
Minimum sum set coloring of trees and line graphs of trees✩
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Abstract

In this paper, we study the Minimum Sum Set Coloring (MSSC) problem which consists in
assigning a set of x(v) positive integers to each vertex v of a graph so that the intersection
of sets assigned to adjacent vertices is empty and the sum of the assigned set of numbers
to each vertex of the graph is minimum. The MSSC problem occurs in two versions: non-

preemptive and preemptive. We show that the MSSC problem is strongly NP-hard both
in the preemptive case on trees and in the non-preemptive case in line graphs of trees.
Finally, we give exact parameterized algorithms for these two versions on trees and line
graphs of trees.

Key words: graph coloring, minimum sum coloring, set-coloring, trees, line graphs of
trees.

1. Introduction

A vertex coloring of a graph G = (V,E) is an assignment of colors to the vertices in V

such that adjacent vertices receive different colors. We assume that the colors are positive
integers. A vertex k-coloring of a graph G is a coloring where the color of each vertex in
V is taken from the set {1, 2, . . . , k}. Given a vertex coloring of a graph G, the sum of the
coloring is the sum of the colors assigned to the vertices. The chromatic sum Σ(G) of G is
the smallest sum that can be achieved by any proper coloring of G. In the Minimum Sum

Coloring (MSC) problem we have to find a coloring of G with sum Σ(G).
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The MSC problem was introduced by Kubicka [13]. The problem is motivated by
applications in scheduling [1, 2, 10, 11] and VLSI design [18, 21]. The computational
complexity of determining the vertex chromatic sum of a simple graph has been studied
extensively since then. In [14] it is shown that the problem is NP-hard in general, but
polynomial time solvable for trees. The dynamic programming algorithm for trees can
be extended to partial k-trees and block graphs [12]. Furthermore, the MSC problem is
NP-hard even when restricted to some classes of graphs for which finding the chromatic
number is easy, such as bipartite or interval graphs [2, 21]. A number of approximability
results for various classes of graphs were obtained in the last ten years [1, 7, 10, 11, 5].

The edge coloring version of the MSC problem, the Minimum Sum Edge Coloring

(MSEC) problem, has been defined in an analogous way. The MSEC problem is NP-hard
for bipartite graphs [8], even if the graph is also planar and has maximum degree 3 [15].
Furthermore, in [15] it is also shown that the MSEC is NP-hard for 3-regular planar graphs
and for partial 2-trees. A problem generalizing MSC is the Optimum Cost Chromatic

Partition (OCCP) problem, where there is a finite set of colors, each color has a cost
and the aim is to minimize the total sum of the costs. Independently of the result given
by Jansen in [12] concerning the polynomial time complexity of an even more general
optimization problem (i.e. the Generalized Optimum Cost Chromatic Partition Problem)
on block graphs, it has been shown in [8, 20, 22] that the MSEC problem can be solved
in polynomial time on trees by a dynamic programming algorithm that uses weighted
bipartite matching as a subroutine (in fact, notice that the class of block graphs includes
trees and line graphs of trees). In [4], it has been shown that this problem is also polynomial
time solvable for multicycles (i.e. cycles with parallel edges). For general multigraphs, a
1.829-approximation algorithm for the MSEC problem is presented in [11]. For bipartite
graphs there exist better approximation ratios: a 1.796-approximation algorithm is given
in [10], and a 1.414-approximation algorithm is proposed recently in [6].

An interesting application of the MSEC problem is to model dedicated scheduling
of biprocessor jobs. The vertices correspond to the processors and each edge e = uv

corresponds to a job that requires a time unit of simultaneous work on the two preassigned
processors u and v. The colors correspond to the available time slots. A processor cannot
work on two jobs at the same time, this corresponds to the requirement that a color can
appear at most once on the edges incident to a vertex. The objective is to minimize the
average time before a job is completed. When there can be x(e) instances of the same
job, it arises the notion of set-coloring of the corresponding conflict graph. In general, the
main application of the MSC and MSSC problems is the problem of ressource allocation
with constraints imposed by conflicting resource requirements. In such a problem, the
constraints are given by a conflict graph G, in which the nodes represent processors, the
edges indicate competition on resources (i.e., two nodes are adjacent if the corresponding
processors cannot run their jobs simultaneously), and the objective is to minimize the
average response time of the system (see [1] for more details).

Formally, given a simple graph G = (V,E) and a demand function x : V → Z
+, a

vertex set-coloring of (G, x) consists in assigning to each vertex v ∈ V a set of x(v) colors
in such a way that adjacent vertices will be assigned disjoint sets of colors. Given a vertex
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set-coloring of a graph G with demand function x, the sum of the set-coloring is the sum of
the colors in the set assigned to each one of the vertices. The chromatic set-sum Σ(G, x) of
(G, x) is the smallest sum that can be achieved by any proper set-coloring of (G, x). In the
Minimum Sum Set Coloring (MSSC) problem we have to find a set-coloring of (G, x) with
sum Σ(G, x). Clearly, when x(v) = 1 for each vertex v of the graph, the MSSC problem
becomes the MSC problem. The dedicated scheduling of biprocessor jobs with multiple
instances can be modeled as a MSSC problem on the line graph of the conflict graph.
We consider two variants of the MSSC problem. In the preemptive (PMSSC) problem,
each vertex may get any set of colors, while in the non-preemptive (NPMSSC) problem,
the colors assigned to each vertex have to be consecutive. The non-preemptive case arises
when each job requires a high cost setup on the processors, and thus the objective is to
minimize the average time before a job is completed, within the solutions minimizing the
setup costs. The preemptive version corresponds to the scheduling approach commonly
used in modern operating systems, where jobs may be interrupted during their execution
and resumed at a later time.

A similar set-coloring problem with a different objective function is the Sum Multicol-

oring (SMC) problem. The SMC problem has been introduced in [3] by Bar-Noy et al.
Formally, given a graph G and a demand function x on the vertices of G, the SMC problem
looks for a set-coloring of (G, x) which minimizes the sum of the largest color assigned to
each vertex of G. The SMC problem models scheduling problems where each job v requires
x(v) unit execution times to be completed and the goal is to minimize the average com-
pletion time of the jobs (or equivalently, the sum of the completion times). In [9], it has
been shown that the non-preemptive case of the SMC problem (NPSMC) can be solved in
polynomial time for trees. However, in [17] Marx shows that the preemptive case of the
SMC problem (PSMC) is strongly NP-hard even for binary trees. More recently, Marx
has shown in [16] that both the PSMC and the NPSMC problems are strongly NP-hard
problems on line graphs of trees.

It is not difficult to observe that an optimal solution for the MSSC problem is not always
an optimal solution for the SMC and vice-versa. In fact, consider a path on five vertices
v1, v2, . . . , v5 and a demand function x(vi) = 2 for i = 1, 3, 5, and x(vi) = 1, for i = 2, 4.
The only optimal solution for the MSSC problem (preemptive and non-preemptive) on
this instance is {1, 2}, {3}, {1, 2}, {3}, {1, 2}, and the only optimal solution for the SMC
problem (preemptive and non-preemptive) on this instance is {2, 3}, {1}, {2, 3}, {1}, {2, 3}.
Moreover, in [16] Marx shows that the set-coloring version of the OCCP problem (that
generalizes the PMSSC problem), can be solved in polynomial time on line graphs of trees,
but the PSMC problem is strongly NP-hard on the same class of graphs.

Nevertheless, the polynomial time dynamic programming algorithm given by
Halldórsson et al. in [9] for the NPSMC problem on trees can be adapted in a straightfor-
ward way in order to solve the NPMSSC problem on trees within the same computational
complexity. Therefore, the NPMSSC problem on trees can be solved in polynomial time.

In Section 3, we prove that the PMSSC problem is strongly NP-hard on trees. In
Section 4, it is shown that the NPMSSC problem is strongly NP-hard on line graphs of
trees. These results distinguish the MSC problem and both versions of the MSSC problem
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in terms of computational complexity, since the MSC problem is polynomial time solvable
on block graphs. Moreover, in this paper we give exact parameterized algorithms for these
problems on these classes of graphs.

2. Definitions and notation

Assume that we are given a graph G = (V,E) with a demand function x : V → Z
+.

We will denote n = |V |, d(v) the degree of a vertex v ∈ V , ∆ = maxv∈V d(v) and p =
maxv∈V x(v). The neighborhood of a vertex v will be denoted by NG(v).

We can consider that the input of our problem is a graph G = (V,E) with a demand
function x : V → Z

+, so the input size is |V | + |E| +
∑

v∈V log(x(v)). In the preemptive
case it makes some sense to consider as the size of the problem |V | + |E| +

∑
v∈V x(v),

since it is the output size. Nevertheless, we will call pseudo-polynomial time algorithms to
those that are polynomial on |V | + |E| +

∑
v∈V x(v).

It is easy to deduce that the minimum number of colors that can be used in an optimum
solution of the MSC problem on a graph is upper bounded by ∆ + 1. Assume that we are
given a graph G = (V,E) with a demand function x : V → Z

+. Denote by C(G, x) (resp.
C ′(G, x)) be the minimum number of colors that can be used in an optimum solution of the
NPMSSC (resp. PMSSC) problem on G with demand function x. It is easy to generalize
the bound above and get C ′(G, x) ≤ p(∆ + 1). We now show the following lemma.

Lemma 1. Let G be a graph and let x be a demand function from the vertices of G to the

set of positive integers. Then C(G, x) ≤ 2p∆ − ∆ + p.

Proof. Let v be the vertex using the highest color. Since the goal is to minimize the total
sum of colors, it uses at most the interval [c + 1, c + x(v)], where c is the maximum color
used by one of its neighbors. In the worst case, all of its neighbors v1, . . . , vd(v) use disjoint
intervals, the smaller beginning at x(v) and separated by intervals of size x(v)− 1 (that is,
v1 uses the interval [x(v), x(v) + x(v1)− 1], v2 uses the interval [2x(v) + x(v1)− 1, 2x(v) +
x(v1) + x(v2)− 2], and so on). So c ≤

∑
w∈NG(v)(x(w) + x(v)− 1) ≤ (2p− 1)∆ = 2p∆−∆,

and thus c + x(v) ≤ 2p∆ − ∆ + p.

Let P = V1, . . . , Vt be a partition of the vertices of a graph G with demand x. We
will call P -good to a coloring of (G, x) where each Vi, i = 1, . . . , t, is colored with sum
Σ(G[Vi], x). Clearly, a P -good coloring is optimum for the MSSC problem, and if G

admits a P -good coloring, then every optimum coloring of G must be P -good.

3. The PMSSC problem on trees

We will show that the PMSSC problem on trees is in general NP-hard, even considering∑
v∈V (T ) x(v) as the input size.

Theorem 1. The PMSSC problem on trees is strongly NP-hard.
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Proof. The reduction is from 3-SAT. First we give some definitions and we introduce some
families of special trees that will be used as gadgets in the NP-hardness proof.

For a, b positive integers, a ≤ b, let T[a,b] be a tree with root r with demand x(r) =
b−a+1 and, if a > 1, two children v1, v2 with demand x(v1) = x(v2) = a−1 (see Figure 1).

Figure 1: The tree T[a,b] for 1 ≤ a ≤ b.

The trees T[a,b] admit P -good colorings for suitable partitions P : if a = 1 then the
partition P is trivial, if a > 1 then the partition P = {r, v1}, {v2} is such that T[a,b] admits
a P -good coloring. Moreover, in every P -good coloring of T[a,b], vertex v2 should receive
colors 1, . . . , a−1 and therefore vertex r should receive colors a, . . . , b (and vertex v1 colors
1, . . . , a − 1 as well).

Let {a1, . . . , ak} be a set of positive integers, a1 < . . . < ak, and let S =
∑k

i=1 ai −(
k+1
2

)
+1. We will define the tree T{a1,...,ak}. The root r has demand x(r) = 1. The children

of r are the following: a child v with demand x(v) = k − 1; S children each of them being
the root of T[1,a1−1], when a1 > 1; S children each of them being the root of T[ai+1,ai+1−1],
when ai+1 > ai + 1 for each i = 1, . . . , k − 1. Besides, vertex v has S children each of
them being the root of T[1,a1−1], when a1 > 1; S children each of them being the root of
T[ai+1,ai+1−1], when ai+1 > ai+1 for each i = 1, . . . , k−1 (see Figure 2). We will analyze now
the possible solutions to the PMSSC problem on T{a1,...,ak}. If all the trees T[a,b] are colored
in an optimum way, then r and v should receive colors {a1, . . . , ak}, and the overall sum is∑k

i=1 ai + D where D is the sum of Σ(T[a,b], x) over all the trees T[a,b] involved in T{a1,...,ak}.
Indeed, suppose that r and v receive a set of colors {a′

1, . . . , a
′
k} different from {a1, . . . , ak}

in an optimum coloring of T{a1,...,ak}. Since D is locally optimum, then
∑k

i=1 a′
i ≤

∑k

i=1 ai,
so at least one of the colors not in {a1, . . . , ak} is less or equal than ak − 1, and thus at
least S trees T[a,b] are colored in a non-optimum way. Therefore the overall sum would be

at least
∑k

i=1 a′
i + D + S and since

∑k

i=1 a′
i ≥

(
k+1
2

)
, this contradicts the optimality of the

coloring. Moreover, it is not difficult to see that for each i = 1, . . . , k, there is an optimum
coloring of T{a1,...,ak} where r receives color ai.

Now, let I be an instance of 3-SAT, with n variables and m clauses. We will construct
TI as follows: it has a root r with demand x(r) = n; the root has n + m + 1 children
v1, . . . , vn, w1, . . . , wm, all of them with demand 1, and z with demand x(z) = n; each vi

(1 ≤ i ≤ n) is the root of a copy of T{2i−1,2i}; each wi (1 ≤ i ≤ m) is the root of a copy
of T{ai

1,ai
2,ai

3}
, where ai

1, a
i
2, a

i
3 are the values corresponding to the three literals of the i-th

clause of I in increasing order, assigning to variable k the value 2k − 1 and to its negation
the value 2k. Let P = {{r, z}, V (TI) \ {r, z}} be a partition of the vertices of TI . We
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Figure 2: The tree T{a1,...,ak}.

will show that I is satisfiable if and only if (TI , x) admits a P -good coloring, that is, a
coloring with sum

(
2n+1

2

)
+ Σ(TI \ {r, z}, x) (please note that this value can be computed

in polynomial time based on the construction of TI and the observations above). Suppose
first that I is satisfiable and consider a truth assignment satisfying it. Then assign to z

the values corresponding to true literals, to r the values corresponding to false literals,
to each wi the value of a literal satisfying its corresponding clause (and then extend this
coloring to an optimum coloring of T{ai

1,ai
2,ai

3}
), and to each vi the value in {2i − 1, 2i}

not used in r (and then extend this coloring to an optimum coloring of T{2i−1,2i}). The
coloring obtained is P -good. Conversely, suppose that TI admits a P -good coloring. For
i = 1, . . . , n, since T{2i−1,2i} is colored in an optimum way, each vi uses either color 2i−1 or
color 2i. Moreover, since {r, z} use the colors {1, . . . , 2n}, r uses exactly one of {2i−1, 2i}
for each i = 1, . . . , n, and z the other one. Let the variable i be true if 2i − 1 is used in
z and false otherwise. For each i = 1, . . . ,m, since T{ai

1,ai
2,ai

3}
is colored in an optimum

way, wi uses one of the colors {ai
1, a

i
2, a

i
3} and then that color should not be used in r, so

it should be used in z. If it is an odd color then the corresponding variable is true and
appears in the i-th clause, otherwise the corresponding variable is false but its negation
appears in the i-th clause. In both cases, the clause is satisfied and so I is satisfiable.

However, if the maximum value p of the demand function x is bounded by a constant,
then there is a polynomial time algorithm for the PMSSC problem on trees as it is shown
in the next theorem.

Theorem 2. Let T = (V,E) be a tree and let x : V → Z
+ be a demand function for T .

Then the PMSSC problem on T can be solved in O(n(∆p)2p) time. In particular, if p is

bounded by a constant, it can be solved in polynomial time.

Proof. Let n be the number of vertices in T and let ∆ be the maximum degree of the
vertices in T . Let m, k be positive integers, and let [m]k denote the set of all k-subsets of
[m], where [m] denotes the set {1, . . . ,m}. Let q(A) =

∑
i∈A i, where A is a given arbitrary

finite set of positive integers. Let C be an upper bound for C ′(T, x), thus C = O(∆p).
The algorithm is based on the idea of dynamic programming. Let r be an arbitrary vertex
in T chosen as the root. For each vertex v of T , we denote by Tv the subtree of T rooted
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at vertex v. Now, for each vertex v in T , we construct an array Sv of length
(

C

x(v)

)
such

that Sv[X] represents the minimum sum for the subtree Tv when vertex v is assigned the
subset X ∈ [C]x(v). The algorithm computes the values of the arrays Sv in a bottom-up
way, from the leaves of the tree up to the root as follows.

If v is a leaf then Sv[X] = q(X), for each subset X ∈ [C]x(v). Let v be an internal vertex
in T , and let v1, v2, . . . , vt be the children vertices of v. Assume that Svi

[X] is computed, for
all 1 ≤ i ≤ t and for all X ∈ [C]x(vi), and we want to compute the value of Sv[Y ] for some
fixed subset Y ∈ [C]x(v). First, for each children vertex vi we compute the value fv(vi, Y ) =
minX∈[C]x(vi){Svi

[X] : X ∩ Y = ∅}. Once the values fv(vi, Y ) have been computed for all

1 ≤ i ≤ t, we can compute the value of Sv[Y ] as follows: Sv[Y ] = q(Y ) +
∑t

i=1 fv(vi, Y ).
Clearly, the minimum value of Sr[Z] taken over all subsets Z ∈ [C]x(r) is the value of an
optimal sum for the PMSSC problem for (T, x). The complexity of this algorithm can be
easily deduced.

Notice that this algorithm can be easily adapted to the set-coloring version of the OCCP
problem, under the same conditions.

4. The NPMSSC problem on line graphs of trees

The MSSC problem on the line graph L(G) of a graph G and demand function x is

equivalent to the Minimum Sum Edge Coloring (MSEC) of a multigraph G̃, obtained from
G by multiplying each edge e by x(e). Therefore, in the sequel, we assume that we have
as input to the NPMSEC problem a tree T = (V,E) and a demand function x from the
edge-set E to the set of positive integers.

In the following, we will show that the NPMSSC problem on line graphs of trees is
in general NP-hard, even considering

∑
e∈E(T ) x(e) as being part of the input size. The

reduction we use is based on the results given by Marx in [16] for the PSMC problem on
line graphs of trees.

Theorem 3. The NPMSSC problem on line graphs of trees is strongly NP-hard.

Proof. First we we introduce three families of special trees that will be used as gadgets in
the NP-hardness proof. For any two positive integers i, j with i < j, let [i, j] denote the
consecutive interval {i, i + 1, . . . , j − 1, j} of integers.

Let G = (A∪B,E) be a bipartite multigraph. Denote by Ev the set of edges incident to
vertex v. We will consider the partition of the edges of G defined as P = {Ev}v∈A. Clearly,
the minimum sum taken on Ev in any non-preemptive sum set edge-coloring of G[N [v]]
(i.e. the subgraph of G induced by the vertices N(v)∪{v}) is

∑
(L(G[N [v]]), x) =

(
|Ev |+1

2

)
.

A non-preemptive edge-coloring Ψ will be called A-good if it is P -good for P = {Ev}v∈A.
We define the tree Ti, for i ≥ 1, as follows. The tree T1 is an edge rv, where r is the root

vertex and where x(rv) = 1. For i > 1, the tree Ti is a path on five vertices r, v, v1, v2, v3,
being r the root vertex and where x(rv) = 1, x(vv1) = x(v2v3) = i−1, and x(v1v2) = i (see
Figure 3). Vertices v and v2 are in A (black vertices in the figure), the remaining ones are
in B. Consider the coloring Ψ(rv) = i, Ψ(vv1) = Ψ(v2v3) = [1, i − 1], Ψ(v1v2) = [i, 2i − 1].
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This is an A-good coloring, thus it is an optimum coloring and every optimum coloring is
A-good. Therefore, if Φ is an optimum coloring for Ti then it must be an A-good coloring
with vertices v and v2 in A, and it is easy to see that this implies edge rv is assigned color
i in every optimum coloring.

Figure 3: The tree Ti for i ≥ 1.

A tree Ta,b,c (for a < b < c) has root r having a single child v with x(rv) = 1; vertex v

has c− 1 children w, y, v1, . . . , vc−3 with x(vw) = x(vy) = x(vv1) = . . . = x(vvc−3) = 1 (see
Figure 4). Every vertex vj is the root of a Ta, Tb and Tc tree, as defined in the previous
paragraph. The black vertices in Figure 4 are in A. Notice that in every A-good (optimum)
coloring of Ta,b,c the edge rv is colored with color a, b or c, and there are three A-good
colorings assigning a, b, and c to edge rv, respectively. The proof of this fact is exactly as
it appears in [16].

Figure 4: The tree Ta,b,c with c = 6

Finally, we define tree T̂i as follows. The vertex-set of T̂i is composed by the vertices
r, w, v, v1, v2, v3, v4 and v5 where r is the root vertex, and the edge-set of T̂i is the set
{rv, vw, vv1, v1v2, v2v3, v3v4, v4v5}, where x(rv) = x(vw) = 2, x(vv1) = x(v2v3) = x(v4v5) =
i, x(v1v2) = 4, and x(v3v4) = i + 4 (see Figure 5). We show that in every A-good
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(optimum) coloring of T̂i the set of colors assigned to edges between vertices r and v

is either {i + 1, i + 2} or {i + 3, i + 4}. Let Ψ be an A-good coloring of T̂i. Notice
that vertices v, v2 and v4 are in A. Thus, Ψ(v3v4) can be equal to [1, i + 4] or equal to
[i + 1, 2i + 4]. However, if Ψ(v3v4) = [1, i + 4] then Ψ(v2v3) must be [i + 5, 2i + 4], but
as v2 is in A, i > 0, and x(v1v2) = 4 then it contradicts that Ψ is an A-good coloring.
Therefore, Ψ(v3, v4) = [i+1, 2i+4] which implies that Ψ(v4v5) = Ψ(v2v3) = Ψ(vv1) = [1, i],
Ψ(v1v2) = [i + 1, i + 4]. Moreover, as vertex v is in A and x(rv) = x(vw) = 2 then in an
A-good non-preemptive coloring for T̂i, we have only two possibilities: Ψ(rv) = {i+1, i+2}
and Ψ(vw) = {i + 3, i + 4}, or Ψ(rv) = {i + 3, i + 4} and Ψ(vw) = {i + 1, i + 2}.

Figure 5: The tree T̂i for i ≥ 1

Now, based in the three families of trees defined previously (i.e., the trees Ti, Ta,b,c

with a < b < c, and T̂i, resp.), we can prove the NP-hardness of the non-preemptive
MSSC problem on line graphs of trees. The reduction is from 3-occurrence 3SAT, which
is the restriction of 3SAT where every variable occurs at most three times. This problem
is NP-complete even if every variable occurs at most twice positively and at most twice
negatively (cf. [19]). Given a formula with n variables and m clauses, we construct a tree
T = (V,E) and a demand function x : E → Z

+ such that T has an non-preemptive A-good
edge-coloring if and only if the formula is satisfiable. Consider a variable xk (0 ≤ k < n),
which is the h-th literal of the i-th clause. Let di,h be 4k + 1 if this is the first positive
occurrence of xk, 4k + 2 if this is the second positive occurrence, 4k + 3 if this is the first
negated occurrence, and 4k + 4 if this is the second negated occurrence. The tree T has
a vertex r which is the root of n + m trees (assume that r 6∈ A). To each variable xj

corresponds a tree T̂4j, and to each clause i a tree Tdi,1,di,2,di,3
. This defines T and the

demand function x. The proof follows exactly as the one given by Marx (see Theorem 3.1
in [16]) for the PSMC problem on line graphs of trees.

In the following, we will show that under some constraints, there is a pseudo-polynomial
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time algorithm to solve the NPMSSC problem on line graphs of trees. Before, we need
some preliminaries.

Let m, k be positive integers. Let J ⊆ [m] be a subset of consecutive positive integers.
Let n1, n2, . . . , nk+1 be positive integers (not necessarily different) such that

∑k+1
i=1 ni ≤ m

and such that nk+1 = |J |. Let P(m, J, n1, . . . , nk) be the set where each element is a k-set
of intervals of consecutive integers {I1, . . . , Ik} pairwise disjoint contained in [m] \ J , such
that |Ii| = ni for 1 ≤ i ≤ k. Thus,

Lemma 2. The cardinality of the set P(m, J, n1, . . . , nk) is bounded by mk, and it can be

computed in O(k2mk).

Proof. Since the sets {I1, . . . , Ik} are intervals of consecutive integers, they are univocally
defined by their starting point. So there are at most mk possibilities for choosing the
starting points of the k sets within the interval [m] satisfying the constraints above. They
can be generated by simple enumeration, and for each of them, the constraints satisfaction
can be checked in O(k2) time.

Theorem 4. Let T = (V,E) be a tree with maximum degree equal to ∆ and let x : E → Z
+

be a demand function defined on the edge-set of T . The NPMSSC problem for the line graph

L(T ) of T can be solved in O(n∆∆+3p∆+1). In particular, if ∆ is bounded by a constant,

then it can be solved in pseudo-polynomial time.

Proof. We propose a dynamic programming algorithm. Let n be the number of vertices
of T . We choose as root of T a vertex r with degree equal to 1. For a vertex v in T , we
denote Tv the subtree rooted at v. Moreover, for each vertex v in T different from r, we
denote by v′ the father vertex of v. Finally, for each vertex v 6= r, we denote by Tv′v the
subtree of T formed by Tv to which we join to v its father vertex v′. Given a subtree Tv′v,
we say that v′ is its root.

Let C be an upper bound for C(L(T ), x). Since ∆(L(T )) ≤ 2∆(T ), by Lemma 1,
we have that C = O(∆p). We construct a n × C table S such that S[v, j] represents the
minimum sum for the subtree Tv′v when edge e = v′v is assigned the interval [j, j+x(e)−1],
for every vertex v ∈ T and every 1 ≤ j ≤ C. First, we define for every vertex v (v 6= r) and
every 1 ≤ j ≤ C the value qv(j) which is equal to j.x(v′v) +

(
x(v′v)

2

)
if j + x(v′v) − 1 ≤ C,

otherwise, it is equal to ∞. The algorithm computes the values of table S in a bottom-up
way, from the leaves of T up to the root r. If v is a leaf then S[v, j] = qv(j) for all 1 ≤ j ≤ C.
Otherwise, let v 6= r be an internal vertex in T and let v1, v2, . . . , vk be the children of v.
Assume that S[vi, s] is computed, for all 1 ≤ i ≤ k and for all 1 ≤ s ≤ C, and we want to
compute the value of S[v, j] for a fixed value j such that j + x(v′v) − 1 ≤ C (otherwise,
S[v, j] = ∞). Consider now the set Pv(j) = P(C, [j, j + x(v′v) − 1], x(vv1), . . . , x(vvk)).
If |Pv(j)| = 0 then S[v, j] = ∞. Otherwise, let X be an element of the set Pv(j). By
definition, X = {I1, . . . , Ik}, where for each i we have that |Ii| = x(vvi), Ii is an interval
of consecutive integers, Ii ∩ [j, j + x(v′v) − 1] = ∅ and Ii ∩ It = ∅ whenever i 6= t.
For each i, let α(X, i) be the minimum integer in the interval Ii of X. Now, S[v, j] =
qv(j) + minX∈Pv(j){

∑k

i=1 S[vi, α(X, i)]}. Let z be the only children of root vertex r in T .
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It is easy to verify that the minimum value of S[z, j], for 1 ≤ j ≤ C, is the value of an
optimal sum for the NPMSSC of (L(T ), x). The overall time complexity of this algorithm
can be easily deduced by using Lemma 2.

5. Open questions

We end this paper with two open questions as follows.

Question 1. Let T = (V,E) be a tree with maximum degree equal to ∆ and let x be

an arbitrary demand function defined on the edge-set of T . Is there a polynomial time

algorithm for solving the NPMSSC problem for the line graph L(T ) of T when ∆ is bounded

by a constant?

Question 2. Let G be a block graph and let x be an arbitrary demand function defined on

the vertices of G. Does there exist a Polynomial Time Approximation Scheme for solving

on G either the PMSSC or NPMSSC problem?
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