k-tuple colorings of the cartesian product of graphs^{*}

Flavia Bonomo † Ivo Koch ‡ Pablo Torres § Mario Valencia-Pabon \P

Abstract

A k-tuple coloring of a graph G assigns a set of k colors to each vertex of G such that if two vertices are adjacent, the corresponding sets of colors are disjoint. The k-tuple chromatic number of G, $\chi_k(G)$, is the smallest t so that there is a k-tuple coloring of G using t colors. It is well known that $\chi(G \Box H) = \max{\chi(G), \chi(H)}$. In this paper, we show that there exist graphs G and H such that $\chi_k(G \Box H) > \max{\chi_k(G), \chi_k(H)}$ for $k \ge 2$. Moreover, we also show that there exist graph families such that, for any $k \ge 1$, the k-tuple chromatic number of their cartesian product is equal to the maximum k-tuple chromatic number of its factors. **keyword**: k-tuple colorings, Cartesian product of graphs, Kneser graphs, Cayley graphs, Homidempotent graphs.

1 Introduction

A classic coloring of a graph G is an assignment of colors (or natural numbers) to the vertices of G such that any two adjacent vertices are assigned different colors. The smallest number t such that G admits a coloring with t colors (a t-coloring) is called the chromatic number of G and is denoted by $\chi(G)$. Several generalizations of the coloring problem have been introduced in the literature, in particular, cases in which each vertex is assigned not only a color but a set of colors, under different restrictions. One of these variations is the k-tuple coloring introduced independently by Stahl [11] and Bollobás and Thomason [3]. A k-tuple coloring of a graph G is an assignment of k colors to each vertex in such a way that adjacent vertices are assigned distinct colors. The k-tuple coloring problem consists into finding the minimum number of colors in a k-tuple coloring of a graph G, which we denote by $\chi_k(G)$.

The cartesian product $G \Box H$ of two graphs G and H has vertex set $V(G) \times V(H)$, two vertices being joined by an edge whenever they have one coordinate equal and the other adjacent. This product is commutative and associative up to isomorphism. There is a simple formula expressing the chromatic number of a cartesian product in terms of its factors:

$$\chi(G\Box H) = \max\{\chi(G), \chi(H)\}.$$
(1)

^{*}Partially supported by MathAmSud Project 13MATH-07 (Argentina–Brazil–Chile–France), UBACyT Grant 20020130100808BA, CONICET PIP 112-201201-00450CO, ANPCyT PICT 2012-1324 (Argentina), and by the French ANR JCJC CombPhysMat2Tens grant.

[†]CONICET and DC, FCEN, Universidad de Buenos Aires, Argentina. e-mail: fbonomo@dc.uba.ar

[‡]Instituto de Industria, Universidad Nacional de General Sarmiento, Argentina. e-maill: ivo.koch@gmail.com

[§]Universidad Nacional de Rosario and CONICET, Argentina. e-mail: ptorres@fceia.unr.edu.ar

[¶]Université Paris-13, Sorbonne Paris Cité LIPN, CNRS UMR7030, Villetaneuse, France. e-mail: valencia@lipn.univ-paris13.fr

The identity (1) admits a simple proof first given by Sabidussi [10].

The Kneser graph K(m, n) has as vertices all *n*-element subsets of the set $[m] = \{1, \ldots, m\}$ and an edge between two subsets if and only if they are disjoint. We will assume in the rest of this work that $m \ge 2n$, otherwise K(m, n) has no edges. The Kneser graph K(5, 2) is the well known Petersen Graph. Lovász [9] showed that $\chi(K(m, n)) = m - 2n + 2$. The value of the k-tuple chromatic number of the Kneser graph is the subject of an almost 40-year-old conjecture of Stahl [11] which asserts that: if k = qn - r where $q \ge 0$ and $0 \le r < n$, then $\chi_k(K(m, n)) = qm - 2r$. Stahl's conjecture has been confirmed for some values of k, n and m [11, 12].

An homomorphism from a graph G into a graph H, denoted by $G \to H$, is an edge-preserving map from V(G) to V(H). It is well known that an ordinary graph coloring of a graph G with m colors is an homomorphism from G into the complete graph K_m . Similarly, an n-tuple coloring of a graph G with m colors is an homomorphism from G into the Kneser graph K(m, n). A graph G is said hom-idempotent if there is an homomorphism $G \square G \to G$. We denote by $G \not\to H$ if there exists no homomorphism from G to H. The clique number of a graph G, denoted by $\omega(G)$, is the maximum size of a clique in G (i.e., a complete subgraph of G). Clearly, for any graphs G and H, we have that $\chi(G) \ge \omega(G)$ (and so, $\chi_k(G) \ge \chi_k(K_{\omega(G)}) = k\omega(G)$) and, if there is an homomorphism from G to H then, $\chi(G) \le \chi(H)$ and, moreover, $\chi_k(G) \le \chi_k(H)$.

In this paper, we show that equality (1) does not hold in general for k-tuple colorings of graphs. In fact, we show that for some values of $k \ge 2$, there are Kneser graphs K(m,n) for which $\chi_k(K(m,n) \square K(m,n)) > \chi_k(K(m,n))$. Surprisingly, there exist some Kneser graphs K(m,n) for which the difference $\chi_k(K(m,n) \square K(m,n)) - \chi_k(K(m,n))$ can be as large as desired, even when k = 2. We also show that there are families of graphs for which equality (1) holds for k-tuple colorings of graphs for any $k \ge 1$. As far as we know, our results are the first ones concerning the k-tuple chromatic number of cartesian product of graphs.

2 Cartesian products of Kneser graphs

We start this section with some upper and lower bounds for the k-tuple chromatic number of Kneser graphs.

Lemma 1. Let G be a graph and let k > 0. Then, $\chi_k(G \Box G) \leq k \chi(G)$.

Proof. Clearly, $\chi_k(G \Box G) \leq k\chi(G \Box G)$. However, by equality (1) we know that $\chi(G \Box G) = \chi(G)$, and thus the lemma holds.

Corollary 1. $\chi_k(K(m,n) \Box K(m,n)) \le k \chi(K(m,n)) = k(m-2n+2).$

We can obtain a trivial lower bound for the k-tuple chromatic number of the graph $K(m,n)\Box K(m,n)$ in terms of the clique number of K(m,n). In fact, notice that $\omega(K(m,n)\Box K(m,n)) = \omega(K(m,n)) = \lfloor \frac{m}{n} \rfloor$. Thus, we have that $\chi_k(K(m,n)\Box K(m,n)) \geq k\omega(K(m,n)) = k\lfloor \frac{m}{n} \rfloor$.

Larose et al. [8] showed that no connected Kneser graph K(m, n) is hom-idempotent, that is, for any m > 2n, there is no homomorphism from $K(m, n) \Box K(m, n)$ to K(m, n).

Lemma 2 ([8]). Let m > 2n. Then, $K(m, n) \Box K(m, n) \not\rightarrow K(m, n)$.

Concerning the k-tuple chromatic number of some Kneser graphs, Stahl [11] showed the following results.

Lemma 3 ([11]). If $1 \le k \le n$, then $\chi_k(K(m,n)) = m - 2(n-k)$.

Lemma 4 ([11]). $\chi_k(K(2n+1,n)) = 2k+1 + \lfloor \frac{k-1}{n} \rfloor$, for k > 0.

Lemma 5 ([11]). $\chi_{rn}(K(m,n)) = rm$, for r > 0 and $m \ge 2n$.

By using Lemma 5 we have the following result.

Lemma 6. Let m > 2n. Then, $\chi_n(K(m, n) \Box K(m, n)) > \chi_n(K(m, n))$.

Proof. By Lemma 5 when r = 1, we have that $\chi_n(K(m, n)) = m$. If $\chi_n(K(m, n) \Box K(m, n)) = m$, then there exists an homomorphism from the graph $K(m, n) \Box K(m, n)$ to K(m, n) which contradicts Lemma 2.

By Lemma 3, Lemma 6 and by using Corollary 1, we have that,

Corollary 2. Let $n \ge 2$. Then, $2n + 2 \le \chi_n(K(2n + 1, n) \Box K(2n + 1, n)) \le 3n$. In particular, when n = 2, we have that $\chi_2(K(5, 2) \Box K(5, 2)) = 6$.

In the case k = 2 we have by Lemma 6, Lemma 3 and by Corollary 1, the following result.

Corollary 3. Let q > 0. Then, $q + 4 \le \chi_2(K(2n + q, n) \Box K(2n + q, n)) \le 2q + 4$.

By Corollary 3, notice that in the case when k = n = 2 and $q \ge 1$, we must have that $\chi_2(K(q+4,2)\Box K(q+4,2)) > q+4$, otherwise there is a contradiction with Lemma 2. This provides a gap of one unity between the 2-tuple chromatic number of the graph $K(q+4,2)\Box K(q+4,2)$ and the graph K(q+4,2). In the following, we will prove that, for some Kneser graphs, such a gap can be as large as desired. In order to do this, we need the following technical tools.

A stable set $S \subseteq V$ is a subset of pairwise non adjacent vertices of G. The stability number of G, denoted by $\alpha(G)$, is the largest cardinality of a stable set in G. Let $m \geq 2n$. An element $i \in [m]$ is called a *center* of a stable set S of the Kneser graph K(m, n) if it lies in each n-set in S.

Lemma 7 (Erdős-Ko-Rado [5]). If m > 2n, then $\alpha(K(m,n)) = \binom{m-1}{n-1}$. A stable set of K(m,n) with size $\binom{m-1}{n-1}$ has a center *i*, for some $i \in [m]$.

Lemma 8 (Hilton-Milner [7]). If $m \ge 2n$, then the maximum size of a stable set in K(m,n) with no center is equal to $1 + \binom{m-1}{n-1} - \binom{m-n-1}{n-1}$.

A graph G = (V, E) is vertex transitive if its automorphism group acts transitively on V, that is, for any pair of distinct vertices of G there is an automorphism mapping one to the other one. It is well known that Kneser graphs are vertex transitive graphs.

Lemma 9 (No-Homomorphism Lemma, Albertson-Collins [1]). Let G, H be graphs such that H is vertex transitive and $G \to H$. Then,

$$\alpha(G)/|V(G)| \ge \alpha(H)/|V(H)|.$$

Lemma 10. Let m > 2n. Then, $\chi_k(K(m,n) \Box K(m,n)) \ge k \frac{{\binom{m}{n}}^2}{\alpha(K(m,n) \Box K(m,n))}$.

Proof. Let $t = \chi_k(K(m,n) \Box K(m,n))$. Then, $K(m,n) \Box K(m,n) \to K(t,k)$ and from the No-Homomorphism Lemma, $\frac{\alpha(K(m,n) \Box K(m,n))}{|V(K(m,n) \Box K(m,n))|} \ge \frac{\alpha(K(t,k))}{|V(K(t,k))|}$. The result follows from the fact that $\frac{\alpha(K(t,k))}{|V(K(t,k))|} = \frac{k}{t}$.

An edge-coloring of a graph G = (V, E) is an assignment of colors to the edges of G such that any two incident edges are assigned different colors. The smallest number t such that G admits an edge-coloring with t colors is called the *chromatic index* of G and is denoted by $\chi'(G)$. It is well known that the chromatic index of a complete graph K_n on n vertices is equal to n-1 if n is even and n if n is odd (see [2]). Besides, in the case n even each color class i (i.e. the subset of pairwise non incident edges colored with color i) has size $\frac{n}{2}$ and if n is odd each color class has size $\frac{n-1}{2}$. Therefore, using this fact, we obtain the following result.

Lemma 11. Let $q \ge 5$. If q is even then the set of vertices of the Kneser graph K(q, 2) can be partitioned into q - 1 disjoint cliques, each one with size $\frac{q}{2}$ and if q is odd then the set of vertices of the Kneser graph K(q, 2) can be partitioned into q disjoint cliques, each one with size $\frac{q-1}{2}$.

Proof. Notice that there is a natural bijection between the vertex set of K(q, 2) and the edge set of the complete graph K_q with vertex set [q]: each vertex $\{i, j\}$ in K(q, 2) is mapped to the edge $\{i, j\}$ in K_q . Now, if q is even there is a (q-1)-edge coloring of K_q where each color class is a set of pairwise non incident edges with size $\frac{q}{2}$ and if q is odd there is a q-edge coloring of K_q where each color class is a set of pairwise non incident edges with size $\frac{q-1}{2}$. Notice that two edges $e, e' \in K_q$ are non incident edges if and only if $e \cap e' = \emptyset$. Therefore, a color class of the edge-coloring of K_q represents a clique of K(q, 2).

Now, we are able to obtain an upper bound for the stability number of the graph $K(q, 2) \Box K(q, 2)$ as follows.

Lemma 12. Let $q \geq 5$. Then,

- $\alpha(K(q,2)\Box K(q,2)) \leq \frac{q(q-1)}{8}(3q-2)$ if q is even and,
- $\alpha(K(q,2) \Box K(q,2)) \le \frac{q(q-1)}{8}(3q-1)$ if q is odd.

Proof. Let q even. First, recall that a stable set X in K(q, 2) has size at most q - 1 if X has center (see Lemma 7) and $|X| \leq 1 + (q - 1) - (q - 2 - 1) = 3$ if X has no center (see Lemma 8). Besides, observe that the vertex set of K(q, 2) can be partitioned in q - 1 sets S_1, \ldots, S_{q-1} such that each S_i induces a complete subgraph graph $K_{\frac{q}{2}}$ in K(q, 2), for $i = 1, \ldots, q - 1$ (see Lemma 11). Consider the subgraph H_i of $K(q, 2) \Box K(q, 2)$ induced by $S_i \times V(K(q, 2))$ for $i = 1, \ldots, q - 1$. Let I be a stable set in $K(q, 2) \Box K(q, 2)$ and $I_i = I \cap H_i$ for $i = 1, \ldots, q - 1$. Then, for each $v \in S_i$, $I_i^v = I_i \cap (\{v\} \times V(K(q, 2)))$ is a stable set in $K(q, 2) \Box K(q, 2)$ for each $i = 1, \ldots, q - 1$. Finally, for each $m \in S_i$, with $1 \leq i \leq q - 1$, let $I_{i,2}^m$ be the stable set in K(q, 2) such that $I_i^m = \{m\} \times I_{i,2}^m$.

Now, for a fixed $i \in \{1, \ldots, q-1\}$, assume w.l.o.g. that $r \ (r \leq \frac{q}{2})$ stable sets $I_{i,2}^1, \ldots, I_{i,2}^r$ of K(q,2) have distinct center j_1, \ldots, j_r , respectively (the case when two of these stable sets have the same center can be easily reduced to this case). Let W be the set of subsets with size two of $\{j_1, \ldots, j_r\}$. Therefore, for all $m \in \{1, \ldots, r\}$, $I_i^m - (\{m\} \times W)$ has size at most q - 1 - (r - 1) = q - r since each center j_m belongs to r - 1 elements in W. Besides, each element of W belongs to exactly one set $I_{i,2}^m$ for $m \in \{1, \ldots, r\}$, since S_i induces a complete subgraph in K(q, 2) and $\{1, \ldots, r\} \subseteq S_i$.

Then, $|I_i^1 \cup \ldots \cup I_i^r| \leq (\sum_{m=1}^r |I_i^m - \{m\} \times W|) + |W| \leq r(q-r) + \frac{r(r-1)}{2}$. Next, each remaining stable set (if exist) $I_{i,2}^{r+1}, \ldots, I_{i,2}^{\frac{q}{2}}$ has no center, then $|I_i^d| \leq 3$ for all $d \in \{r+1, \ldots, \frac{q}{2}\}$. Thus, $|I_i| \leq r(q-r) + \frac{r(r-1)}{2} + 3(\frac{q}{2}-r) = -\frac{r^2}{2} + r(q-\frac{7}{2}) + \frac{3}{2}q$. Since the last expression is non decreasing for $r \in \{1, \ldots, \frac{q}{2}\}$, we have that

$$|I_i| \le -\frac{q^2}{8} + \frac{q}{2}(q - \frac{7}{2}) + 3\frac{q}{2} = \frac{q}{2}(\frac{3}{4}q - \frac{1}{2})$$

Therefore, $|I_i| \leq \frac{q}{2}(\frac{3}{4}q - \frac{1}{2})$ for every i = 1, ..., q - 1. Since $|I| = \sum_{i=1}^{q-1} |I_i|$, it follows that $|I| \leq \frac{q(q-1)}{2}(\frac{3}{4}q - \frac{1}{2})$ and thus,

$$\alpha(K(q,2)\Box K(q,2)) \le \frac{q(q-1)}{8}(3q-2)$$

We analyze now the case for q odd, with a similar reasoning. First, recall that a stable set X in K(q, 2) has size at most q-1 if X has center (see Lemma 7) and $|X| \leq 1 + (q-1) - (q-2-1) = 3$ if X has no center (see Lemma 8). Besides, observe that the vertex set of K(q, 2) can be partitioned in q sets S_1, \ldots, S_q such that each S_i induces a complete subgraph $K_{\frac{q-1}{2}}$ in K(q, 2), for $i = 1, \ldots, q$ (see Lemma 11). Consider the subgraph H_i of $K(q, 2) \Box K(q, 2)$ induced by $S_i \times V(K(q, 2))$ for $i = 1, \ldots, q$. Let I be a stable set in $K(q, 2) \Box K(q, 2)$ and $I_i = I \cap H_i$ for $i = 1, \ldots, q$. Then, for each $v \in S_i$, $I_i^v = I_i \cap (\{v\} \times V(K(q, 2)))$ is a stable set in $K(q, 2) \Box K(q, 2)$ such that $I_i^m = \{m\} \times I_{i,2}^m$.

Now, for a fixed $i \in \{1, \ldots, q\}$, assume w.l.o.g. that $r \ (r \leq \frac{q-1}{2})$ stable sets $I_{i,2}^1, \ldots, I_{i,2}^r$ of K(q, 2) have distinct center j_1, \ldots, j_r , respectively (the case when two of these stable sets have the same center can be easily reduced to this case). Let W be the set of subsets with size two of $\{j_1, \ldots, j_r\}$. Therefore, for all $m \in \{1, \ldots, r\}$, $I_i^m - (\{m\} \times W)$ has size at most q - 1 - (r - 1) = q - r since each center j_m belongs to r - 1 elements in W. Besides, each element of W belongs to exactly one set I_i^m for $m \in \{1, \ldots, r\}$, since S_i induces a complete subgraph in K(q, 2) and $\{1, \ldots, r\} \subseteq S_i$. Then, $|I_i^1 \cup \ldots \cup I_i^r| \leq (\sum_{m=1}^r |I_i^m - \{m\} \times W|) + |W| \leq r(q - r) + \frac{r(r-1)}{2}$.

Next, each remaining stable set (if exist) $I_{i,2}^{r+1}, \ldots, I_{i,2}^{\frac{q-1}{2}}$ has no center, then $|I_i^d| \leq 3$ for all $d \in \{r+1, \ldots, \frac{q-1}{2}\}$. Thus, $|I_i| \leq r(q-r) + \frac{r(r-1)}{2} + 3(\frac{q-1}{2}-r) = -\frac{r^2}{2} + r(q-\frac{7}{2}) + \frac{3}{2}(q-1)$. Since the last expression is non decreasing for $r \in \{0, \ldots, \frac{q-1}{2}\}$, we have that

$$|I_i| \le -\frac{(q-1)^2}{8} + \frac{q-1}{2}(q-\frac{7}{2}) + \frac{3}{2}(q-1) = \frac{q-1}{2}(\frac{3}{4}q - \frac{1}{4})$$

Therefore, $|I_i| \leq \frac{q-1}{2}(\frac{3}{4}q - \frac{1}{4})$ for every i = 1, ..., q. Since $|I| = \sum_{i=1}^{q} |I_i|$, it follows that $|I| \leq \frac{q(q-1)}{2}(\frac{3}{4}q - \frac{1}{4})$ and thus,

$$\alpha(K(q,2)\Box K(q,2)) \le \frac{q(q-1)}{8}(3q-1)$$

From Lemmas 10 and 12 we have the following result.

Theorem 1. Let $q \geq 5$. Then,

• $\chi_k(K(q,2)\Box K(q,2)) \ge 2k\frac{q(q-1)}{3q-2}$ if q is even and,

• $\chi_k(K(q,2) \Box K(q,2)) \ge 2k \frac{q(q-1)}{3q-1}$ if q is odd.

In the particular case when q = 2s+4, with s > 0, and k = 2, we have, by Lemma 5 and Theorem 1, the following result that shows that the difference $\chi_2(K(2s+4,2)\Box K(2s+4,2)) - \chi_2(K(2s+4,2))$ can be as large as desired.

Corollary 4. For any integer s > 0 and for k = 2, we have that,

$$\chi_2(K(2s+4,2)\Box K(2s+4,2)) \ge 2s + \left\lceil \frac{2}{3}s \right\rceil + 5 = \chi_2(K(2s+4,2)) + \left\lceil \frac{2}{3}s \right\rceil + 1$$

From Lemmas 4 and 5, Corollary 1, and Theorem 1, we obtain the results that we summarize in Table 1.

G	k	$\chi_k(G)$	$\chi_k(G \Box G) =$	$\chi_k(G \Box G) \ge$	$\chi_k(G \Box G) \le$
K(5,2)	2	5	6	-	-
-	3	8	9	-	-
-	4	10	12	-	-
-	5	13	15	-	-
-	6	15	18	-	-
-	7	18	?	20	21
K(6,2)	2	6	8	-	-
-	3	?	12	-	-
-	4	12	?	15	16
-	5	?	?	19	20
K(7,2)	2	7	?	9	10
-	3	?	?	13	15
K(8,2)	2	8	?	11	12
-	3	?	?	16	18

Table 1: Summary of results

Finally, by applying some known homomorphisms between Kneser graphs, we obtain the following result.

Theorem 2. Let k > n and let $t = \chi_k(K(m, n) \Box K(m, n))$, where m > 2n. Then, either t > m + 2(k - n) or t < m + (k - n).

Proof. Suppose that $m + (k - n) \leq t \leq m + 2(k - n)$. Therefore, there exists an homomorphism $K(m,n) \Box K(m,n) \to K(t,k)$. Now, Stahl [11] showed that there is an homomorphism $K(m,n) \to K(m-2,n-1)$ whenever n > 1 and $m \geq 2n$. Moreover, it is easy to see that there is an homomorphism $K(m,n) \to K(m-1,n-1)$. By applying the former homomorphism t-(m+(k-n)) times to the graph K(t,k) we obtain an homomorphism $K(t,k) \to K(2(m+k-n)-t,2k+m-n-t)$. Finally, by applying 2k + m - t - 2n times the latter homomorphism to the graph K(2(m+k-n)-t,2k+m-n-t) we obtain an homomorphism $K(2(m+k-n)-t,2k+m-n-t) \to K(m,n)$. Therefore, by homomorphism composition, $K(m,n)\Box K(m,n) \to K(m,n)$ which contradicts Lemma 2.

3 Cases where $\chi_k(G \Box H) = \max{\chi_k(G), \chi_k(H)}$

Theorem 3. Let G and H be graphs such that $\chi(G) \leq \chi(H) = \omega(H)$. Then, $\chi_k(G \Box H) = \max\{\chi_k(G), \chi_k(H)\}$.

Proof. Let $t = \omega(H)$ and let $\{h_1, \ldots, h_t\}$ be the vertex set of a maximum clique K_t in H with size t. Clearly, $\chi_k(G) \leq \chi_k(H) = \chi_k(K_t)$. Let ρ be a k-tuple coloring of H with $\chi_k(H)$ colors. By equality (1), there exists a t-coloring f of $G \Box H$. Therefore, the assignment of the k-set $\rho(h_{f((a,b))})$ to each vertex (a, b) in $G \Box H$ defines a k-tuple coloring of $G \Box H$ with $\chi_k(K_t)$ colors. \Box

Notice that if G and H are both bipartite, then $\chi_k(G \Box H) = \chi_k(G) = \chi_k(H)$. In the case when G is not a bipartite graph, we have the following results.

An automorphism σ of a graph G is called a *shift* of G if $\{u, \sigma(u)\} \in E(G)$ for each $u \in V(G)$ [8]. In other words, a shift of G maps every vertex to one of its neighbors.

Theorem 4. Let G be a non bipartite graph having a shift $\sigma \in AUT(G)$, and let H be a bipartite graph. Then, $\chi_k(G \Box H) = \max{\chi_k(G), \chi_k(H)}$.

Proof. Let $A \cup B$ be a bipartition of the vertex set of H. Let f be a k-tuple coloring of G with $\chi_k(G)$ colors. Clearly, $\chi_k(G) \ge \chi_k(H)$. We define a k-tuple coloring ρ of $G \Box H$ with $\chi_k(G)$ colors as follows: for any vertex (u, v) of $G \Box H$ with $u \in G$ and $v \in H$, define $\rho((u, v)) = f(u)$ if $v \in A$, and $\rho((u, v)) = f(\sigma(u))$ if $v \in B$. \Box

We may also deduce the following direct result.

Theorem 5. Let G be an hom-idempotent graph an let H be a subgraph of G. Thus, $\chi_k(G \Box H) = \max{\chi_k(G), \chi_k(H)} = \chi_k(G)$.

Let A be a group and S a subset of A that is closed under inverses and does not contain the identity. The Cayley graph Cay(A, S) is the graph whose vertex set is A, two vertices u, v being joined by an edge if $u^{-1}v \in S$. If $a^{-1}Sa = S$ for all $a \in A$, then Cay(A, S) is called a normal Cayley graph.

Lemma 13 ([6]). Any normal Cayley graph is hom-idempotent.

Note that all Cayley graphs on Abelian groups are normal, and thus hom-idempotent. In particular, the *circulant* graphs are Cayley graphs on cyclic groups (i.e., cycles, powers of cycles, complements of powers of cycles, complete graphs, etc). By Theorem 5 and Lemma 13 we have the following result.

Theorem 6. Let Cay(A, S) be a normal Cayley graph and let Cay(A', S') be a subgraph of Cay(A, S), with $A' \subseteq A$ and $S' \subseteq S$. Then, $\chi_k(Cay(A, S) \Box Cay(A', S')) = \max\{\chi_k(Cay(A, S)), \chi_k(Cay(A', S'))\}.$

Definition 1. Let G be a graph with a shift σ . We define the order of σ as the minimum integer i such that σ^i is equal to the identity permutation.

Theorem 7. Let G be a graph with a shift σ of minimum odd order 2s+1 and let C_{2t+1} be a cycle graph, where $t \geq s$. Then, $\chi_k(G \Box C_{2t+1}) = \max{\chi_k(G), \chi_k(C_{2t+1})}.$ Proof. Let $\{0, \ldots, 2t\}$ be the vertex set of C_{2t+1} , where for $0 \le i \le 2t$, $\{i, i+1 \mod (2t+1)\} \in E(C_{2t+1})$. Let G_i be the *i*th copy of G in $G \square C_{2t+1}$, that is, for each $0 \le i \le 2t$, $G_i = \{(g, i) : g \in G\}$. Let f be a k-tuple coloring of G with $\chi_k(G)$ colors. We define a k-tuple coloring of $G \square C_{2t+1}$ with $\chi_k(G)$ colors as follows: let σ^0 denotes the identity permutation of the vertices in G. Now, for $0 \le i \le 2s$, assign to each vertex $(u, i) \in G_i$ the k-tuple $f(\sigma^i(u))$. For $2s + 1 \le j \le 2t$, assign to each vertex $(u, j) \in G_j$ the k-tuple f(u) if j is odd, otherwise, assign to (u, j) the k-tuple $f(\sigma^1(u))$. It is not difficult to see that this is in fact a proper k-tuple coloring of $G \square C_{2t+1}$.

References

- M. O. Albertson, K. L. Collins. Homomorphisms of 3-chromatic graphs. Discrete Mathematics, 54:127–132, 1985.
- [2] C. Berge. *Graphs and Hypergraphs*. North–Holland, Amsterdam, 1976.
- [3] B. Bollobás, A. Thomason. Set colourings of graphs. Discrete Mathematics, 25(1):21–26, 1979.
- [4] C. D. Godsil, G. Royle. Algebraic graph theory. Graduate Texts in Mathematics. Springer, 2001.
- [5] P. Erdős, C. Ko, R. Rado. Intersection theorems for systems of finite sets. Quarterly Journal of Mathematics, 12:313–320, 1961.
- [6] G. Hahn, P. Hell, S. Poljak. On the ultimate independence ratio of a graph. European Journal on Combinatorics, 16:253–261, 1995.
- [7] A. J. W. Hilton, E. C. Milner. Some intersections theorems for systems of finite sets. Quarterly Journal of Mathematics, 18:369–384, 1967.
- [8] B. Larose, F. Laviolette, C. Tardif. On normal Cayley graphs and Hom-idempotent graphs, European Journal of Combinatorics, 19:867–881, 1998.
- [9] L. Lovász. Kneser's conjecture, chromatic number and homotopy, Journal of Combinatorial Theory, Series A, 25:319-324, 1978.
- [10] G. Sabidussi. Graphs with given group and given graph-theoretical properties. Canadian Journal of Mathematics, 9:515–525, 1957.
- [11] S. Stahl. n-Tuple colorings and associated graphs. Journal of Combinatorial Theory, Series B, 20:185–203, 1976.
- S. Stahl. The multichromatic numbers of some Kneser graphs. Discrete Mathematics, 185:287– 291, 1998.