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Abstract

A b-coloring of a graph G by k colors is a proper k-coloring of the vertices of G such
that in each color class there exists a vertex having neighbors in all the other k − 1
color classes. The b-chromatic number χb(G) of a graph G is the largest integer
k such that G admits a b-coloring by k colors. We present some lower bounds
for the b-chromatic number of connected bipartite graphs. We also discuss some
algorithmic consequences of such lower bounds on some subfamilies of connected
bipartite graphs.
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1 Introduction

We consider finite undirected graphs without loops or multiple edges. A col-
oring (i.e. proper coloring) of a graph G = (V, E) is an assignment of colors to
the vertices of G, such that any two adjacent vertices have different colors. A
coloring is called a b-coloring, if for each color i there exists a vertex xi of color
i such that for every color j 6= i, there exists a vertex yj of color j adjacent to
xi (such a vertex xi is called a dominating vertex for the color class i). The
b-chromatic number χb(G) of a graph G is the largest number k such that G
has a b-coloring with k colors. The b-chromatic number of a graph was intro-
duced by R.W. Irving and D.F. Manlove [1] when considering minimal proper
colorings with respect to a partial order defined on the set of all partitions of
the vertices of a graph. They proved that determining χb(G) is NP-hard for
general graphs, but polynomial-time solvable for trees. Kratochvil et al. [2]
have shown that determining χb(G) is NP-hard even for connected bipartite
graphs. Some bounds for the b-chromatic number of a graph are given in [1,3].
Our paper is organized as follows. In the next section we introduce some def-
initions. In Section 3, we give two lower bounds for the b-chromatic number
of connected bipartite graphs. We also discuss some algorithmic consequences
of such lower bounds on some subfamilies of connected bipartite graphs.

2 Preliminaries

Let G = (V, E) be a graph and let W ⊆ V be a subset of vertices. The
subgraph of G induced by W is denoted by G[W ].

Let Kp,p denote a complete bipartite graph on 2p vertices, that is, a bipartite
graph G = (A ∪B, E), where |A| = |B| = p and E = {{x, y} : x ∈ A, y ∈ B}.
We denote by K−M

p,p a complete bipartite graph Kp,p without a perfect match-
ing M .

Let G = (A ∪ B, E) be a bipartite graph. Let x be a vertex in G. We denote
by N(x) the set of neighbors of x, that is, N(x) = {y : xy ∈ E}. More-
over, if x ∈ A (resp. x ∈ B), we denote by Ñ(x) the set of non-neighbors
of x in B (resp. in A), that is, Ñ(x) = {y : y ∈ B and xy /∈ E} (resp.
Ñ(x) = {y : y ∈ A and xy /∈ E}).

Let G = (A∪B, E) be a bipartite graph. Let A = A0∪A1 and let B = B0∪B1,
where A0 ∩A1 = B0 ∩B1 = ∅. We say that A1 dominates B0 (resp. B1 domi-



nates A0) if there exists at least one vertex x ∈ A1 (resp. y ∈ B1) such that
B0 ⊆ N(x) (resp. A0 ⊆ N(y)). Finally, we say that an edge xy ∈ E is a
dominating edge in G if N(x) ∪ N(y) = A ∪ B.

The following result is easy to deduce.

Remark 2.1 Let G be a connected bipartite graph. If G has a dominating
edge, then χb(G) = 2.

So, in the sequel we consider only connected bipartite graphs without
dominating edges.

3 Main results

3.1 First lower bound

Theorem 3.1 Let G = (A ∪ B, E) be a connected bipartite graph. If there
are subsets A0 ⊆ A and B0 ⊆ B such that :

(c1) the induced subgraph G[A0 ∪ B0] is isomorph to K−M
p,p for some positive

integer p,

(c2) A \ A0 does not dominate B0 or B \ B0 does not dominate A0,

then χb(G) ≥ p.

Proof. Assume G = (A ∪ B, E) verifies Conditions (c1) and (c2). So, there
are subsets A0 ⊆ A and B0 ⊆ B such that, by Condition (c1), G[A0 ∪ B0]
is isomorph to K−M

p,p for some positive integer p. Let A1 = A \ A0 and
B1 = B \ B0. By Condition (c2), we have that A1 and B1 does not domi-
nate simultaneously B0 and A0 respectively. Now, let A0 = {x1, x2, . . . , xp}
and let B0 = {y1, y2, . . . , yp}. We want to construct a b-coloring of G with
at least p colors. For this, we assign to vertices xi and yi the color i for each
i = 1, 2, . . . , p. In order to complete the coloring, we need to consider the
following cases :

- Case 1 : B1 dominates A0. We color the vertices in B1 with color p + 1.
By Condition (c2), we have that A1 does not dominate B0 which implies
that we can assign to each vertex in A1 the color of one of its non-neighbor
vertices in B0. Let v ∈ B1 be a vertex adjacent to all vertices in A0. Clearly,
the previous coloring is a b-coloring of G with p+1 colors, being the vertices
x1, x2, . . . , xp, v the dominant vertices for the color classes 1, 2, . . . , p, p + 1
respectively.



- Case 2 : A1 dominates B0. This case is analogous to the previous one.

- Case 3 : A1 does not dominate B0 and B1 does not dominate A0. We assign
to each vertex in A1 the color p + 1 and each vertex v ∈ B1 is colored with
the smallest integer i ∈ {1, 2, . . . , p} such that v has no neighbors in A0

colored with color i. At this point, the previous coloring is proper but not
necessarily it is a b-coloring. Therefore, we consider the following cases :
* Case 3.1 : the color class p + 1 has no dominant vertex. This means

that each vertex in A1 misses at least one color in the set {1, 2, . . . , p}.
Therefore, we can recolor each vertex in A1 with one of its missing colors
in {1, . . . , p}, converting the previous coloring into a new coloring using
p colors. Notice that after such recoloring, each vertex xi is a dominant
vertex for the color class i, for i = 1, . . . , p, which is a b-coloring of G with
p colors.

* Case 3.2 : the color class p+1 has at least one dominant vertex. Consider
the following process :
(a) Let i be the smallest positive integer, with 1 ≤ i ≤ p, such that
vertex yi ∈ B0 has no neighbors in A1. Notice that if such i does not
exist, then the current coloring is a b-coloring with p + 1 colors. In fact,
let v ∈ A1 be a dominant vertex for the color class p+1. Then, the vertices
y1, y2, . . . , yp, v are dominant vertices for the color classes 1, 2, . . . , p, p + 1
respectively. So, assume that such i ≤ p exists. Let Wi ⊆ B1 be the
subset of vertices in B1 colored with color i and such that each one of
them has at least one neighbor in the set A1. Clearly, |Wi| > 0 because,
there is at least one dominant vertex in A1 for the color class p + 1 and
thus, it has at least one neighbor in B1 colored with color i. Now, if there
is a vertex w ∈ Wi such that A0 \ {xi} ⊆ N(w), then we swap vertices yi

and w and we repeat Step (a). Otherwise, we have that :
(b) Each vertex wk ∈ Wi is non-adjacent to at least one vertex of A0\{xi},
say xtk . So, recolor wk with color tk, for each wk ∈ Wi. Notice that at
this point, no vertex in A1 has a neighbor colored with color i. The last
fact implies that there is no dominant vertex for the color class p + 1.
Therefore, we can recolor each vertex in A1 with a missing color in the set
{1, 2, . . . , p}, obtaining in this way, a b-coloring with p colors.

In all cases, we obtain a b-coloring of G with at least p colors. 2

3.2 Second lower bound

Definition 3.2 Let G = (A ∪ B, E) be a connected bipartite graph. Let
S = (a1, B1), . . . , (ap, Bp) be a sequence of vertices in A ∪ B, with ai ∈ A,



Bi ⊂ B, where ai 6= aj and Bi ∩ Bj = ∅ whenever i 6= j, constructed as
follows :

(i) a1 ∈ A is such that |Ñ(a1)| = min{|Ñ(ai)| : ai ∈ A}. Set B1 := Ñ(a1).

(ii) Assume that we have chosen (a1, B1), . . . , (ai, Bi). We choose (ai+1, Bi+1)
as follows :
• Bj 6⊆ Ñ(ai+1), for all j ≤ i.
• |Ñ(ai+1) \ ∪i

j=1Bj| is minimum and not equal to zero. Set Bi+1 :=

Ñ(ai+1) \ ∪
i
j=1Bj.

Then, we say that S is a good-sequence of size p for G.

Theorem 3.3 Let G = (A ∪ B, E) be a connected bipartite graph without
dominating edges. Let (a1, B1), . . . , (ap, Bp) be a maximal good-sequence of
size p ≥ 2 for G. Then, χb(G) ≥ p.

Proof. We will construct a b-coloring of G with at least p colors. For this,
for each i = 1, . . . , p, we color the vertices in {ai} ∪ Bi with color i. Let
A′ = A \ {a1, . . . , ap} and B′ = B \ ∪p

i=1Bi. Given such a precoloring, we will
extend it to the whole graph G as follows. If B ′ 6= ∅ then, we color each vertex
in B′ with color p + 1. Notice that, by construction, {a1, . . . , ap} ⊆ N(x), for
all x ∈ B′. In fact, suppose that x ∈ B ′ is non-adjacent to some ai. Then,
x should be in Bi, as x /∈

⋃i−1

j=1
Bj, a contradiction. Before extending such a

precoloring to the vertices in A′, we will show that vertices ai are dominating
vertices for the color i, with 1 ≤ i ≤ p. Clearly, each vertex in B ′ is a
dominating vertex for the color p + 1. By construction, there exists x ∈ Bj

adjacent to ai, for all j < i, and also, B \
⋃i

j=1
Bj ⊆ N(ai). Therefore,

vertex ai is a dominating vertex for color i. Now, let a ∈ A′. As there is no
dominating edge in G, Ñ(a) is not empty. We need to consider the following
cases :

• There exists Bi, with 1 ≤ i ≤ p, such that Bi ⊆ Ñ(a).
In such a case, we color vertex a with color i.

• For all i, with 1 ≤ i ≤ p, Bi 6⊆ Ñ(a).
In such a case, by maximality of the good-sequence, |Ñ(a) \ ∪p

i=1Bi| = 0.
Moreover, by hypothesis, N(a)∩Bi 6= ∅, for all 1 ≤ i ≤ p. Let j0 = min{j :
Ñ(a) ⊂ ∪j

i=1Bj}. Clearly, 1 ≤ j0 ≤ p. However, |Ñ(a) \ ∪j0−1

i=1 Bi| 6= 0 and
Ñ(a) ∩ Bj0 6= ∅. Therefore, |Ñ(a) \ ∪j0−1

i=1 Bi| < |Ñ(aj0) \ ∪
j0−1

i=1 Bi|, which is
a contradiction with the choice of aj0 instead of a in the construction. So,
this case there does not exist.

As all the cases have been considered, we have that G admits a b-coloring



with at least p colors. 2

The following results are direct consequences of Theorem 3.3.

Corollary 3.4 Let G = (A ∪ B, E) be a connected d-regular bipartite graph,
with |A| = |B| = n and d < n. If n−d is equal to a constant c ≥ 1 then, there
is a c-approximation algorithm for b-coloring G with the maximum number of
colors.

Proof. Let (a1, B1), . . . , (ap, Bp) be a maximal good-sequence of G constructed
as in Definition 3.2. Notice that |B1| = n−d and |Bi| ≤ n−d for i ∈ {2, . . . , p}.
Therefore, p ≥ n

n−d
= n

c
> d

c
. By using Theorem 3.3, we know that we can

construct in polynomial time a b-coloring of G with at least p colors. There-
fore, χb(G) ≥ p ≥ d+c

c
≥ d+1

c
. Indeed, it is easy to deduce that χb(G) ≤ d + 1,

which proves the result. 2

Corollary 3.5 Let G = (A∪B, E) be a connected bipartite graph, with |A| =
|B| = n. Let δ (resp. ∆) be the minimum (resp. maximum) degree of G,
with δ ≤ ∆ < n and n − δ equal to a constant c ≥ 1. Then, there is a c-
approximation algorithm for b-coloring G with the maximum number of colors.

Proof. Let (a1, B1), . . . , (ap, Bp) be a maximal good-sequence of G constructed
as in Definition 3.2. Clearly, |B1| = n−∆ and |Bi| ≤ n−∆ for i ∈ {2, . . . , p}.
Therefore, p ≥ n

n−∆
≥ n

n−δ
= n

c
. Indeed, as ∆ ≤ n− 1 and χb(G) ≤ ∆+1 ≤ n

then, by using Theorem 3.3, the result holds. 2
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