# $k$-tuple colorings of the cartesian product of graphs* 

Flavia Bonomo ${ }^{\dagger}$ Ivo Koch ${ }^{\ddagger}$ Pablo Torres ${ }^{\S}$ Mario Valencia-Pabon ${ }^{〔}$


#### Abstract

A $k$-tuple coloring of a graph $G$ assigns a set of $k$ colors to each vertex of $G$ such that if two vertices are adjacent, the corresponding sets of colors are disjoint. The $k$-tuple chromatic number of $G, \chi_{k}(G)$, is the smallest $t$ so that there is a $k$-tuple coloring of $G$ using $t$ colors. It is well known that $\chi(G \square H)=\max \{\chi(G), \chi(H)\}$. In this paper, we show that there exist graphs $G$ and $H$ such that $\chi_{k}(G \square H)>\max \left\{\chi_{k}(G), \chi_{k}(H)\right\}$ for $k \geq 2$. Moreover, we also show that there exist graph families such that, for any $k \geq 1$, the $k$-tuple chromatic number of their cartesian product is equal to the maximum $k$-tuple chromatic number of its factors. keyword: $k$-tuple colorings, Cartesian product of graphs, Kneser graphs, Cayley graphs, Homidempotent graphs.


## 1 Introduction

A classic coloring of a graph $G$ is an assignment of colors (or natural numbers) to the vertices of $G$ such that any two adjacent vertices are assigned different colors. The smallest number $t$ such that $G$ admits a coloring with $t$ colors (a $t$-coloring) is called the chromatic number of $G$ and is denoted by $\chi(G)$. Several generalizations of the coloring problem have been introduced in the literature, in particular, cases in which each vertex is assigned not only a color but a set of colors, under different restrictions. One of these variations is the $k$-tuple coloring introduced independently by Stahl [11] and Bollobás and Thomason [3]. A $k$-tuple coloring of a graph $G$ is an assignment of $k$ colors to each vertex in such a way that adjacent vertices are assigned distinct colors. The $k$-tuple coloring problem consists into finding the minimum number of colors in a $k$-tuple coloring of a graph $G$, which we denote by $\chi_{k}(G)$.

The cartesian product $G \square H$ of two graphs $G$ and $H$ has vertex set $V(G) \times V(H)$, two vertices being joined by an edge whenever they have one coordinate equal and the other adjacent. This product is commutative and associative up to isomorphism. There is a simple formula expressing the chromatic number of a cartesian product in terms of its factors:

$$
\begin{equation*}
\chi(G \square H)=\max \{\chi(G), \chi(H)\} . \tag{1}
\end{equation*}
$$

[^0]The identity (1) admits a simple proof first given by Sabidussi [10].
The Kneser graph $K(m, n)$ has as vertices all $n$-element subsets of the set $[m]=\{1, \ldots, m\}$ and an edge between two subsets if and only if they are disjoint. We will assume in the rest of this work that $m \geq 2 n$, otherwise $K(m, n)$ has no edges. The Kneser graph $K(5,2)$ is the well known Petersen Graph. Lovász [9] showed that $\chi(K(m, n))=m-2 n+2$. The value of the $k$-tuple chromatic number of the Kneser graph is the subject of an almost 40-year-old conjecture of Stahl [11] which asserts that: if $k=q n-r$ where $q \geq 0$ and $0 \leq r<n$, then $\chi_{k}(K(m, n))=q m-2 r$. Stahl's conjecture has been confirmed for some values of $k, n$ and $m$ [11, 12].

An homomorphism from a graph $G$ into a graph $H$, denoted by $G \rightarrow H$, is an edge-preserving map from $V(G)$ to $V(H)$. It is well known that an ordinary graph coloring of a graph $G$ with $m$ colors is an homomorphism from $G$ into the complete graph $K_{m}$. Similarly, an $n$-tuple coloring of a graph $G$ with $m$ colors is an homomorphism from $G$ into the Kneser graph $K(m, n)$. A graph $G$ is said hom-idempotent if there is an homomorphism $G \square G \rightarrow G$. We denote by $G \nrightarrow H$ if there exists no homomorphism from $G$ to $H$. The clique number of a graph $G$, denoted by $\omega(G)$, is the maximum size of a clique in $G$ (i.e., a complete subgraph of $G$ ). Clearly, for any graphs $G$ and $H$, we have that $\chi(G) \geq \omega(G)$ (and so, $\left.\chi_{k}(G) \geq \chi_{k}\left(K_{\omega(G)}\right)=k \omega(G)\right)$ and, if there is an homomorphism from $G$ to $H$ then, $\chi(G) \leq \chi(H)$ and, moreover, $\chi_{k}(G) \leq \chi_{k}(H)$.

In this paper, we show that equality (1) does not hold in general for $k$-tuple colorings of graphs. In fact, we show that for some values of $k \geq 2$, there are Kneser graphs $K(m, n)$ for which $\chi_{k}(K(m, n) \square K(m, n))>\chi_{k}(K(m, n))$. Surprisingly, there exist some Kneser graphs $K(m, n)$ for which the difference $\chi_{k}(K(m, n) \square K(m, n))-\chi_{k}(K(m, n))$ can be as large as desired, even when $k=2$. We also show that there are families of graphs for which equality (1) holds for $k$-tuple colorings of graphs for any $k \geq 1$. As far as we know, our results are the first ones concerning the $k$-tuple chromatic number of cartesian product of graphs.

## 2 Cartesian products of Kneser graphs

We start this section with some upper and lower bounds for the $k$-tuple chromatic number of Kneser graphs.

Lemma 1. Let $G$ be a graph and let $k>0$. Then, $\chi_{k}(G \square G) \leq k \chi(G)$.
Proof. Clearly, $\chi_{k}(G \square G) \leq k \chi(G \square G)$. However, by equality (1) we know that $\chi(G \square G)=\chi(G)$, and thus the lemma holds.

Corollary 1. $\chi_{k}(K(m, n) \square K(m, n)) \leq k \chi(K(m, n))=k(m-2 n+2)$.
We can obtain a trivial lower bound for the $k$-tuple chromatic number of the graph $K(m, n) \square K(m, n)$ in terms of the clique number of $K(m, n)$. In fact, notice that $\omega(K(m, n) \square K(m, n))=\omega(K(m, n))=\left\lfloor\frac{m}{n}\right\rfloor$. Thus, we have that $\chi_{k}(K(m, n) \square K(m, n)) \geq$ $k \omega(K(m, n))=k\left\lfloor\frac{m}{n}\right\rfloor$.

Larose et al. [8] showed that no connected Kneser graph $K(m, n)$ is hom-idempotent, that is, for any $m>2 n$, there is no homomorphism from $K(m, n) \square K(m, n)$ to $K(m, n)$.

Lemma 2 ([8]). Let $m>2 n$. Then, $K(m, n) \square K(m, n) \nrightarrow K(m, n)$.

Concerning the $k$-tuple chromatic number of some Kneser graphs, Stahl [11] showed the following results.

Lemma 3 ([11]). If $1 \leq k \leq n$, then $\chi_{k}(K(m, n))=m-2(n-k)$.
Lemma 4 ([11]). $\chi_{k}(K(2 n+1, n))=2 k+1+\left\lfloor\frac{k-1}{n}\right\rfloor$, for $k>0$.
Lemma 5 ([11]). $\chi_{r n}(K(m, n))=r m$, for $r>0$ and $m \geq 2 n$.
By using Lemma 5 we have the following result.
Lemma 6. Let $m>2 n$. Then, $\chi_{n}(K(m, n) \square K(m, n))>\chi_{n}(K(m, n))$.
Proof. By Lemma 5 when $r=1$, we have that $\chi_{n}(K(m, n))=m$. If $\chi_{n}(K(m, n) \square K(m, n))=m$, then there exists an homomorphism from the graph $K(m, n) \square K(m, n)$ to $K(m, n)$ which contradicts Lemma 2.

By Lemma 3, Lemma 6 and by using Corollary 1, we have that,
Corollary 2. Let $n \geq 2$. Then, $2 n+2 \leq \chi_{n}(K(2 n+1, n) \square K(2 n+1, n)) \leq 3 n$. In particular, when $n=2$, we have that $\chi_{2}(K(5,2) \square K(5,2))=6$.

In the case $k=2$ we have by Lemma 6 , Lemma 3 and by Corollary 1 , the following result.
Corollary 3. Let $q>0$. Then, $q+4 \leq \chi_{2}(K(2 n+q, n) \square K(2 n+q, n)) \leq 2 q+4$.
By Corollary 3, notice that in the case when $k=n=2$ and $q \geq 1$, we must have that $\chi_{2}(K(q+4,2) \square K(q+4,2))>q+4$, otherwise there is a contradiction with Lemma 2. This provides a gap of one unity between the 2-tuple chromatic number of the graph $K(q+4,2) \square K(q+4,2)$ and the graph $K(q+4,2)$. In the following, we will prove that, for some Kneser graphs, such a gap can be as large as desired. In order to do this, we need the following technical tools.

A stable set $S \subseteq V$ is a subset of pairwise non adjacent vertices of $G$. The stability number of $G$, denoted by $\alpha(G)$, is the largest cardinality of a stable set in $G$. Let $m \geq 2 n$. An element $i \in[m]$ is called a center of a stable set $S$ of the Kneser graph $K(m, n)$ if it lies in each $n$-set in $S$.

Lemma 7 (Erdős-Ko-Rado [5]). If $m>2 n$, then $\alpha(K(m, n))=\binom{m-1}{n-1}$. A stable set of $K(m, n)$ with size $\binom{m-1}{n-1}$ has a center $i$, for some $i \in[m]$.

Lemma 8 (Hilton-Milner [7]). If $m \geq 2 n$, then the maximum size of a stable set in $K(m, n)$ with no center is equal to $1+\binom{m-1}{n-1}-\binom{m-n-1}{n-1}$.

A graph $G=(V, E)$ is vertex transitive if its automorphism group acts transitively on $V$, that is, for any pair of distinct vertices of $G$ there is an automorphism mapping one to the other one. It is well known that Kneser graphs are vertex transitive graphs.

Lemma 9 (No-Homomorphism Lemma, Albertson-Collins [1]). Let $G, H$ be graphs such that $H$ is vertex transitive and $G \rightarrow H$. Then,

$$
\alpha(G) /|V(G)| \geq \alpha(H) /|V(H)| .
$$

Lemma 10. Let $m>2 n$. Then, $\chi_{k}(K(m, n) \square K(m, n)) \geq k \frac{\binom{m}{n}^{2}}{\alpha(K(m, n) \square K(m, n))}$.

Proof. Let $t=\chi_{k}(K(m, n) \square K(m, n))$. Then, $K(m, n) \square K(m, n) \rightarrow K(t, k)$ and from the NoHomomorphism Lemma, $\frac{\alpha(K(m, n) \square K(m, n))}{\mid V(K(m, n) \square K(m, n) \mid} \geq \frac{\alpha(K(t, k))}{|V(K(t, k))|}$. The result follows from the fact that $\frac{\alpha(K(t, k))}{|V(K(t, k))|}=\frac{k}{t}$.

An edge-coloring of a graph $G=(V, E)$ is an assignment of colors to the edges of $G$ such that any two incident edges are assigned different colors. The smallest number $t$ such that $G$ admits an edge-coloring with $t$ colors is called the chromatic index of $G$ and is denoted by $\chi^{\prime}(G)$. It is well known that the chromatic index of a complete graph $K_{n}$ on $n$ vertices is equal to $n-1$ if $n$ is even and $n$ if $n$ is odd (see [2]). Besides, in the case $n$ even each color class $i$ (i.e. the subset of pairwise non incident edges colored with color $i$ ) has size $\frac{n}{2}$ and if $n$ is odd each color class has size $\frac{n-1}{2}$. Therefore, using this fact, we obtain the following result.

Lemma 11. Let $q \geq 5$. If $q$ is even then the set of vertices of the Kneser graph $K(q, 2)$ can be partitioned into $q-1$ disjoint cliques, each one with size $\frac{q}{2}$ and if $q$ is odd then the set of vertices of the Kneser graph $K(q, 2)$ can be partitioned into $q$ disjoint cliques, each one with size $\frac{q-1}{2}$.

Proof. Notice that there is a natural bijection between the vertex set of $K(q, 2)$ and the edge set of the complete graph $K_{q}$ with vertex set $[q]$ : each vertex $\{i, j\}$ in $K(q, 2)$ is mapped to the edge $\{i, j\}$ in $K_{q}$. Now, if $q$ is even there is a ( $q-1$ )-edge coloring of $K_{q}$ where each color class is a set of pairwise non incident edges with size $\frac{q}{2}$ and if $q$ is odd there is a $q$-edge coloring of $K_{q}$ where each color class is a set of pairwise non incident edges with size $\frac{q-1}{2}$. Notice that two edges $e, e^{\prime} \in K_{q}$ are non incident edges if and only if $e \cap e^{\prime}=\emptyset$. Therefore, a color class of the edge-coloring of $K_{q}$ represents a clique of $K(q, 2)$.

Now, we are able to obtain an upper bound for the stability number of the graph $K(q, 2) \square K(q, 2)$ as follows.

Lemma 12. Let $q \geq 5$. Then,

- $\alpha(K(q, 2) \square K(q, 2)) \leq \frac{q(q-1)}{8}(3 q-2)$ if $q$ is even and,
- $\alpha(K(q, 2) \square K(q, 2)) \leq \frac{q(q-1)}{8}(3 q-1)$ if $q$ is odd.

Proof. Let $q$ even. First, recall that a stable set $X$ in $K(q, 2)$ has size at most $q-1$ if $X$ has center (see Lemma 7 ) and $|X| \leq 1+(q-1)-(q-2-1)=3$ if $X$ has no center (see Lemma 8). Besides, observe that the vertex set of $K(q, 2)$ can be partitioned in $q-1$ sets $S_{1}, \ldots, S_{q-1}$ such that each $S_{i}$ induces a complete subgraph graph $K_{\frac{q}{2}}$ in $K(q, 2)$, for $i=1, \ldots, q-1$ (see Lemma 11). Consider the subgraph $H_{i}$ of $K(q, 2) \square K(q, 2)$ induced by $S_{i} \times V(K(q, 2))$ for $i=1, \ldots, q-1$. Let $I$ be a stable set in $K(q, 2) \square K(q, 2)$ and $I_{i}=I \cap H_{i}$ for $i=1, \ldots, q-1$. Then, for each $v \in S_{i}$, $I_{i}^{v}=I_{i} \cap(\{v\} \times V(K(q, 2)))$ is a stable set in $K(q, 2) \square K(q, 2)$ for each $i=1, \ldots, q-1$. Finally, for each $m \in S_{i}$, with $1 \leq i \leq q-1$, let $I_{i, 2}^{m}$ be the stable set in $K(q, 2)$ such that $I_{i}^{m}=\{m\} \times I_{i, 2}^{m}$.

Now, for a fixed $i \in\{1, \ldots, q-1\}$, assume w.l.o.g. that $r\left(r \leq \frac{q}{2}\right)$ stable sets $I_{i, 2}^{1}, \ldots, I_{i, 2}^{r}$ of $K(q, 2)$ have distinct center $j_{1}, \ldots, j_{r}$, respectively (the case when two of these stable sets have the same center can be easily reduced to this case). Let $W$ be the set of subsets with size two of $\left\{j_{1}, \ldots, j_{r}\right\}$. Therefore, for all $m \in\{1, \ldots, r\}, I_{i}^{m}-(\{m\} \times W)$ has size at most $q-1-(r-1)=q-r$ since each center $j_{m}$ belongs to $r-1$ elements in $W$. Besides, each element of $W$ belongs to exactly one set $I_{i, 2}^{m}$ for $m \in\{1, \ldots, r\}$, since $S_{i}$ induces a complete subgraph in $K(q, 2)$ and $\{1, \ldots, r\} \subseteq S_{i}$.

Then, $\left|I_{i}^{1} \cup \ldots \cup I_{i}^{r}\right| \leq\left(\sum_{m=1}^{r}\left|I_{i}^{m}-\{m\} \times W\right|\right)+|W| \leq r(q-r)+\frac{r(r-1)}{2}$. Next, each remaining stable set (if exist) $I_{i, 2}^{r+1}, \ldots, I_{i, 2}^{\frac{q}{2}}$ has no center, then $\left|I_{i}^{d}\right| \leq 3$ for all $d \in\left\{r+1, \ldots, \frac{q}{2}\right\}$. Thus, $\left|I_{i}\right| \leq r(q-r)+\frac{r(r-1)}{2}+3\left(\frac{q}{2}-r\right)=-\frac{r^{2}}{2}+r\left(q-\frac{7}{2}\right)+\frac{3}{2} q$. Since the last expression is non decreasing for $r \in\left\{1, \ldots, \frac{q}{2}\right\}$, we have that

$$
\left|I_{i}\right| \leq-\frac{q^{2}}{8}+\frac{q}{2}\left(q-\frac{7}{2}\right)+3 \frac{q}{2}=\frac{q}{2}\left(\frac{3}{4} q-\frac{1}{2}\right)
$$

Therefore, $\left|I_{i}\right| \leq \frac{q}{2}\left(\frac{3}{4} q-\frac{1}{2}\right)$ for every $i=1, \ldots, q-1$. Since $|I|=\sum_{i=1}^{q-1}\left|I_{i}\right|$, it follows that $|I| \leq \frac{q(q-1)}{2}\left(\frac{3}{4} q-\frac{1}{2}\right)$ and thus,

$$
\alpha(K(q, 2) \square K(q, 2)) \leq \frac{q(q-1)}{8}(3 q-2)
$$

We analyze now the case for $q$ odd, with a similar reasoning. First, recall that a stable set $X$ in $K(q, 2)$ has size at most $q-1$ if $X$ has center (see Lemma 7 ) and $|X| \leq 1+(q-1)-(q-2-1)=3$ if $X$ has no center (see Lemma 8). Besides, observe that the vertex set of $K(q, 2)$ can be partitioned in $q$ sets $S_{1}, \ldots, S_{q}$ such that each $S_{i}$ induces a complete subgraph $K_{\frac{q-1}{2}}$ in $K(q, 2)$, for $i=1, \ldots, q$ (see Lemma 11). Consider the subgraph $H_{i}$ of $K(q, 2) \square K(q, 2)$ induced by $S_{i} \times V(K(q, 2))$ for $i=1, \ldots, q$. Let $I$ be a stable set in $K(q, 2) \square K(q, 2)$ and $I_{i}=I \cap H_{i}$ for $i=1, \ldots, q$. Then, for each $v \in S_{i}, I_{i}^{v}=I_{i} \cap(\{v\} \times V(K(q, 2)))$ is a stable set in $K(q, 2) \square K(q, 2)$ for each $i=1, \ldots, q$. Finally, for each $m \in S_{i}$, with $1 \leq i \leq q$, let $I_{i, 2}^{m}$ be the stable set in $K(q, 2)$ such that $I_{i}^{m}=\{m\} \times I_{i, 2}^{m}$.

Now, for a fixed $i \in\{1, \ldots, q\}$, assume w.l.o.g. that $r\left(r \leq \frac{q-1}{2}\right)$ stable sets $I_{i, 2}^{1}, \ldots, I_{i, 2}^{r}$ of $K(q, 2)$ have distinct center $j_{1}, \ldots, j_{r}$, respectively (the case when two of these stable sets have the same center can be easily reduced to this case). Let $W$ be the set of subsets with size two of $\left\{j_{1}, \ldots, j_{r}\right\}$. Therefore, for all $m \in\{1, \ldots, r\}, I_{i}^{m}-(\{m\} \times W)$ has size at most $q-1-(r-1)=q-r$ since each center $j_{m}$ belongs to $r-1$ elements in $W$. Besides, each element of $W$ belongs to exactly one set $I_{i}^{m}$ for $m \in\{1, \ldots, r\}$, since $S_{i}$ induces a complete subgraph in $K(q, 2)$ and $\{1, \ldots, r\} \subseteq S_{i}$. Then, $\left|I_{i}^{1} \cup \ldots \cup I_{i}^{r}\right| \leq\left(\sum_{m=1}^{r}\left|I_{i}^{m}-\{m\} \times W\right|\right)+|W| \leq r(q-r)+\frac{r(r-1)}{2}$.

Next, each remaining stable set (if exist) $I_{i, 2}^{r+1}, \ldots, I_{i, 2}^{\frac{q-1}{2}}$ has no center, then $\left|I_{i}^{d}\right| \leq 3$ for all $d \in\left\{r+1, \ldots, \frac{q-1}{2}\right\}$. Thus, $\left|I_{i}\right| \leq r(q-r)+\frac{r(r-1)}{2}+3\left(\frac{q-1}{2}-r\right)=-\frac{r^{2}}{2}+r\left(q-\frac{7}{2}\right)+\frac{3}{2}(q-1)$. Since the last expression is non decreasing for $r \in\left\{0, \ldots, \frac{q-1}{2}\right\}$, we have that

$$
\left|I_{i}\right| \leq-\frac{(q-1)^{2}}{8}+\frac{q-1}{2}\left(q-\frac{7}{2}\right)+\frac{3}{2}(q-1)=\frac{q-1}{2}\left(\frac{3}{4} q-\frac{1}{4}\right)
$$

Therefore, $\left|I_{i}\right| \leq \frac{q-1}{2}\left(\frac{3}{4} q-\frac{1}{4}\right)$ for every $i=1, \ldots, q$. Since $|I|=\sum_{i=1}^{q}\left|I_{i}\right|$, it follows that $|I| \leq$ $\frac{q(q-1)}{2}\left(\frac{3}{4} q-\frac{1}{4}\right)$ and thus,

$$
\alpha(K(q, 2) \square K(q, 2)) \leq \frac{q(q-1)}{8}(3 q-1)
$$

From Lemmas 10 and 12 we have the following result.
Theorem 1. Let $q \geq 5$. Then,

- $\chi_{k}(K(q, 2) \square K(q, 2)) \geq 2 k \frac{q(q-1)}{3 q-2}$ if $q$ is even and,
- $\chi_{k}(K(q, 2) \square K(q, 2)) \geq 2 k \frac{q(q-1)}{3 q-1}$ if $q$ is odd.

In the particular case when $q=2 s+4$, with $s>0$, and $k=2$, we have, by Lemma 5 and Theorem 1, the following result that shows that the difference $\chi_{2}(K(2 s+4,2) \square K(2 s+4,2))-\chi_{2}(K(2 s+4,2))$ can be as large as desired.

Corollary 4. For any integer $s>0$ and for $k=2$, we have that,

$$
\chi_{2}(K(2 s+4,2) \square K(2 s+4,2)) \geq 2 s+\left\lceil\frac{2}{3} s\right\rceil+5=\chi_{2}(K(2 s+4,2))+\left\lceil\frac{2}{3} s\right\rceil+1 .
$$

From Lemmas 4 and 5, Corollary 1, and Theorem 1, we obtain the results that we summarize in Table 1.

| $G$ | $k$ | $\chi_{k}(G)$ | $\chi_{k}(G \square G)=$ | $\chi_{k}(G \square G) \geq$ | $\chi_{k}(G \square G) \leq$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $K(5,2)$ | 2 | 5 | 6 | - | - |
| - | 3 | 8 | 9 | - | - |
| - | 4 | 10 | 12 | - | - |
| - | 5 | 13 | 15 | - | - |
| - | 6 | 15 | 18 | - | - |
| - | 7 | 18 | $?$ | 20 | 21 |
| $K(6,2)$ | 2 | 6 | 8 | - | - |
| - | 3 | $?$ | 12 | - | - |
| - | 4 | 12 | $?$ | 15 | 16 |
| - | 5 | $?$ | $?$ | 19 | 20 |
| $K(7,2)$ | 2 | 7 | $?$ | 9 | 10 |
| - | 3 | $?$ | $?$ | 13 | 15 |
| $K(8,2)$ | 2 | 8 | $?$ | 11 | 12 |
| - | 3 | $?$ | $?$ | 16 | 18 |

Table 1: Summary of results
Finally, by applying some known homomorphisms between Kneser graphs, we obtain the following result.

Theorem 2. Let $k>n$ and let $t=\chi_{k}(K(m, n) \square K(m, n))$, where $m>2 n$. Then, either $t>$ $m+2(k-n)$ or $t<m+(k-n)$.

Proof. Suppose that $m+(k-n) \leq t \leq m+2(k-n)$. Therefore, there exists an homomorphism $K(m, n) \square K(m, n) \rightarrow K(t, k)$. Now, Stahl [11] showed that there is an homomorphism $K(m, n) \rightarrow$ $K(m-2, n-1)$ whenever $n>1$ and $m \geq 2 n$. Moreover, it is easy to see that there is an homomorphism $K(m, n) \rightarrow K(m-1, n-1)$. By applying the former homomorphism $t-(m+(k-n))$ times to the graph $K(t, k)$ we obtain an homomorphism $K(t, k) \rightarrow K(2(m+k-n)-t, 2 k+$ $m-n-t)$. Finally, by applying $2 k+m-t-2 n$ times the latter homomorphism to the graph $K(2(m+k-n)-t, 2 k+m-n-t)$ we obtain an homomorphism $K(2(m+k-n)-t, 2 k+m-n-$ $t) \rightarrow K(m, n)$. Therefore, by homomorphism composition, $K(m, n) \square K(m, n) \rightarrow K(m, n)$ which contradicts Lemma 2.

## 3 Cases where $\chi_{k}(G \square H)=\max \left\{\chi_{k}(G), \chi_{k}(H)\right\}$

Theorem 3. Let $G$ and $H$ be graphs such that $\chi(G) \leq \chi(H)=\omega(H)$. Then, $\chi_{k}(G \square H)=$ $\max \left\{\chi_{k}(G), \chi_{k}(H)\right\}$.

Proof. Let $t=\omega(H)$ and let $\left\{h_{1}, \ldots, h_{t}\right\}$ be the vertex set of a maximum clique $K_{t}$ in $H$ with size $t$. Clearly, $\chi_{k}(G) \leq \chi_{k}(H)=\chi_{k}\left(K_{t}\right)$. Let $\rho$ be a $k$-tuple coloring of $H$ with $\chi_{k}(H)$ colors. By equality (1), there exists a $t$-coloring $f$ of $G \square H$. Therefore, the assignment of the $k$-set $\rho\left(h_{f((a, b))}\right)$ to each vertex $(a, b)$ in $G \square H$ defines a $k$-tuple coloring of $G \square H$ with $\chi_{k}\left(K_{t}\right)$ colors.

Notice that if $G$ and $H$ are both bipartite, then $\chi_{k}(G \square H)=\chi_{k}(G)=\chi_{k}(H)$. In the case when $G$ is not a bipartite graph, we have the following results.

An automorphism $\sigma$ of a graph $G$ is called a shift of $G$ if $\{u, \sigma(u)\} \in E(G)$ for each $u \in V(G)$ [8]. In other words, a shift of $G$ maps every vertex to one of its neighbors.

Theorem 4. Let $G$ be a non bipartite graph having a shift $\sigma \in A U T(G)$, and let $H$ be a bipartite graph. Then, $\chi_{k}(G \square H)=\max \left\{\chi_{k}(G), \chi_{k}(H)\right\}$.

Proof. Let $A \cup B$ be a bipartition of the vertex set of $H$. Let $f$ be a $k$-tuple coloring of $G$ with $\chi_{k}(G)$ colors. Clearly, $\chi_{k}(G) \geq \chi_{k}(H)$. We define a $k$-tuple coloring $\rho$ of $G \square H$ with $\chi_{k}(G)$ colors as follows: for any vertex $(u, v)$ of $G \square H$ with $u \in G$ and $v \in H$, define $\rho((u, v))=f(u)$ if $v \in A$, and $\rho((u, v))=f(\sigma(u))$ if $v \in B$.

We may also deduce the following direct result.
Theorem 5. Let $G$ be an hom-idempotent graph an let $H$ be a subgraph of $G$. Thus, $\chi_{k}(G \square H)=$ $\max \left\{\chi_{k}(G), \chi_{k}(H)\right\}=\chi_{k}(G)$.

Let $A$ be a group and $S$ a subset of $A$ that is closed under inverses and does not contain the identity. The Cayley graph $\operatorname{Cay}(A, S)$ is the graph whose vertex set is $A$, two vertices $u, v$ being joined by an edge if $u^{-1} v \in S$. If $a^{-1} S a=S$ for all $a \in A$, then $\operatorname{Cay}(A, S)$ is called a normal Cayley graph.

Lemma 13 ([6]). Any normal Cayley graph is hom-idempotent.
Note that all Cayley graphs on Abelian groups are normal, and thus hom-idempotent. In particular, the circulant graphs are Cayley graphs on cyclic groups (i.e., cycles, powers of cycles, complements of powers of cycles, complete graphs, etc). By Theorem 5 and Lemma 13 we have the following result.

Theorem 6. Let Cay $(A, S)$ be a normal Cayley graph and let Cay $\left(A^{\prime}, S^{\prime}\right)$ be a subgraph of $\operatorname{Cay}(A, S)$, with $A^{\prime} \subseteq A$ and $S^{\prime} \subseteq S$. Then, $\chi_{k}\left(\operatorname{Cay}(A, S) \square C a y\left(A^{\prime}, S^{\prime}\right)\right)=\max \left\{\chi_{k}(\operatorname{Cay}(A, S)), \chi_{k}\left(\operatorname{Cay}\left(A^{\prime}, S^{\prime}\right)\right)\right\}$.

Definition 1. Let $G$ be a graph with a shift $\sigma$. We define the order of $\sigma$ as the minimum integer $i$ such that $\sigma^{i}$ is equal to the identity permutation.

Theorem 7. Let $G$ be a graph with a shift $\sigma$ of minimum odd order $2 s+1$ and let $C_{2 t+1}$ be a cycle graph, where $t \geq s$. Then, $\chi_{k}\left(G \square C_{2 t+1}\right)=\max \left\{\chi_{k}(G), \chi_{k}\left(C_{2 t+1}\right)\right\}$.

Proof. Let $\{0, \ldots, 2 t\}$ be the vertex set of $C_{2 t+1}$, where for $0 \leq i \leq 2 t,\{i, i+1 \bmod (2 t+1)\} \in$ $E\left(C_{2 t+1}\right)$. Let $G_{i}$ be the $i^{\text {th }}$ copy of $G$ in $G \square C_{2 t+1}$, that is, for each $0 \leq i \leq 2 t, G_{i}=\{(g, i): g \in G\}$. Let $f$ be a $k$-tuple coloring of $G$ with $\chi_{k}(G)$ colors. We define a $k$-tuple coloring of $G \square C_{2 t+1}$ with $\chi_{k}(G)$ colors as follows: let $\sigma^{0}$ denotes the identity permutation of the vertices in $G$. Now, for $0 \leq i \leq 2 s$, assign to each vertex $(u, i) \in G_{i}$ the $k$-tuple $f\left(\sigma^{i}(u)\right)$. For $2 s+1 \leq j \leq 2 t$, assign to each vertex $(u, j) \in G_{j}$ the $k$-tuple $f(u)$ if $j$ is odd, otherwise, assign to $(u, j)$ the $k$-tuple $f\left(\sigma^{1}(u)\right)$. It is not difficult to see that this is in fact a proper $k$-tuple coloring of $G \square C_{2 t+1}$.

## References

[1] M. O. Albertson, K. L. Collins. Homomorphisms of 3-chromatic graphs. Discrete Mathematics, 54:127-132, 1985.
[2] C. Berge. Graphs and Hypergraphs. North-Holland, Amsterdam, 1976.
[3] B. Bollobás, A. Thomason. Set colourings of graphs. Discrete Mathematics, 25(1):21-26, 1979.
[4] C. D. Godsil, G. Royle. Algebraic graph theory. Graduate Texts in Mathematics. Springer, 2001.
[5] P. Erdős, C. Ko, R. Rado. Intersection theorems for systems of finite sets. Quarterly Journal of Mathematics, 12:313-320, 1961.
[6] G. Hahn, P. Hell, S. Poljak. On the ultimate independence ratio of a graph. European Journal on Combinatorics, 16:253-261, 1995.
[7] A. J. W. Hilton, E. C. Milner. Some intersections theorems for systems of finite sets. Quarterly Journal of Mathematics, 18:369-384, 1967.
[8] B. Larose, F. Laviolette, C. Tardif. On normal Cayley graphs and Hom-idempotent graphs, European Journal of Combinatorics, 19:867-881, 1998.
[9] L. Lovász. Kneser's conjecture, chromatic number and homotopy, Journal of Combinatorial Theory, Series A, 25:319-324, 1978.
[10] G. Sabidussi. Graphs with given group and given graph-theoretical properties. Canadian Journal of Mathematics, 9:515-525, 1957.
[11] S. Stahl. n-Tuple colorings and associated graphs. Journal of Combinatorial Theory, Series B, 20:185-203, 1976.
[12] S. Stahl. The multichromatic numbers of some Kneser graphs. Discrete Mathematics, 185:287291, 1998.


[^0]:    *Partially supported by MathAmSud Project 13MATH-07 (Argentina-Brazil-Chile-France), UBACyT Grant 20020130100808BA, CONICET PIP 112-201201-00450CO, ANPCyT PICT 2012-1324 (Argentina), and by the French ANR JCJC CombPhysMat2Tens grant.
    ${ }^{\dagger}$ CONICET and DC, FCEN, Universidad de Buenos Aires, Argentina. e-mail: fbonomo@dc.uba.ar
    ${ }^{\ddagger}$ Instituto de Industria, Universidad Nacional de General Sarmiento, Argentina. e-maill: ivo.koch@gmail.com
    ${ }^{\text {§ }}$ Universidad Nacional de Rosario and CONICET, Argentina. e-mail: ptorres@fceia.unr.edu.ar
    ${ }^{\text {® }}$ Université Paris-13, Sorbonne Paris Cité LIPN, CNRS UMR7030, Villetaneuse, France. e-mail: valencia@lipn.univ-paris13.fr

