is an homomorphism
from G to H then, χ(G) ≤ χ(H) and, moreover, χk(G) ≤ χk(H).

In this paper, we show that equality (1) does not hold in general for k-tuple colorings of
graphs. In fact, we show that for some values of k ≥ 2, there are Kneser graphs K(m,n) for which
χk(K(m,n)�K(m,n)) > χk(K(m,n)). Surprisingly, there exist some Kneser graphs K(m,n) for
which the difference χk(K(m,n)�K(m,n)) − χk(K(m,n)) can be as large as desired, even when
k = 2. We also show that there are families of graphs for which equality (1) holds for k-tuple
colorings of graphs for any k ≥ 1. As far as we know, our results are the first ones concerning the
k-tuple chromatic number of cartesian product of graphs.

2 Cartesian products of Kneser graphs

We start this section with some upper and lower bounds for the k-tuple chromatic number of Kneser
graphs.

Lemma 1. Let G be a graph and let k > 0. Then, χk(G�G) ≤ kχ(G).

Proof. Clearly, χk(G�G) ≤ kχ(G�G). However, by equality (1) we know that χ(G�G) = χ(G),
and thus the lemma holds.

Corollary 1. χk(K(m,n)�K(m,n)) ≤ kχ(K(m,n)) = k(m− 2n+ 2).

We can obtain a trivial lower bound for the k-tuple chromatic number of the graph
K(m,n)�K(m,n) in terms of the clique number of K(m,n). In fact, notice that
ω(K(m,n)�K(m,n)) = ω(K(m,n)) = bmn c. Thus, we have that χk(K(m,n)�K(m,n)) ≥
kω(K(m,n)) = kbmn c.

Larose et al. [8] showed that no connected Kneser graph K(m,n) is hom-idempotent, that is,
for any m > 2n, there is no homomorphism from K(m,n)�K(m,n) to K(m,n).

Lemma 2 ([8]). Let m > 2n. Then, K(m,n)�K(m,n) 6→ K(m,n).
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Concerning the k-tuple chromatic number of some Kneser graphs, Stahl [11] showed the follow-
ing results.

Lemma 3 ([11]). If 1 ≤ k ≤ n, then χk(K(m,n)) = m− 2(n− k).

Lemma 4 ([11]). χk(K(2n+ 1, n)) = 2k + 1 + bk−1n c, for k > 0.

Lemma 5 ([11]). χrn(K(m,n)) = rm, for r > 0 and m ≥ 2n.

By using Lemma 5 we have the following result.

Lemma 6. Let m > 2n. Then, χn(K(m,n)�K(m,n)) > χn(K(m,n)).

Proof. By Lemma 5 when r = 1, we have that χn(K(m,n)) = m. If χn(K(m,n)�K(m,n)) = m,
then there exists an homomorphism from the graphK(m,n)�K(m,n) toK(m,n) which contradicts
Lemma 2.

By Lemma 3, Lemma 6 and by using Corollary 1, we have that,

Corollary 2. Let n ≥ 2. Then, 2n + 2 ≤ χn(K(2n + 1, n)�K(2n + 1, n)) ≤ 3n. In particular,
when n = 2, we have that χ2(K(5, 2)�K(5, 2)) = 6.

In the case k = 2 we have by Lemma 6, Lemma 3 and by Corollary 1, the following result.

Corollary 3. Let q > 0. Then, q + 4 ≤ χ2(K(2n+ q, n)�K(2n+ q, n)) ≤ 2q + 4.

By Corollary 3, notice that in the case when k = n = 2 and q ≥ 1, we must have that
χ2(K(q+4, 2)�K(q+4, 2)) > q+4, otherwise there is a contradiction with Lemma 2. This provides
a gap of one unity between the 2-tuple chromatic number of the graph K(q+ 4, 2)�K(q+ 4, 2) and
the graph K(q+ 4, 2). In the following, we will prove that, for some Kneser graphs, such a gap can
be as large as desired. In order to do this, we need the following technical tools.

A stable set S ⊆ V is a subset of pairwise non adjacent vertices of G. The stability number of
G, denoted by α(G), is the largest cardinality of a stable set in G. Let m ≥ 2n. An element i ∈ [m]
is called a center of a stable set S of the Kneser graph K(m,n) if it lies in each n-set in S.

Lemma 7 (Erdős-Ko-Rado [5]). If m > 2n, then α(K(m,n)) =
(
m−1
n−1
)
. A stable set of K(m,n)

with size
(
m−1
n−1
)

has a center i, for some i ∈ [m].

Lemma 8 (Hilton-Milner [7]). If m ≥ 2n, then the maximum size of a stable set in K(m,n) with
no center is equal to 1 +

(
m−1
n−1
)
−
(
m−n−1
n−1

)
.

A graph G = (V,E) is vertex transitive if its automorphism group acts transitively on V , that
is, for any pair of distinct vertices of G there is an automorphism mapping one to the other one.
It is well known that Kneser graphs are vertex transitive graphs.

Lemma 9 (No-Homomorphism Lemma, Albertson-Collins [1]). Let G,H be graphs such that H is
vertex transitive and G→ H. Then,

α(G)/|V (G)| ≥ α(H)/|V (H)|.

Lemma 10. Let m > 2n. Then, χk(K(m,n)�K(m,n)) ≥ k (mn)
2

α(K(m,n)�K(m,n)) .
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Proof. Let t = χk(K(m,n)�K(m,n)). Then, K(m,n)�K(m,n) → K(t, k) and from the No-

Homomorphism Lemma, α(K(m,n)�K(m,n))
|V (K(m,n)�K(m,n))| ≥

α(K(t,k))
|V (K(t,k))| . The result follows from the fact that

α(K(t,k))
|V (K(t,k))| = k

t .

An edge-coloring of a graph G = (V,E) is an assignment of colors to the edges of G such that
any two incident edges are assigned different colors. The smallest number t such that G admits an
edge-coloring with t colors is called the chromatic index of G and is denoted by χ′(G). It is well
known that the chromatic index of a complete graph Kn on n vertices is equal to n− 1 if n is even
and n if n is odd (see [2]). Besides, in the case n even each color class i (i.e. the subset of pairwise
non incident edges colored with color i) has size n

2 and if n is odd each color class has size n−1
2 .

Therefore, using this fact, we obtain the following result.

Lemma 11. Let q ≥ 5. If q is even then the set of vertices of the Kneser graph K(q, 2) can be
partitioned into q − 1 disjoint cliques, each one with size q

2 and if q is odd then the set of vertices

of the Kneser graph K(q, 2) can be partitioned into q disjoint cliques, each one with size q−1
2 .

Proof. Notice that there is a natural bijection between the vertex set of K(q, 2) and the edge set
of the complete graph Kq with vertex set [q]: each vertex {i, j} in K(q, 2) is mapped to the edge
{i, j} in Kq. Now, if q is even there is a (q−1)-edge coloring of Kq where each color class is a set of
pairwise non incident edges with size q

2 and if q is odd there is a q-edge coloring of Kq where each

color class is a set of pairwise non incident edges with size q−1
2 . Notice that two edges e, e′ ∈ Kq

are non incident edges if and only if e ∩ e′ = ∅. Therefore, a color class of the edge-coloring of Kq

represents a clique of K(q, 2).

Now, we are able to obtain an upper bound for the stability number of the graphK(q, 2)�K(q, 2)
as follows.

Lemma 12. Let q ≥ 5. Then,

• α(K(q, 2)�K(q, 2)) ≤ q(q−1)
8 (3q − 2) if q is even and,

• α(K(q, 2)�K(q, 2)) ≤ q(q−1)
8 (3q − 1) if q is odd.

Proof. Let q even. First, recall that a stable set X in K(q, 2) has size at most q − 1 if X has
center (see Lemma 7) and |X| ≤ 1 + (q − 1) − (q − 2 − 1) = 3 if X has no center (see Lemma 8).
Besides, observe that the vertex set of K(q, 2) can be partitioned in q − 1 sets S1, . . . , Sq−1 such
that each Si induces a complete subgraph graph K q

2
in K(q, 2), for i = 1, . . . , q − 1 (see Lemma

11). Consider the subgraph Hi of K(q, 2)�K(q, 2) induced by Si × V (K(q, 2)) for i = 1, . . . , q − 1.
Let I be a stable set in K(q, 2)�K(q, 2) and Ii = I ∩Hi for i = 1, . . . , q− 1. Then, for each v ∈ Si,
Ivi = Ii ∩ ({v}×V (K(q, 2))) is a stable set in K(q, 2)�K(q, 2) for each i = 1, . . . , q− 1. Finally, for
each m ∈ Si, with 1 ≤ i ≤ q − 1, let Imi,2 be the stable set in K(q, 2) such that Imi = {m} × Imi,2.

Now, for a fixed i ∈ {1, . . . , q − 1}, assume w.l.o.g. that r (r ≤ q
2) stable sets I1i,2, . . . , I

r
i,2 of

K(q, 2) have distinct center j1, . . . , jr, respectively (the case when two of these stable sets have
the same center can be easily reduced to this case). Let W be the set of subsets with size two of
{j1, . . . , jr}. Therefore, for all m ∈ {1, . . . , r}, Imi −({m}×W ) has size at most q−1−(r−1) = q−r
since each center jm belongs to r−1 elements in W . Besides, each element of W belongs to exactly
one set Imi,2 for m ∈ {1, . . . , r}, since Si induces a complete subgraph in K(q, 2) and {1, . . . , r} ⊆ Si.
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Then, |I1i ∪ . . . ∪ Iri | ≤ (
∑r

m=1 |Imi − {m} ×W |) + |W | ≤ r(q − r) + r(r−1)
2 . Next, each remaining

stable set (if exist) Ir+1
i,2 , . . . , I

q
2
i,2 has no center, then |Idi | ≤ 3 for all d ∈ {r + 1, . . . , q2}. Thus,

|Ii| ≤ r(q− r) + r(r−1)
2 + 3( q2 − r) = − r2

2 + r(q− 7
2) + 3

2q. Since the last expression is non decreasing
for r ∈ {1, . . . , q2}, we have that

|Ii| ≤ −
q2

8
+
q

2
(q − 7

2
) + 3

q

2
=
q

2
(
3

4
q − 1

2
)

Therefore, |Ii| ≤ q
2(34q −

1
2) for every i = 1, . . . , q − 1. Since |I| =

∑q−1
i=1 |Ii|, it follows that

|I| ≤ q(q−1)
2 (34q −

1
2) and thus,

α(K(q, 2)�K(q, 2)) ≤ q(q − 1)

8
(3q − 2)

We analyze now the case for q odd, with a similar reasoning. First, recall that a stable set X in
K(q, 2) has size at most q−1 if X has center (see Lemma 7) and |X| ≤ 1+(q−1)−(q−2−1) = 3 if
X has no center (see Lemma 8). Besides, observe that the vertex set of K(q, 2) can be partitioned
in q sets S1, . . . , Sq such that each Si induces a complete subgraph K q−1

2
in K(q, 2), for i = 1, . . . , q

(see Lemma 11). Consider the subgraph Hi of K(q, 2)�K(q, 2) induced by Si × V (K(q, 2)) for
i = 1, . . . , q. Let I be a stable set in K(q, 2)�K(q, 2) and Ii = I ∩Hi for i = 1, . . . , q. Then, for
each v ∈ Si, Ivi = Ii ∩ ({v} × V (K(q, 2))) is a stable set in K(q, 2)�K(q, 2) for each i = 1, . . . , q.
Finally, for eachm ∈ Si, with 1 ≤ i ≤ q, let Imi,2 be the stable set inK(q, 2) such that Imi = {m}×Imi,2.

Now, for a fixed i ∈ {1, . . . , q}, assume w.l.o.g. that r (r ≤ q−1
2 ) stable sets I1i,2, . . . , I

r
i,2 of

K(q, 2) have distinct center j1, . . . , jr, respectively (the case when two of these stable sets have
the same center can be easily reduced to this case). Let W be the set of subsets with size two of
{j1, . . . , jr}. Therefore, for all m ∈ {1, . . . , r}, Imi −({m}×W ) has size at most q−1−(r−1) = q−r
since each center jm belongs to r−1 elements in W . Besides, each element of W belongs to exactly
one set Imi for m ∈ {1, . . . , r}, since Si induces a complete subgraph in K(q, 2) and {1, . . . , r} ⊆ Si.
Then, |I1i ∪ . . . ∪ Iri | ≤ (

∑r
m=1 |Imi − {m} ×W |) + |W | ≤ r(q − r) + r(r−1)

2 .

Next, each remaining stable set (if exist) Ir+1
i,2 , . . . , I

q−1
2

i,2 has no center, then |Idi | ≤ 3 for all

d ∈ {r+ 1, . . . , q−12 }. Thus, |Ii| ≤ r(q− r) + r(r−1)
2 + 3( q−12 − r) = − r2

2 + r(q− 7
2) + 3

2(q− 1). Since

the last expression is non decreasing for r ∈ {0, . . . , q−12 }, we have that

|Ii| ≤ −
(q − 1)2

8
+
q − 1

2
(q − 7

2
) +

3

2
(q − 1) =

q − 1

2
(
3

4
q − 1

4
)

Therefore, |Ii| ≤ q−1
2 (34q −

1
4) for every i = 1, . . . , q. Since |I| =

∑q
i=1 |Ii|, it follows that |I| ≤

q(q−1)
2 (34q −

1
4) and thus,

α(K(q, 2)�K(q, 2)) ≤ q(q − 1)

8
(3q − 1)

From Lemmas 10 and 12 we have the following result.

Theorem 1. Let q ≥ 5. Then,

• χk(K(q, 2)�K(q, 2)) ≥ 2k q(q−1)3q−2 if q is even and,
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• χk(K(q, 2)�K(q, 2)) ≥ 2k q(q−1)3q−1 if q is odd.

In the particular case when q = 2s+4, with s > 0, and k = 2, we have, by Lemma 5 and Theorem
1, the following result that shows that the difference χ2(K(2s+4, 2)�K(2s+4, 2))−χ2(K(2s+4, 2))
can be as large as desired.

Corollary 4. For any integer s > 0 and for k = 2, we have that,

χ2(K(2s+ 4, 2)�K(2s+ 4, 2)) ≥ 2s+

⌈
2

3
s

⌉
+ 5 = χ2(K(2s+ 4, 2)) +

⌈
2

3
s

⌉
+ 1.

From Lemmas 4 and 5, Corollary 1, and Theorem 1, we obtain the results that we summarize
in Table 1.

G k χk(G) χk(G�G) = χk(G�G) ≥ χk(G�G) ≤
K(5, 2) 2 5 6 - -

- 3 8 9 - -
- 4 10 12 - -
- 5 13 15 - -
- 6 15 18 - -
- 7 18 ? 20 21

K(6, 2) 2 6 8 - -
- 3 ? 12 - -
- 4 12 ? 15 16
- 5 ? ? 19 20

K(7, 2) 2 7 ? 9 10
- 3 ? ? 13 15

K(8, 2) 2 8 ? 11 12
- 3 ? ? 16 18

Table 1: Summary of results

Finally, by applying some known homomorphisms between Kneser graphs, we obtain the fol-
lowing result.

Theorem 2. Let k > n and let t = χk(K(m,n)�K(m,n)), where m > 2n. Then, either t >
m+ 2(k − n) or t < m+ (k − n).

Proof. Suppose that m + (k − n) ≤ t ≤ m + 2(k − n). Therefore, there exists an homomorphism
K(m,n)�K(m,n)→ K(t, k). Now, Stahl [11] showed that there is an homomorphism K(m,n)→
K(m − 2, n − 1) whenever n > 1 and m ≥ 2n. Moreover, it is easy to see that there is an
homomorphism K(m,n)→ K(m−1, n−1). By applying the former homomorphism t−(m+(k−n))
times to the graph K(t, k) we obtain an homomorphism K(t, k) → K(2(m + k − n) − t, 2k +
m − n − t). Finally, by applying 2k + m − t − 2n times the latter homomorphism to the graph
K(2(m+ k−n)− t, 2k+m−n− t) we obtain an homomorphism K(2(m+ k−n)− t, 2k+m−n−
t) → K(m,n). Therefore, by homomorphism composition, K(m,n)�K(m,n) → K(m,n) which
contradicts Lemma 2.
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3 Cases where χk(G�H) = max{χk(G), χk(H)}
Theorem 3. Let G and H be graphs such that χ(G) ≤ χ(H) = ω(H). Then, χk(G�H) =
max{χk(G), χk(H)}.

Proof. Let t = ω(H) and let {h1, . . . , ht} be the vertex set of a maximum clique Kt in H with size
t. Clearly, χk(G) ≤ χk(H) = χk(Kt). Let ρ be a k-tuple coloring of H with χk(H) colors. By
equality (1), there exists a t-coloring f of G�H. Therefore, the assignment of the k-set ρ(hf((a,b)))
to each vertex (a, b) in G�H defines a k-tuple coloring of G�H with χk(Kt) colors.

Notice that if G and H are both bipartite, then χk(G�H) = χk(G) = χk(H). In the case when
G is not a bipartite graph, we have the following results.

An automorphism σ of a graph G is called a shift of G if {u, σ(u)} ∈ E(G) for each u ∈ V (G)
[8]. In other words, a shift of G maps every vertex to one of its neighbors.

Theorem 4. Let G be a non bipartite graph having a shift σ ∈ AUT (G), and let H be a bipartite
graph. Then, χk(G�H) = max{χk(G), χk(H)}.

Proof. Let A ∪ B be a bipartition of the vertex set of H. Let f be a k-tuple coloring of G with
χk(G) colors. Clearly, χk(G) ≥ χk(H). We define a k-tuple coloring ρ of G�H with χk(G) colors
as follows: for any vertex (u, v) of G�H with u ∈ G and v ∈ H, define ρ((u, v)) = f(u) if v ∈ A,
and ρ((u, v)) = f(σ(u)) if v ∈ B.

We may also deduce the following direct result.

Theorem 5. Let G be an hom-idempotent graph an let H be a subgraph of G. Thus, χk(G�H) =
max{χk(G), χk(H)} = χk(G).

Let A be a group and S a subset of A that is closed under inverses and does not contain the
identity. The Cayley graph Cay(A,S) is the graph whose vertex set is A, two vertices u, v being
joined by an edge if u−1v ∈ S. If a−1Sa = S for all a ∈ A, then Cay(A,S) is called a normal
Cayley graph.

Lemma 13 ([6]). Any normal Cayley graph is hom-idempotent.

Note that all Cayley graphs on Abelian groups are normal, and thus hom-idempotent. In
particular, the circulant graphs are Cayley graphs on cyclic groups (i.e., cycles, powers of cycles,
complements of powers of cycles, complete graphs, etc). By Theorem 5 and Lemma 13 we have the
following result.

Theorem 6. Let Cay(A,S) be a normal Cayley graph and let Cay(A′, S′) be a subgraph of
Cay(A,S), with A′ ⊆ A and S′ ⊆ S. Then,
χk(Cay(A,S)�Cay(A′, S′)) = max{χk(Cay(A,S)), χk(Cay(A′, S′))}.

Definition 1. Let G be a graph with a shift σ. We define the order of σ as the minimum integer
i such that σi is equal to the identity permutation.

Theorem 7. Let G be a graph with a shift σ of minimum odd order 2s+ 1 and let C2t+1 be a cycle
graph, where t ≥ s. Then,
χk(G�C2t+1) = max{χk(G), χk(C2t+1)}.
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Proof. Let {0, . . . , 2t} be the vertex set of C2t+1, where for 0 ≤ i ≤ 2t, {i, i + 1 mod (2t + 1)} ∈
E(C2t+1). Let Gi be the ith copy of G in G�C2t+1, that is, for each 0 ≤ i ≤ 2t, Gi = {(g, i) : g ∈ G}.
Let f be a k-tuple coloring of G with χk(G) colors. We define a k-tuple coloring of G�C2t+1 with
χk(G) colors as follows: let σ0 denotes the identity permutation of the vertices in G. Now, for
0 ≤ i ≤ 2s, assign to each vertex (u, i) ∈ Gi the k-tuple f(σi(u)). For 2s + 1 ≤ j ≤ 2t, assign to
each vertex (u, j) ∈ Gj the k-tuple f(u) if j is odd, otherwise, assign to (u, j) the k-tuple f(σ1(u)).
It is not difficult to see that this is in fact a proper k-tuple coloring of G�C2t+1.
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