A note on coloring powers of cycles *

Martín F. Jiménez ${ }^{\dagger}$ Mario Valencia-Pabon ${ }^{\dagger}$

Abstract

Let G denotes the graph a-th power of the n-cycle C_{n}. In this note is given a simple and linear algorithm to proper color the vertices of G by using $\chi(G)$ colors.

Keywords: Graph coloring algorithms, independent sets, powers of cycles.

1 Introduction

A coloring (i.e. proper coloring) of a graph $G=(V, E)$ is an assignment of colors to the vertices of G, such that any two adjacent vertices have different colors. A k-coloring is one that uses k colors. The chromatic number of a graph G, denoted by $\chi(G)$, is the minimum integer k for which G has a k-coloring. The independence number of a graph G, denoted by $\alpha(G)$, is defined as the maximum number of pairwise non adjacent vertices in G. As is well known, the chromatic number of a graph G and its independence number are closely related via the inequality $\chi(G) \geq\lceil|G| / \alpha(G)\rceil$.

For positive integers n and a such that $a \leq n / 2$, we denote by $C(n, a)$ the graph with vertex set $\{0,1, \ldots, n-1\}$ and edge set $\{i j: i-j \equiv \pm k \bmod n, 1 \leq k \leq a\}$; the graph $C(n, a)$ is the a-th power of the n-cycle $C(n, 1)$. It is easy to note that the clique number (i.e. the maximal size of a clique) of $C(n, a)$ is equal to $a+1$.

Let $n=q(a+1)+r$, with $q>0$ and $0 \leq r \leq a$. Concerning the independence number of $C(n, a)$, we can deduce that $\alpha(C(n, a))=q$. In fact, the subset $\{a+1,2(a+$ 1), $3(a+1), \ldots, q(a+1)\}$ (arithmetic operations are taken modulo n) is an independent set of $C(n, a)$ with size q. Moreover, let I be a maximal independent set in $C(n, a)$. As $C(n, a)$ is a vertex-transitive graph, we can assume that $0 \in I$. Consider the subsets of vertices $C_{i}=\{i(a+1), i(a+1)+1, i(a+1)+2, \ldots, i(a+1)+a\}$, for $i=0,1, \ldots, q-1$, and let $C_{q}=\{q(a+1), q(a+1)+1, \ldots, n-1\}$. The subsets C_{i}, for $0 \leq i \leq q$, constitute a clique decomposition of $C(n, a)$, where for $0 \leq i<q$, the subset C_{i} has size $a+1$, and the subset C_{q} has size r. Therefore I can contain at most one element of each such subsets. Now, $C_{q} \cup\{0\}$ is a clique. Therefore, I doesn't contain any element of C_{q}, and so $|I| \leq q$. From these results, we obtain that $\chi(C(n, a)) \geq a+1+\lceil r / q\rceil$.

Prowse and Woodall analyze in [3] a restricted coloring problem (the list coloring problem) on the graphs $C(n, a)$. In particular, they show the following result.
Theorem 1 (Prowse-Woodall, [3]) Let n and a positive integers such that $n \geq 2 a$ and $n=q(a+1)+r$, with $q>0$ and $0 \leq r \leq a$. Then, $\chi(C(n, a))=a+1+\lceil r / q\rceil$.

In this note, we present a simple and linear algorithm to color the graph $C(n, a)$ by using $\chi(C(n, a))$ colors.

[^0]
2 The algorithm

A circular arc family is a set $F=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ of arcs on a circle. A circular arc family is proper if no arc is contained within another. A graph is a (proper) circular arc graph if there is a $1: 1$ correspondence between the vertices of the graph and the arcs of a (proper) circular arc family such that two vertices of the graph are adjacent if an only if the corresponding arcs overlap.

It is easy to check that the graph $C(n, a)$ is a proper circular arc graph. In fact, let $x_{0}, x_{1}, \ldots, x_{n-1}$ be n different points ordered in the clockwise direction on a circle, and let $F=\left\{A_{0}, A_{1}, \ldots, A_{n-1}\right\}$ be a family of arcs on the circle such that $A_{i}=\left(x_{i}, x_{j}\right)$, where $j=i+a+1 \bmod n$, for $i=0,1, \ldots, n-1$. Thus, the circular arc graph associated with the family F is a proper circular arc graph which is isomorphic to $C(n, a)$.

Orlin, Bonuccelli and Bovet give in [2] an $O\left(n^{2}\right)$ algorithm to k-color a family of n proper circular arcs (whenever possible). In [4] (see also [1]) Teng and Tucker improve the result of Orlin et al. by giving an $O(k n)$ algorithm to k-color a family of n proper circular arcs. In the particular case of a power of a cycle graph $C(n, a)$, we give in this section a very simple algorithm which efficient color such a graph using exactly n steps.

Definition 1 Let k be a positive integer. A coloring modulo k of $C(n, a)$ is a color function which assigns to each vertex i of $C(n, a)$ the color $i \bmod k$.

Definition 2 Let $V=\{0,1, \ldots, n-1\}$ be the vertex set of the graph $C(n, a)$, and let $C \subseteq V$. C is called a consecutive clique of $C(n, a)$ if C is a clique of $C(n, a)$ and it is composed of a sequence of consecutive integers (addition is taken modulo n).

The following lemma was proved by Orlin, Bonuccelli and Bovet [2] for proper circular arc graphs, which we rephrase in terms of consecutive clique in $C(n, a)$.

Lemma 1 (Orlin-Bonuccelli-Bovet, [2]) Let n and k be positive integers such that k is a divisor of n. Then, $C(n, a)$ can be colored with k colors if and only if $C(n, a)$ has no consecutive clique of size $k+1$.

Theorem 2 There is a simple and linear algorithm to color $C(n, a)$ by using $\chi(C(n, a))$ colors.

Proof : Let $n=q(a+1)+r$, with $q \geq 1$ and $0 \leq r \leq a$. We consider two cases:

- Case 1: $r=0$. In this case, $a+1$ divides n and by Lemma $1, C(n, a)$ can be colored using $a+1$ colors. Moreover, the clique number of $C(n, a)$ is equal to $a+1$.
- Case 2: $r \neq 0$. Let $k=\left\lceil\frac{r}{q}\right\rceil$ and let $t=\left\lfloor\frac{r}{k}\right\rfloor$. As $r>0$, we have $k>0$ and $t>0$. Let $\chi=a+1+k$. Then,
- Case 2.1: $q=t$. In this case, color $C(n, a)$ using a coloring modulo χ. Notice that, $q=t \leq \frac{r}{k} \leq \frac{r}{\left(\frac{r}{q}\right)}=q$, and thus, $k=\frac{r}{q}$, which implies that $\chi=a+1+\frac{r}{q}$ and so, $q \chi=q(a+1)+r=n$. Therefore, $\chi \mid n$ and by Lemma 1 , the coloring modulo χ is a proper coloring of $C(n, a)$.
- Case 2.2: $q \neq t$. Let $w=a+1+r-k t$. So, in this case we color the vertices of $C(n, a)$ as follows:
* Color each vertex $i \in\{0,1, \ldots, t \chi+w-1\}$ with color $i \bmod \chi$.
* Color each vertex $i \in\{t \chi+w, \ldots, n-1\}$ with color $i-(t \chi+w) \bmod (a+1)$. Notice that $0 \leq r-k t \leq k$. In fact, on one hand, $r=k\left(\frac{r}{k}\right) \geq k\left\lfloor\frac{r}{k}\right\rfloor=k t$. On other hand, $r-k=k\left(\frac{r-k}{k}\right)=k\left(\frac{r}{k}-1\right) \leq k\left\lfloor\frac{r}{k}\right\rfloor=k t$. So, $r-k \leq k t \leq r$ which implies that $0 \leq r-k t \leq k$. Thus, we have $a+1 \leq w \leq \chi$. As $t \leq r / k \leq r /(r / q)=q$ and $t \neq q$, then $t \leq q-1$. Moreover, it is easy to check that $n-t \chi-w=(q-t-1)(a+1) \geq 0$, that is, the cardinality of the subset of vertices $\{t \chi+w, \ldots, n-1\}$ is a multiple of $(a+1)$. Now, we should to prove that this coloring is a proper coloring of $C(n, a)$. By construction, vertex $t \chi+w-1$ is colored with a color c such that $a \leq c \leq \chi-1$, and vertex $n-1$ is colored with color a. This proves that previous coloring is a proper coloring that uses at most χ colors.

References

[1] B. Bhattacharya, P. Hell, J. Huang. A linear algorithm for maximum weight cliques in proper circular arc graphs, SIAM J. on Discrete Math., 9(2), 1996, pp. 274-289.
[2] J. B. Orlin, M. A. Bonuccelli, D. P. Bovet. An $O\left(n^{2}\right)$ algorithm for coloring proper circular arc graphs, SIAM J. Alg. Disc. Meth., 2 (1981), pp. 88-93.
[3] A. Prowse, D. R. Woodall. Choosability of powers of circuits, Graphs and Combinatorics, Volume 19, Number 1, 2003, pp. 137-144.
[4] A. Teng, A. Tucker. An $O(q n)$ algorithm to q-color a proper family of circular arcs, Discrete Math., 55 (1985), pp. 233-243.

[^0]: *This work was supported by the Facultad de Ciencias de la Universidad de los Andes, Bogotá, Colombia
 ${ }^{\dagger}$ Departamento de Matemáticas, Universidad de los Andes, Cra. 1 No. 18A - 70, Bogotá, Colombia (ma-jimen@uniandes.edu.co, mvalenci@uniandes.edu.co).

