On lower bounds for the b-chromatic number of connected bipartite graphs

Mekkia Kouider ${ }^{2}$
Laboratoire de Recherche en Informatique (LRI)
Université Paris-Sud
Bât. 490, 91405 Orsay, France
Mario Valencia-Pabon ${ }^{3,1}$
Laboratoire d'Informatique de l'Université Paris-Nord (LIPN)
99 Av. J.-B. Clément, 93430 Villetaneuse, France

Abstract

A b-coloring of a graph G by k colors is a proper k-coloring of the vertices of G such that in each color class there exists a vertex having neighbors in all the other $k-1$ color classes. The b-chromatic number $\chi_{b}(G)$ of a graph G is the largest integer k such that G admits a b-coloring by k colors. We present some lower bounds for the b-chromatic number of connected bipartite graphs. We also discuss some algorithmic consequences of such lower bounds on some subfamilies of connected bipartite graphs.

Keywords: b-chromatic number, lower bounds, bipartite graphs.

[^0]
1 Introduction

We consider finite undirected graphs without loops or multiple edges. A coloring (i.e. proper coloring) of a graph $G=(V, E)$ is an assignment of colors to the vertices of G, such that any two adjacent vertices have different colors. A coloring is called a b-coloring, if for each color i there exists a vertex x_{i} of color i such that for every color $j \neq i$, there exists a vertex y_{j} of color j adjacent to x_{i} (such a vertex x_{i} is called a dominating vertex for the color class i). The b-chromatic number $\chi_{b}(G)$ of a graph G is the largest number k such that G has a b-coloring with k colors. The b-chromatic number of a graph was introduced by R.W. Irving and D.F. Manlove [1] when considering minimal proper colorings with respect to a partial order defined on the set of all partitions of the vertices of a graph. They proved that determining $\chi_{b}(G)$ is NP-hard for general graphs, but polynomial-time solvable for trees. Kratochvil et al. [2] have shown that determining $\chi_{b}(G)$ is NP-hard even for connected bipartite graphs. Some bounds for the b-chromatic number of a graph are given in $[1,3]$. Our paper is organized as follows. In the next section we introduce some definitions. In Section 3, we give two lower bounds for the b-chromatic number of connected bipartite graphs. We also discuss some algorithmic consequences of such lower bounds on some subfamilies of connected bipartite graphs.

2 Preliminaries

Let $G=(V, E)$ be a graph and let $W \subseteq V$ be a subset of vertices. The subgraph of G induced by W is denoted by $G[W]$.

Let $K_{p, p}$ denote a complete bipartite graph on $2 p$ vertices, that is, a bipartite graph $G=(A \cup B, E)$, where $|A|=|B|=p$ and $E=\{\{x, y\}: x \in A, y \in B\}$. We denote by $K_{p, p}^{-M}$ a complete bipartite graph $K_{p, p}$ without a perfect matching M.

Let $G=(A \cup B, E)$ be a bipartite graph. Let x be a vertex in G. We denote by $N(x)$ the set of neighbors of x, that is, $N(x)=\{y: x y \in E\}$. Moreover, if $x \in A$ (resp. $x \in B$), we denote by $\tilde{N}(x)$ the set of non-neighbors of x in B (resp. in A), that is, $\tilde{N}(x)=\{y: y \in B$ and $x y \notin E\}$ (resp. $\tilde{N}(x)=\{y: y \in A$ and $x y \notin E\})$.

Let $G=(A \cup B, E)$ be a bipartite graph. Let $A=A_{0} \cup A_{1}$ and let $B=B_{0} \cup B_{1}$, where $A_{0} \cap A_{1}=B_{0} \cap B_{1}=\emptyset$. We say that A_{1} dominates B_{0} (resp. B_{1} domi-
nates A_{0}) if there exists at least one vertex $x \in A_{1}$ (resp. $y \in B_{1}$) such that $B_{0} \subseteq N(x)$ (resp. $A_{0} \subseteq N(y)$). Finally, we say that an edge $x y \in E$ is a dominating edge in G if $N(x) \cup N(y)=A \cup B$.

The following result is easy to deduce.
Remark 2.1 Let G be a connected bipartite graph. If G has a dominating edge, then $\chi_{b}(G)=2$.

So, in the sequel we consider only connected bipartite graphs without dominating edges.

3 Main results

3.1 First lower bound

Theorem 3.1 Let $G=(A \cup B, E)$ be a connected bipartite graph. If there are subsets $A_{0} \subseteq A$ and $B_{0} \subseteq B$ such that :
$\left(c_{1}\right)$ the induced subgraph $G\left[A_{0} \cup B_{0}\right]$ is isomorph to $K_{p, p}^{-M}$ for some positive integer p,
$\left(c_{2}\right) A \backslash A_{0}$ does not dominate B_{0} or $B \backslash B_{0}$ does not dominate A_{0}, then $\chi_{b}(G) \geq p$.

Proof. Assume $G=(A \cup B, E)$ verifies Conditions $\left(c_{1}\right)$ and $\left(c_{2}\right)$. So, there are subsets $A_{0} \subseteq A$ and $B_{0} \subseteq B$ such that, by Condition $\left(c_{1}\right), G\left[A_{0} \cup B_{0}\right]$ is isomorph to $K_{p, p}^{-M}$ for some positive integer p. Let $A_{1}=A \backslash A_{0}$ and $B_{1}=B \backslash B_{0}$. By Condition $\left(c_{2}\right)$, we have that A_{1} and B_{1} does not dominate simultaneously B_{0} and A_{0} respectively. Now, let $A_{0}=\left\{x_{1}, x_{2}, \ldots, x_{p}\right\}$ and let $B_{0}=\left\{y_{1}, y_{2}, \ldots, y_{p}\right\}$. We want to construct a b-coloring of G with at least p colors. For this, we assign to vertices x_{i} and y_{i} the color i for each $i=1,2, \ldots, p$. In order to complete the coloring, we need to consider the following cases :

- Case 1: B_{1} dominates A_{0}. We color the vertices in B_{1} with color $p+1$. By Condition $\left(c_{2}\right)$, we have that A_{1} does not dominate B_{0} which implies that we can assign to each vertex in A_{1} the color of one of its non-neighbor vertices in B_{0}. Let $v \in B_{1}$ be a vertex adjacent to all vertices in A_{0}. Clearly, the previous coloring is a b-coloring of G with $p+1$ colors, being the vertices $x_{1}, x_{2}, \ldots, x_{p}, v$ the dominant vertices for the color classes $1,2, \ldots, p, p+1$ respectively.
- Case 2: A_{1} dominates B_{0}. This case is analogous to the previous one.
- Case 3 : A_{1} does not dominate B_{0} and B_{1} does not dominate A_{0}. We assign to each vertex in A_{1} the color $p+1$ and each vertex $v \in B_{1}$ is colored with the smallest integer $i \in\{1,2, \ldots, p\}$ such that v has no neighbors in A_{0} colored with color i. At this point, the previous coloring is proper but not necessarily it is a b-coloring. Therefore, we consider the following cases :
* Case 3.1 : the color class $p+1$ has no dominant vertex. This means that each vertex in A_{1} misses at least one color in the set $\{1,2, \ldots, p\}$. Therefore, we can recolor each vertex in A_{1} with one of its missing colors in $\{1, \ldots, p\}$, converting the previous coloring into a new coloring using p colors. Notice that after such recoloring, each vertex x_{i} is a dominant vertex for the color class i , for $i=1, \ldots, p$, which is a b-coloring of G with p colors.
* Case 3.2 : the color class $p+1$ has at least one dominant vertex. Consider the following process :
(a) Let i be the smallest positive integer, with $1 \leq i \leq p$, such that vertex $y_{i} \in B_{0}$ has no neighbors in A_{1}. Notice that if such i does not exist, then the current coloring is a b-coloring with $p+1$ colors. In fact, let $v \in A_{1}$ be a dominant vertex for the color class $p+1$. Then, the vertices $y_{1}, y_{2}, \ldots, y_{p}, v$ are dominant vertices for the color classes $1,2, \ldots, p, p+1$ respectively. So, assume that such $i \leq p$ exists. Let $W_{i} \subseteq B_{1}$ be the subset of vertices in B_{1} colored with color i and such that each one of them has at least one neighbor in the set A_{1}. Clearly, $\left|W_{i}\right|>0$ because, there is at least one dominant vertex in A_{1} for the color class $p+1$ and thus, it has at least one neighbor in B_{1} colored with color i. Now, if there is a vertex $w \in W_{i}$ such that $A_{0} \backslash\left\{x_{i}\right\} \subseteq N(w)$, then we swap vertices y_{i} and w and we repeat Step (a). Otherwise, we have that:
(b) Each vertex $w_{k} \in W_{i}$ is non-adjacent to at least one vertex of $A_{0} \backslash\left\{x_{i}\right\}$, say $x_{t_{k}}$. So, recolor w_{k} with color t_{k}, for each $w_{k} \in W_{i}$. Notice that at this point, no vertex in A_{1} has a neighbor colored with color i. The last fact implies that there is no dominant vertex for the color class $p+1$. Therefore, we can recolor each vertex in A_{1} with a missing color in the set $\{1,2, \ldots, p\}$, obtaining in this way, a b-coloring with p colors.
In all cases, we obtain a b-coloring of G with at least p colors.

3.2 Second lower bound

Definition 3.2 Let $G=(A \cup B, E)$ be a connected bipartite graph. Let $S=\left(a_{1}, B_{1}\right), \ldots,\left(a_{p}, B_{p}\right)$ be a sequence of vertices in $A \cup B$, with $a_{i} \in A$,
$B_{i} \subset B$, where $a_{i} \neq a_{j}$ and $B_{i} \cap B_{j}=\emptyset$ whenever $i \neq j$, constructed as follows :
(i) $a_{1} \in A$ is such that $\left|\tilde{N}\left(a_{1}\right)\right|=\min \left\{\left|\tilde{N}\left(a_{i}\right)\right|: a_{i} \in A\right\}$. Set $B_{1}:=\tilde{N}\left(a_{1}\right)$.
(ii) Assume that we have chosen $\left(a_{1}, B_{1}\right), \ldots,\left(a_{i}, B_{i}\right)$. We choose $\left(a_{i+1}, B_{i+1}\right)$ as follows:

- $B_{j} \nsubseteq \tilde{N}\left(a_{i+1}\right)$, for all $j \leq i$.
- $\left|\tilde{\sim}\left(a_{i+1}\right) \backslash \cup_{j=1}^{i} B_{j}\right|$ is minimum and not equal to zero. Set $B_{i+1}:=$ $\tilde{N}\left(a_{i+1}\right) \backslash \cup_{j=1}^{i} B_{j}$.
Then, we say that S is a good-sequence of size p for G.
Theorem 3.3 Let $G=(A \cup B, E)$ be a connected bipartite graph without dominating edges. Let $\left(a_{1}, B_{1}\right), \ldots,\left(a_{p}, B_{p}\right)$ be a maximal good-sequence of size $p \geq 2$ for G. Then, $\chi_{b}(G) \geq p$.

Proof. We will construct a b-coloring of G with at least p colors. For this, for each $i=1, \ldots, p$, we color the vertices in $\left\{a_{i}\right\} \cup B_{i}$ with color i. Let $A^{\prime}=A \backslash\left\{a_{1}, \ldots, a_{p}\right\}$ and $B^{\prime}=B \backslash \cup_{i=1}^{p} B_{i}$. Given such a precoloring, we will extend it to the whole graph G as follows. If $B^{\prime} \neq \emptyset$ then, we color each vertex in B^{\prime} with color $p+1$. Notice that, by construction, $\left\{a_{1}, \ldots, a_{p}\right\} \subseteq N(x)$, for all $x \in B^{\prime}$. In fact, suppose that $x \in B^{\prime}$ is non-adjacent to some a_{i}. Then, x should be in B_{i}, as $x \notin \bigcup_{j=1}^{i-1} B_{j}$, a contradiction. Before extending such a precoloring to the vertices in A^{\prime}, we will show that vertices a_{i} are dominating vertices for the color i, with $1 \leq i \leq p$. Clearly, each vertex in B^{\prime} is a dominating vertex for the color $p+1$. By construction, there exists $x \in B_{j}$ adjacent to a_{i}, for all $j<i$, and also, $B \backslash \bigcup_{j=1}^{i} B_{j} \subseteq N\left(a_{i}\right)$. Therefore, vertex a_{i} is a dominating vertex for color i. Now, let $a \in A^{\prime}$. As there is no dominating edge in $G, \tilde{N}(a)$ is not empty. We need to consider the following cases :

- There exists B_{i}, with $1 \leq i \leq p$, such that $B_{i} \subseteq \tilde{N}(a)$.

In such a case, we color vertex a with color i.

- For all i, with $1 \leq i \leq p, B_{i} \nsubseteq \tilde{N}(a)$.

In such a case, by maximality of the good-sequence, $\left|\tilde{N}(a) \backslash \cup_{i=1}^{p} B_{i}\right|=0$.
Moreover, by hypothesis, $N(a) \cap B_{i} \neq \emptyset$, for all $1 \leq i \leq p$. Let $j_{0}=\min \{j$: $\left.\tilde{N}(a) \subset \cup_{i=1}^{j} B_{j}\right\}$. Clearly, $1 \leq j_{0} \leq p$. However, $\left|\tilde{N}(a) \backslash \cup_{i=1}^{j_{0}-1} B_{i}\right| \neq 0$ and $\tilde{N}(a) \cap B_{j_{0}} \neq \emptyset$. Therefore, $\left|\tilde{N}(a) \backslash \cup_{i=1}^{j_{0}-1} B_{i}\right|<\left|\tilde{N}\left(a_{j_{0}}\right) \backslash \cup_{i=1}^{j_{0}-1} B_{i}\right|$, which is a contradiction with the choice of $a_{j_{0}}$ instead of a in the construction. So, this case there does not exist.
As all the cases have been considered, we have that G admits a b-coloring
with at least p colors.
The following results are direct consequences of Theorem 3.3.
Corollary 3.4 Let $G=(A \cup B, E)$ be a connected d-regular bipartite graph, with $|A|=|B|=n$ and $d<n$. If $n-d$ is equal to a constant $c \geq 1$ then, there is a c-approximation algorithm for b-coloring G with the maximum number of colors.

Proof. Let $\left(a_{1}, B_{1}\right), \ldots,\left(a_{p}, B_{p}\right)$ be a maximal good-sequence of G constructed as in Definition 3.2. Notice that $\left|B_{1}\right|=n-d$ and $\left|B_{i}\right| \leq n-d$ for $i \in\{2, \ldots, p\}$. Therefore, $p \geq \frac{n}{n-d}=\frac{n}{c}>\frac{d}{c}$. By using Theorem 3.3, we know that we can construct in polynomial time a b-coloring of G with at least p colors. Therefore, $\chi_{b}(G) \geq p \geq \frac{d+c}{c} \geq \frac{d+1}{c}$. Indeed, it is easy to deduce that $\chi_{b}(G) \leq d+1$, which proves the result.

Corollary 3.5 Let $G=(A \cup B, E)$ be a connected bipartite graph, with $|A|=$ $|B|=n$. Let δ (resp. Δ) be the minimum (resp. maximum) degree of G, with $\delta \leq \Delta<n$ and $n-\delta$ equal to a constant $c \geq 1$. Then, there is a c approximation algorithm for b-coloring G with the maximum number of colors.

Proof. Let $\left(a_{1}, B_{1}\right), \ldots,\left(a_{p}, B_{p}\right)$ be a maximal good-sequence of G constructed as in Definition 3.2. Clearly, $\left|B_{1}\right|=n-\Delta$ and $\left|B_{i}\right| \leq n-\Delta$ for $i \in\{2, \ldots, p\}$. Therefore, $p \geq \frac{n}{n-\Delta} \geq \frac{n}{n-\delta}=\frac{n}{c}$. Indeed, as $\Delta \leq n-1$ and $\chi_{b}(G) \leq \Delta+1 \leq n$ then, by using Theorem 3.3, the result holds.

References

[1] R. W. Irving, D. F. Manlove. The b-chromatic number of a graph, Discrete Appl. Math., 91 (1999) 127-141.
[2] J. Kratochvil, Z. Tuza, M. Voigt. On the b-chromatic number of a graph, Proc. of WG'2002, LNCS 2573, 2002, pp. 310-320.
[3] M. Kouider, M. Mahéo. Some bounds for the b-chromatic number of a graphs, Discrete Math., 256 (2002) 267-277.

[^0]: ${ }^{1}$ Supported by Math-AmSud project 10MATH-04 (France-Argentina-Brazil).
 ${ }^{2}$ km@lri.fr
 ${ }^{3}$ valencia@lipn.univ-paris13.fr

