Independence and coloring properties of direct products of some vertex-transitive graphs *

Mario Valencia-Pabon ${ }^{\dagger} \quad$ Juan Vera ${ }^{\ddagger}$

Abstract

Let $\alpha(G)$ and $\chi(G)$ denote the independence number and chromatic number of a graph G respectively. Let $G \times H$ be the direct product graph of graphs G and H. We show that if G and H are circular graphs, Kneser graphs, or powers of cycles, then $\alpha(G \times H)=\max \{\alpha(G)|V(H)|, \alpha(H)|V(G)|\}$ and $\chi(G \times H)=\min \{\chi(G), \chi(H)\}$.

AMS Classification: 05C15, 05C69.
Keywords: Independence number, chromatic number, direct product, vertex-transitive graphs.

1 Introduction

In this paper, we study the independence and chromatic numbers of finite direct products graphs of circular graphs, Kneser graphs and powers of cycles. In the case of circular and Kneser graphs, this is done via classical homomorphisms. For the direct product graph of powers of cycles, we first analyze its independence number and then we use such a result to compute its chromatic number.

The direct product $G \times H$ of two graphs G and H is defined by $V(G \times H)=V(G) \times V(H)$, and where two vertices $\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)$ are joined by an edge in $E(G \times H)$ if $\left\{u_{1}, v_{1}\right\} \in E(G)$ and $\left\{u_{2}, v_{2}\right\} \in E(H)$. This product is commutative and associative in a natural way (see reference [10] for a detailed description on product graphs). A coloring of $G \times H$ can be easily derived from a coloring of any of its factors, hence $\chi(G \times H) \leq \min \{\chi(G), \chi(H)\}$. One of the outstanding problems in graph theory is a formula concerning the chromatic number of the direct product of any two graphs G and H, called the Hedetniemi conjecture [8] (see also $[6,7]$ and ref.), which states $\chi(G \times H)=\min \{\chi(G), \chi(H)\}$. The inherent difficulty of Hedetniemi's conjecture lies in finding lower bounds for $\chi(G \times H)$. In this paper we prove the Hedetniemi's conjecture to be true in some classes of vertex-transitive graphs.

On the other hand, if I is an independent set of one factor, the pre-image of I under the projection is an independent set of the product. Then, $\alpha(G \times H) \geq \max \{\alpha(G)|H|, \alpha(H)|G|\}$. In this case it is known that the equality does not hold in general. In fact, Jha and Klavžar show in [11] that for any graph G with at least one edge and for any $j \in \mathbb{N}$ there is a graph H such that $\alpha(G \times H)>\max \{\alpha(G) .|V(H)|, \alpha(H) .|V(G)|\}+j$. In [16], Tardif asks whether

[^0]$\alpha_{k}(G \times H)=\max \left\{\alpha_{k}(G)|H|, \alpha_{k}(H)|G|\right\}$ always holds for vertex-transitive graphs, where $\alpha_{k}(G)$ is the maximal size of an induced k-colourable subgraph of G. In this paper, we analyze this problem for some vertex-transitive graphs when $k=1$.

In other related work, Larose and Tardif investigate in [12] the relationship between projectivity and the structure of maximal independent sets of finite direct products of several copies of the same graph G, being G a circular graph, a Kneser graph or a truncated simplices.

Independence and chromatic properties of circular graphs and Kneser graphs are analyzed using graph homomorphism. An edge-preserving map from $\phi: V(G) \rightarrow V(H)$ is called a homomorphism from G to H and it is denoted by $\phi: G \rightarrow H$. We say that G and H are homomorphically equivalent if there exist $\phi: G \rightarrow H$ and $\psi: H \rightarrow G$. Notice that if there is $\phi: G \rightarrow H$ then $\chi(G) \leq \chi(H)$. In particular if G and H are homomorphically equivalent then $\chi(G)=\chi(H)$. The following result is direct.

Lemma 1 Let G be a graph and let H be an induced subgraph of G. Then, $G \times H$ and H are homomorphically equivalent and therefore, $\chi(G \times H)=\chi(H)$.

In the context of vertex transitive graphs The "No-Homomorphism" lemma of Albertson and Collins is useful to get bounds on the size of independent sets.

Lemma 2 (Albertson-Collins [2]) Let G, H be graphs such that H is vertex-transitive and there is a homomorphism $\phi: G \rightarrow H$. Then,

$$
\frac{\alpha(G)}{|V(G)|} \geq \frac{\alpha(H)}{|V(H)|}
$$

The chromatic number of a graph G and its independence number are closely related via the inequality

$$
\chi(G) \geq\lceil|V(G)| / \alpha(G)\rceil .
$$

Let K_{n} denotes the complete graph on n vertices. By using this relation, Lemma 2, and Lemma 1, we can deduce the following well known result.

Corollary 1 Let $k \geq 2$ be an integer and let $n_{1}, n_{2}, \ldots, n_{k}$ be positive integers. Then,

$$
\alpha\left(\prod_{i} K_{n_{i}}\right)=\max _{i}\left\{\left(\prod_{j} n_{j}\right) / n_{i}\right\} \text { and } \chi\left(\prod_{i} K_{n_{i}}\right)=\min _{i}\left\{n_{i}\right\} \text {, }
$$

where $1 \leq i, j \leq k$.

2 Circular graphs

Let m, n be integers such that $m \geq 2 n>0$. The circular graph C_{n}^{m} is the Cayley graph for the cyclic group \mathbb{Z}_{m} with connector set $\{n, n+1, n+2, \ldots, m-n\}$. These graphs play an important role in the definition of the star chromatic number defined by Vince in [17]. The following result can be easily deduced.

Lemma 3 Let m, n be integers with $m \geq 2 n>0$. Then, $\alpha\left(C_{n}^{m}\right)=n$ and $\chi\left(C_{n}^{m}\right)=\left\lceil\frac{m}{n}\right\rceil$.
Concerning homomorphisms between circular graphs, Bondy and Hell show in [3] the following result.

Lemma 4 (Bondy-Hell [3]) Let m, n, k be positive integers such that $m \geq 2 n$. Then, C_{n}^{m} and $C_{k n}^{k m}$ are homomorphically equivalent.

Lemma 5 Let r, m be positive integers and let $n_{1}, n_{2}, \ldots, n_{r}$ be positive integers such that $n_{1} \leq n_{2} \leq \ldots \leq n_{r}$ and $m \geq 2 n_{i}$, for each $i \in[r]$. Then, $C_{n_{r}}^{m}$ is a subgraph of the graph $C_{n_{1}}^{m} \times C_{n_{2}}^{m} \times \ldots \times C_{n_{r}}^{m}$.
Proof Let $\phi: C_{n_{r}}^{m} \rightarrow \prod_{i} C_{n_{i}}^{m}$ be the map defined by $x \mapsto(x, x, \ldots, x)$ for all $x \in V\left(C_{n_{r}}^{m}\right)$. It is easy to deduce that this map is an injective graph homomorphism.

By Lemma 5 and Lemma 1 we have the following result.
Corollary 2 Let r, m be positive integers and let $n_{1}, n_{2}, \ldots, n_{r}$ be positive integers such that $m \geq 2 n_{i}$, for each $i \in[r]$. Then, $\chi\left(\prod_{i} C_{n_{i}}^{m}\right)=\min _{i}\left\{\chi\left(C_{n_{i}}^{m}\right)\right\}=\min _{i}\left\{\left\lceil\frac{m}{n_{i}}\right\rceil\right\}$.

Let $m_{1}, m_{2}, \ldots, m_{r}$ be positive integers, with $r \geq 1$. We denote by $\left[m_{1}, m_{2}, \ldots, m_{r}\right]$ the least common multiple of $m_{1}, m_{2}, \ldots, m_{r}$.

Theorem 1 Let r be a positive integer, and let $m_{1}, m_{2}, \ldots, m_{r}, n_{1}, n_{2}, \ldots, n_{r}$ be positive integers such that $m_{i} \geq 2 n_{i}$, for each $i \in[r]$. Then, $\chi\left(\prod_{i} C_{n_{i}}^{m_{i}}\right)=\min _{i}\left\{\chi\left(C_{n_{i}}^{m_{i}}\right)\right\}$.
Proof Let $m=\left[m_{1}, m_{2}, \ldots, m_{r}\right]$ and $k_{i}=m / m_{i}$ for each $i \in[r]$. By Lemma 4, for each i, we have $C_{n_{i} k_{i}}^{m}$ homomorphically equivalent to $C_{n_{i}}^{m_{i}}$. Therefore $\prod_{i} C_{n_{i} k_{i}}^{m}$ is homomorphically equivalent to $\prod_{i} C_{n_{i}}^{m_{i}}$. By Corollary 2, we have

$$
\chi\left(\prod_{i} C_{n_{i}}^{m_{i}}\right)=\chi\left(\prod_{i} C_{n_{i} k_{i}}^{m}\right)=\min _{i}\left\{\chi\left(C_{n_{i} k_{i}}^{m}\right)\right\}=\min _{i}\left\{\left\lceil\frac{m_{i}}{n_{i}}\right\rceil\right\}=\min _{i}\left\{\chi\left(C_{n_{i}}^{m_{i}}\right)\right\} .
$$

Lemma 6 Let r, m be positive integers and let $n_{1}, n_{2}, \ldots, n_{r}$ be positive integers such that $m \geq 2 n_{i}$, for each $i \in[r]$. Then, $\alpha\left(\prod_{i} C_{n_{i}}^{m}\right)=m^{r-1} \max _{i}\left\{\alpha\left(C_{n_{i}}^{m}\right)\right\}=m^{r-1} \max _{i}\left\{n_{i}\right\}$.
Proof W.l.o.g. we can assume that $n_{1} \leq n_{2} \leq \ldots \leq n_{r}$. By Lemma 5, the graph $C_{n_{r}}^{m}$ is a subgraph of the graph $C_{n_{1}}^{m} \times C_{n_{2}}^{m} \times \ldots \times C_{n_{r}}^{m}$ and thus, there is a natural homomorphism (i.e. the inclusion map) from $C_{n_{r}}^{m}$ to $\prod_{i} C_{n_{i}}^{m}$. Moreover, as $\prod_{i} C_{n_{i}}^{m}$ is vertex-transitive, by Lemma 2 we have $\alpha\left(C_{n_{r}}^{m}\right) / m \geq \alpha\left(\prod_{i} C_{n_{i}}^{m}\right) / m^{r}$. Therefore,

$$
\alpha\left(\prod_{i} C_{n_{i}}^{m}\right) \leq m^{r-1} \alpha\left(C_{n_{r}}^{m}\right)=m^{r-1} n_{r}=m^{r-1} \max _{i}\left\{n_{i}\right\} .
$$

Theorem 2 Let r be a positive integer, and let $m_{1}, m_{2}, \ldots, m_{r}, n_{1}, n_{2}, \ldots, n_{r}$ be positive integers such that $m_{i} \geq 2 n_{i}$, for each $i \in[r]$. Let $M=m_{1} m_{2} \ldots m_{r}$. Then, $\alpha\left(\prod_{i} C_{n_{i}}^{m_{i}}\right)=$ $\max _{i}\left\{\alpha\left(C_{n_{i}}^{m_{i}}\right) M / m_{i}\right\}=\max _{i}\left\{n_{i} M / m_{i}\right\}$.
Proof Let $m=\left[m_{1}, m_{2}, \ldots, m_{r}\right]$ and let $k_{i}=m / m_{i}$ for each $i \in[r]$. By Lemma $4, \prod_{i} C_{n_{i} k_{i}}^{m}$ is homomorphically equivalent to $\prod_{i} C_{n_{i}}^{m_{i}}$. Moreover, as $\prod_{i} C_{n_{i} k_{i}}^{m}$ and $\prod_{i} C_{n_{i}}^{m_{i}}$ are vertextransitive, by Lemma 2, we have $\alpha\left(\prod_{i} C_{n_{i} k_{i}}^{m}\right) / m^{r}=\alpha\left(\prod_{i} C_{n_{i}}^{m_{i}}\right) / M$. Now, by Lemma 6 , we have $\alpha\left(\prod_{i} C_{n_{i} k_{i}}^{m}\right)=m^{r-1} \max _{i}\left\{n_{i} k_{i}\right\}$. W.l.o.g. we can assume that $n_{1} k_{1} \leq n_{2} k_{2} \leq$ $\ldots \leq n_{r} k_{r}$. Therefore, $\alpha\left(\prod_{i} C_{n_{i}}^{m_{i}}\right)=n_{r} k_{r} M / m=m_{1} m_{2} \ldots m_{r-1} n_{r}=\max _{i}\left\{n_{i} M / m_{i}\right\}=$ $\max _{i}\left\{\alpha\left(C_{n_{i}}^{m_{i}}\right) M / m_{i}\right\}$.

3 Kneser graphs

Let m, n be positive integers such that $m \geq 2 n$. The Kneser graph K_{n}^{m} is the graph whose vertices are the n-subsets of $\{0,1, \ldots, m-1\}$, where two vertices are adjacent if they are disjoint. In a celebrated paper, Lovász shows the following result.

Theorem 3 (Lovász [13]) The chromatic number of K_{n}^{m} is $m-2 n+2$.
The independence number of Kneser graphs is related to the following classical inequality.
Theorem 4 (Erdös-Ko-Rado, [5]) Let m, n be positive integers such that $n<m / 2$, and \mathbb{F} a family of pairwise intersecting n-subsets of $[m]$. Then $|\mathbb{F}| \leq\binom{ m-1}{n-1}$.

Theorem 4 implies that the sets $I_{k}=\left\{A \in V\left(K_{n}^{m}\right): k \in A\right\}$ are independent sets of maximal cardinality in K_{n}^{m}, for $k=0,1, \ldots, m-1$. Hilton-Milner [9], show that those are the only independent sets of maximal cardinality in K_{n}^{m}.

Concerning homomorphisms between Kneser graphs, Stahl shows the following useful result.

Theorem 5 (Stahl [15]) Let m, n be integers such that $n>1$ and $m \geq 2 n$. Then, there is an homomorphism from K_{n}^{m} to K_{n-1}^{m-2}.

Lemma 7 Let n, r be positive integers and let $m_{1} \leq m_{2} \leq \ldots \leq m_{r}$ be positive integers such that $m_{i} \geq 2 n$, for $i \in[r]$. Then, $K_{n}^{m_{1}}$ is a subgraph of the graph $K_{n}^{m_{1}} \times K_{n}^{m_{2}} \times \ldots \times K_{n}^{m_{r}}$.

Proof Let $\Phi: K_{n}^{m_{1}} \rightarrow \prod_{i} K_{n}^{m_{i}}$ be the map defined by $\Phi(A)=(A, A, \ldots, A)$ for all $A \in V\left(K_{n}^{m_{1}}\right)$. It is clear that this map is an injective homomorphism.

By Lemma 7, Lemma 1 and Theorem 3 we can deduce the following result.
Corollary 3 Let n, r be positive integers and let $m_{1}, m_{2}, \ldots, m_{r}$ be positive integers such that $m_{i} \geq 2 n$, for $i \in[r]$. Then, $\chi\left(\prod_{i} K_{n}^{m_{i}}\right)=\min _{i}\left\{\chi\left(K_{n}^{m_{i}}\right)\right\}=\min _{i}\left\{m_{i}\right\}-2 n+2$.

Lemma 8 Let r be a positive integer, and let $m_{1}, m_{2}, \ldots, m_{r}, n_{1}, n_{2}, \ldots, n_{r}$ be positive integers such that $m_{i} \geq 2 n_{i}$, for $i \in[r]$, and assume that $n_{1} \leq n_{2} \leq \ldots \leq n_{r}$, with $n_{r}>1$. Then, there is a graph homomorphism $\Phi: \prod_{i} K_{n_{r}}^{m_{i}+2\left(n_{r}-n_{i}\right)} \rightarrow \prod_{i} K_{n_{i}}^{m_{i}}$.

Proof By Theorem 5, for each $i \in[r]$, there is a graph homomorphism $\phi_{i}: K_{n_{r}}^{m_{i}+2\left(n_{r}-n_{i}\right)} \rightarrow$ $K_{n_{i}}^{m_{i}}$. Therefore, there is a graph homomorphism $\Phi: \prod_{i} K_{n_{r}}^{m_{i}+2\left(n_{r}-n_{i}\right)} \rightarrow \prod_{i} K_{n_{i}}^{m_{i}}$.

Theorem 6 Let r be a positive integer, and let $m_{1}, m_{2}, \ldots, m_{r}, n_{1}, n_{2}, \ldots, n_{r}$ be positive integers such that $m_{i} \geq 2 n_{i}$, for $i \in[r]$. Then, $\chi\left(\prod_{i} K_{n_{i}}^{m_{i}}\right)=\min _{i}\left\{\chi\left(K_{n_{i}}^{m_{i}}\right)\right\}$.

Proof W.l.o.g. we can assume that $n_{1} \leq n_{2} \leq \ldots \leq n_{r}$, and assume that $n_{r}>1$. Then, by Lemma 8, there is a graph homomorphism $\Phi: \prod_{i} K_{n_{r}}^{m_{i}+2\left(n_{r}-n_{i}\right)} \rightarrow \prod_{i} K_{n_{i}}^{m_{i}}$, which implies that $\chi\left(\prod_{i} K_{n_{i}}^{m_{i}}\right) \geq \chi\left(\prod_{i} K_{n_{r}}^{m_{i}+2\left(n_{r}-n_{i}\right)}\right)$. By Corollary 3 we have $\chi\left(\prod_{i} K_{n_{r}}^{m_{i}+2\left(n_{r}-n_{i}\right)}\right)=$ $\min _{i}\left\{m_{i}+2\left(n_{r}-n_{i}\right)-2 n_{r}+2\right\}=\min _{i}\left\{m_{i}-2 n_{i}+2\right\}=\min _{i}\left\{\chi\left(K_{n_{i}}^{m_{i}}\right)\right\}$.

Let m, n be positive integers such that $m \geq 2 n$. The circular graph C_{n}^{m} is a subgraph of the Kneser graph K_{n}^{m}. More precisely the map $\phi: C_{n}^{m} \rightarrow K_{n}^{m}$ defined by $\phi(u)=\{u, u+1, \ldots, u+n-1\}$ (arithmetic operations are taken modulo m) is an injective graph homomorphism. Notice that the Erdös-Ko-Rado inequality (Theorem 4) can be easily deduced by using the fact that C_{n}^{m} is a subgraph of K_{n}^{m}, and then, using the No-Homomorphism-Lemma (Lemma 2). In the same way, we can deduce the independence number of the direct product of Kneser graphs, which is a particular case of a more general result of Ahlswede, Aydinian, and Khachatrian [1] in extremal set theory.

Theorem 7 Let r be a positive integer, and let $m_{1}, m_{2}, \ldots, m_{r}, n_{1}, n_{2}, \ldots, n_{r}$ be positive integers such that $m_{i} \geq 2 n_{i}$, for $i \in[r]$. Let $N=\prod_{i}\binom{m_{i}}{n_{i}}$. Then,

$$
\alpha\left(\prod_{i} K_{n_{i}}^{m_{i}}\right)=\max _{i}\left\{\alpha\left(K_{n_{i}}^{m_{i}}\right) N /\binom{m_{i}}{n_{i}}\right\} .
$$

Proof We know that for each $i \in[r]$, we have that $C_{n_{i}}^{m_{i}}$ is a subgraph of $K_{n_{i}}^{m_{i}}$. Therefore, there is a homomorphism from $\prod_{i} C_{n_{i}}^{m_{i}}$ to $\prod_{i} K_{n_{i}}^{m_{i}}$. Let $M=\prod_{i} m_{i}$. By Lemma 2, we have $\alpha\left(\prod_{i} C_{n_{i}}^{m_{i}}\right) / M \geq \alpha\left(\prod_{i} K_{n_{i}}^{m_{i}}\right) / N$. Moreover, by Theorem 2, $\alpha\left(\prod_{i} C_{n_{i}}^{m_{i}}\right)=\max \left\{n_{i} M / m_{i}\right\}$. Thus, $\alpha\left(\prod_{i} K_{n_{i}}^{m_{i}}\right) \leq N \max _{i}\left\{n_{i} / m_{i}\right\}=\max _{i}\left\{\binom{m_{i}-1}{n_{i}-1} N /\binom{m_{i}}{n_{i}}\right\}=\max _{i}\left\{\alpha\left(K_{n_{i}}^{m_{i}}\right) N /\binom{m_{i}}{n_{i}}\right\}$, which proves this theorem.

4 Powers of cycles

For positive integers n and a such that $n \geq 2 a$, we denote by $C(n, a)$ the graph with vertex set $\{0,1, \ldots, n-1\}$ and edge set $\{i j: i-j \equiv \pm k \bmod n, 1 \leq k \leq a\}$; the graph $C(n, a)$ is the a-th power of the n-cycle $C(n, 1)$. Notice that graph $C(n, a)$ is the complement graph of the circular graph C_{a+1}^{n}. Prowse and Woodall analyze in [14] a restricted coloring problem (the list-coloring problem) on powers of cycles. In particular, they show the following result.

Theorem 8 (Prowse-Woodall [14]) Let n, a be positive integers such that $a \leq n / 2$ and $n=q(a+1)+r$, where $q \geq 1$ and $0 \leq r \leq a$. Then, $\alpha(C(n, a))=\left\lfloor\frac{n}{a+1}\right\rfloor=q$ and $\chi(C(n, a))=\left\lceil\frac{n}{\alpha(C(n, a))}\right\rceil=a+1+\left\lceil\frac{r}{q}\right\rceil$.

Let $V_{1}, V_{2}, \ldots, V_{j}$ be a vertex decomposition (i.e. a partition of the vertex set V) of the graph G. Then, it is easy to deduce that $\alpha(G) \leq \sum_{i} \alpha\left(G\left[V_{i}\right]\right)$, where, for $1 \leq i \leq j, G\left[V_{i}\right]$ denotes the subgraph of G induced by V_{i}.

Lemma 9 Let m, n, a be positive integers such that $a \leq n / 2$, and let $\alpha=\alpha(C(n, a))$. Then,

$$
\alpha\left(K_{m} \times C(n, a)\right)=\max \{n, m \alpha\}
$$

Proof Let $n=q(a+1)+r$, with $q \geq 1$ and $0 \leq r \leq a$. By Theorem 8 we have that $\alpha=q$, and thus we need to prove that $\alpha\left(K_{m} \times C(n, a)\right) \leq \max \{n, m q\}$. Let I be a maximal independent set of $K_{m} \times C(n, a)$. We can assume that $|I|>n$. Otherwise, the lemma trivially holds. Thus, there exists $j \in\{0, \ldots, n-1\}$ such that there are at least two vertices in I with the second coordinate equal to j. As $C(n, a)$ is vertex transitive, we can assume that $j=0$. As I is an independent set, there is no vertex in I having as second coordinate an integer i, such that $0<i \leq a$ or such that $n-a \leq i \leq n-1$. Thus, as $0 \leq r \leq a$,
we can assume that the remaining vertices of I form an independent set in the induced subgraph $K_{m} \times C(n, a)[\{a+1, a+2, \ldots, n-r-1\}]$. This induced subgraph admits a vertex decomposition into $q-1$ subgraphs all of them isomorphic to $K_{m} \times K_{a+1}$. Therefore, by using Corollary 1, we have that $|I| \leq m+(q-1) \alpha\left(K_{m} \times K_{a+1}\right)=m+(q-1) \max \{m, a+1\}$. If $m \geq a+1$ then $|I| \leq m q$. Otherwise, $|I| \leq(a+1) q \leq n$.

Theorem 9 For $i=1,2$, let n_{i}, a_{i} be positive integers such that $n_{i} \geq 2 a_{i}$, and let $\alpha_{i}=$ $\alpha\left(C\left(n_{i}, a_{i}\right)\right)$. Then,

$$
\alpha\left(C\left(n_{1}, a_{1}\right) \times C\left(n_{2}, a_{2}\right)\right)=\max \left\{\alpha_{1} n_{2}, \alpha_{2} n_{1}\right\} .
$$

Proof For $i=1,2$, arithmetic operations on the vertex set of $C\left(n_{i}, a_{i}\right)$ will be taken modulo n_{i}. Let $n_{i}=q_{i}\left(a_{i}+1\right)+r_{i}$, with $q_{i} \geq 1$ and $0 \leq r_{i} \leq a_{i}$. By Theorem $8, \alpha_{i}=q_{i}$, for $i=1,2$. Let I be a maximal independence set in the graph $C\left(n_{1}, a_{1}\right) \times C\left(n_{2}, a_{2}\right)$. We should prove that $|I| \leq \max \left\{q_{1} n_{2}, q_{2} n_{1}\right\}$. We define $I_{1}=\left\{x \in I:\left(x_{1}-1, x_{2}\right) \in I\right.$ or $\left.\left(x_{1}+1, x_{2}\right) \in I\right\}$ and $I_{2}=I \backslash I_{1}$. For $x \in I$ we define $S_{x}=\left\{\left(x_{1}, x_{2}+i\right): i=0, \ldots, a_{2}\right\}$ if $x \in I_{1}$ and $S_{x}=\left\{\left(x_{1}+i, x_{2}\right): i=0, \ldots, a_{1}\right\}$ if $x \in I_{2}$.

Claim 1 Let $x, y \in I$. If $x \neq y$ then $S_{x} \cap S_{y}=\emptyset$.
Let $x, y \in I$ be such that $x \neq y$. First we show $y \notin S_{x}$ and $x \notin S_{y}$. W.l.o.g. assume $y \in S_{x}$. If $x \in I_{1}$, then $x_{1}=y_{1}$ and $0<y_{2}-x_{2} \leq a_{2}$. By the maximality of I, $\left\{\left(x_{1}, x_{2}+i\right): i=1, \ldots, y_{2}-x_{2}\right\} \subset I$, contradicting $x \in I_{1}$. By a similar argument $x \notin I_{2}$. Now, assume $S_{x} \cap S_{y} \neq \emptyset$. Note that if $x, y \in I_{1}$ or $x, y \in I_{2}$, then $x \in S_{y}$ or $y \in S_{x}$. Therefore, $x \in I_{1}$ if and only if $y \in I_{2}$. W.l.o.g. assume $x \in I_{1}$ and $y \in I_{2}$. Let $z \in S_{x} \cap S_{y}$. Then $z_{1}=x_{1}$ and $z_{2}=y_{2}$. Thus, $0 \leq y_{2}-x_{2} \leq a_{2}$ and $0 \leq x_{1}-y_{1} \leq a_{1}$, contradicting $x, y \in I$, proving this Claim.

Now, w.l.o.g. assume that $a_{1} \leq a_{2}$ and $|I|>n_{2} q_{1}$; and let $A=\cup_{x \in I} S_{x}$. By Claim 1, we have $|A|=\left|I_{1}\right|\left(a_{2}+1\right)+\left|I_{2}\right|\left(a_{1}+1\right) \geq|I|\left(a_{1}+1\right)>n_{2} q_{1}\left(a_{1}+1\right)$. Then there is $0 \leq j<n_{2}$ such that $A_{j}=\left\{0 \leq x<n_{1}:(x, j) \in A\right\}$ has size larger than $q_{1}\left(a_{1}+1\right)$. Given $x \in A_{j}$ let \hat{x} be defined as the only point in I such that $(x, j) \in S_{\hat{x}}$. Also, for $i=1,2$, let $B_{i}=\left\{x \in A_{j}: \hat{x} \in I_{i}\right\}$ and let $B_{2}^{\prime}=\left\{x \in A_{j}:(x, j)=\hat{x} \in I_{2}\right\}$. By Claim 1, we have B_{2}^{\prime} is an independence set in $C\left(n_{1}, a_{1}\right)$ and $\left|A_{j}\right|=\left(a_{1}+1\right)\left|B_{2}^{\prime}\right|+\left|B_{1}\right| \leq\left(a_{1}+1\right) q_{1}+\left|B_{1}\right|$. Therefore, B_{1} is nonempty. As $C\left(n_{1}, a_{1}\right) \times C\left(n_{2}, a_{2}\right)$ is vertex-transitive we can assume $A_{j}=\left\{x^{i}: i=1, \ldots,\left|A_{j}\right|\right\}$ ordered such that $x^{i+1}>x^{i}$ for all i and $x^{1}=0 \in B_{1}$. Notice that as $\left|A_{j}\right|>q_{1}\left(a_{1}+1\right)$, then $x^{i+1}-x^{i} \leq a_{1}$ for all i. Now we want to prove B_{2} is empty. For this assume $B_{2}^{\prime} \neq \emptyset$ and let $k=\min _{i}\left\{x^{i} \in B_{2}^{\prime}\right\}=\min _{i}\left\{x^{i} \in B_{2}\right\}$. Then $x^{k-1} \in B_{1}$. Now, $\hat{x}^{k-1}, \hat{x}^{k} \in I$, but $\hat{x}_{1}^{k}-\hat{x}_{1}^{k-1}=x^{k}-x^{k-1} \leq a_{1}$ and $\hat{x}_{2}^{k-1}-\hat{x}_{2}^{k}=j-\hat{x}_{2}^{k-1} \leq a_{2}$. Then $\hat{x}_{2}^{k-1}=j$ and by maximality of I we get $x^{k}=x^{k-1}+1$, but this contradicts $\hat{x}^{k} \in I_{2}$. Therefore B_{2} is empty.

Finally, by a similar argument to the one above, for every $1 \leq i \leq\left|A_{j}\right|$ we have $\hat{x}_{2}^{i}=\hat{x}_{2}^{i+1}$ and $x^{i+1}=x^{i}+1$. Therefore there is $0 \leq j^{\prime}<n_{2}$ such that $\left[0, n_{1}-1\right] \times\left\{j^{\prime}\right\} \subseteq I$. W.l.o.g assume $j^{\prime}=0$. The vertices in $I \backslash\left[0, n_{1}-1\right] \times\{0\}$ belong to the induced subgraph $C\left(n_{1}, a_{1}\right) \times C\left(n_{2}, a_{2}\right)\left[\left\{a_{2}+1, a_{2}+2, \ldots, n_{2}-r_{2}-1\right\}\right]$, which admits a vertex decomposition into $q_{2}-1$ subgraphs all of them isomorphic to $C\left(n_{1}, a_{1}\right) \times K_{a_{2}+1}$. Therefore, by Lemma 9 , we have that $|I| \leq n_{1}+\alpha\left(C\left(n_{1}, a_{1}\right) \times K_{a_{2}+1}\right)\left(q_{2}-1\right)=n_{1}+\left(q_{2}-1\right) \max \left\{n_{1},\left(a_{2}+1\right) q_{1}\right\} \leq$ $\max \left\{q_{2} n_{1}, q_{1} n_{2}\right\}$.

Theorem 10 For $i=1,2$, let n_{i}, a_{i} be positive integers such that $n_{i} \geq 2 a_{i}$, and let $\alpha_{i}=$ $\alpha\left(C\left(n_{i}, a_{i}\right)\right)$. Then,

$$
\chi\left(C\left(n_{1}, a_{1}\right) \times C\left(n_{2}, a_{2}\right)\right)=\min \left\{\chi\left(C\left(n_{1}, a_{1}\right)\right), \chi\left(C\left(n_{2}, a_{2}\right)\right)\right\}=\min \left\{\left\lceil\frac{n_{1}}{\alpha_{1}}\right\rceil,\left\lceil\frac{n_{2}}{\alpha_{2}}\right\rceil\right\}
$$

Proof For $i=1,2$, let $n_{i}=q_{i}\left(a_{i}+1\right)+r_{i}$, with $q_{i} \geq 1$ and $0 \leq r_{i} \leq a_{i}$. By Theorem 8 we have that $\chi\left(C\left(n_{i}, a_{i}\right)\right)=\left\lceil\frac{n_{i}}{\alpha_{i}}\right\rceil$, where $\alpha_{i}=q_{i}$. Moreover, by Theorem 9 , we have that $\alpha\left(C\left(n_{1}, a_{1}\right) \times C\left(n_{2}, a_{2}\right)\right)=\max \left\{n_{1} \alpha_{2}, n_{2} \alpha_{1}\right\}$. So, we have that $\chi\left(C\left(n_{1}, a_{1}\right) \times C\left(n_{2}, a_{2}\right)\right) \geq$ $\left\lceil\frac{n_{1} n_{2}}{\max \left\{n_{1} \alpha_{2}, n_{2} \alpha_{1}\right\}}\right\rceil$. Thus, if $n_{1} \alpha_{2} \geq n_{2} \alpha_{1}$ then $\chi\left(C\left(n_{1}, a_{1}\right) \times C\left(n_{2}, a_{2}\right)\right) \geq\left\lceil\frac{n_{1} n_{2}}{n_{1} \alpha_{2}}\right\rceil=\left\lceil\frac{n_{2}}{\alpha_{2}}\right\rceil=$ $\chi\left(C\left(n_{2}, a_{2}\right)\right)$. Otherwise, $\chi\left(C\left(n_{1}, a_{1}\right) \times C\left(n_{2}, a_{2}\right)\right) \geq\left\lceil\frac{n_{1} n_{2}}{n_{2} \alpha_{1}}\right\rceil=\left\lceil\frac{n_{1}}{\alpha_{1}}\right\rceil=\chi\left(C\left(n_{1}, a_{1}\right)\right)$. Therefore, $\chi\left(C\left(n_{1}, a_{1}\right) \times C\left(n_{2}, a_{2}\right)\right) \geq \min \left\{\chi\left(C\left(n_{1}, a_{1}\right)\right), \chi\left(C\left(n_{2}, a_{2}\right)\right)\right\}$.

Let F and G be graphs. The map graph F^{G} has the set of functions from $V(G)$ to $V(F)$ as its vertices; two such functions f and h are adjacent in F^{G} if and only if whenever u and v are adjacent in G, the vertices $f(u)$ and $h(v)$ are adjacent in F. Notice that a vertex in F^{G} has a loop on it if and only if the corresponding function is a graph homomorphism. In order to simplify the study of Hedetniemi's conjecture, El-Zahar and Sauer show in [4] the following result (see also [6]).

Theorem 11 (El-Zahar, Sauer [4]) Suppose $\chi(G)>n$. Then K_{n}^{G} is n-colourable if and only if $\chi(G \times H)>n$ for all graphs H such that $\chi(H)>n$.

A consequence of Theorem 11 is the following lemma, that follows by induction.
Lemma 10 Let \mathbb{F} be a non empty family of graphs such that for any two graphs $G, H \in \mathbb{F}$ (not necessarily different) we have that $\chi(G \times H)=\min \{\chi(G), \chi(H)\}$. Let $G_{1}, G_{2}, \ldots, G_{k}$ be a collection of graphs in \mathbb{F}. Then, $\chi\left(\prod G_{i}\right)=\min \left\{\chi\left(G_{i}\right)\right\}$.

We have not be able to generalize Theorem 9 for any finite product of powers of cycles graphs, and so it remains as an open problem. However, by using Lemma 10 we can generalize Theorem 10 as follows.

Theorem 12 Let r be a positive integer, and let $n_{1}, n_{2}, \ldots, n_{r}, a_{1}, a_{2}, \ldots, a_{r}$ be positive integers such that $n_{i} \geq 2 a_{i}$, for each $i \in[r]$. Then, $\chi\left(\prod_{i} C\left(n_{i}, a_{i}\right)\right)=\min _{i}\left\{\chi\left(C\left(n_{i}, a_{i}\right)\right\}\right.$.

Another interesting open problem is the structure of the independent sets of finite direct products of vertex-transitive graphs such as the ones studied in this paper.

References

[1] R. Ahlswede, H. Aydinian, L. H. Khachatrian. The intersection theorem for direct products, Europ. J. Combinatorics 19 (1998) 649-661.
[2] M. O. Albertson, K. L. Collins. Homomorphisms of 3-chromatic graphs, Discrete Math., 54 (1985) 127-132.
[3] J. A. Bondy, P. Hell. A note on the star chromatic number, J. Graph Theory, 14 (1990) 479-482.
[4] M. El-Zahar, W. Sauer. The chromatic number of the product of two 4-chromatic graphs is 4, Combinatorica, 5 (1985) 121-126.
[5] P. Erdös, C. Ko, R. Rado. Intersections theorems for systems of finite sets, Quart. J. Math., 12 (1961) 313-320.
[6] C. D. Godsil, G. Royle. Algebraic graph theory, Graduate text in mathematics: 207, Springer-Verlag, 2001.
[7] G. Hahn, C. Tardif. Graph homomorphism: structure and symmetry, G. Hahn and G. Sabidussi (eds.), Graph Symmetry, 107-166. Kluwer Academic Publishers, 1997.
[8] S. Hedetniemi. Homomorphisms of graphs and automata, University of Michigan Technical Report 03105-44-T, 1966.
[9] A. J. W. Hilton, E. C. Milner. Some intersections theorems for systems of finite sets, Quart. J. Math. Oxford Ser. (2), 18 (1967) 369-384.
[10] W. Imrich, S. Klavžar. Product Graphs: Structure and Recognition, Wiley-Interscience Series in Discrete Mathematics and Optimization, 2000.
[11] P. K. Jha, S. Klavžar. Independence in direct-product graphs, Ars Combinatoria, 50 (1998) 53-63.
[12] B. Larose, C. Tardif. Projectivity and independent sets in powers of graphs, J. Graph Theory, 40 (2002) 162-171.
[13] L. Lovász. Kneser's conjecture, chromatic number and homotopy, J. Combin. Theory Ser. A, 25 (1978) 319-324.
[14] A. Prowse, D. R. Woodall. Choosability of powers of circuits, Graphs and Combinatorics, 19 (2003) 137-144.
[15] S. Stahl. n-tuple colorings and associated graphs, J. Combin. Theory Ser. B, 20 (1976) 185-203.
[16] C. Tardif. Graph products and the chromatic difference sequence of vertex-transitive graphs, Discrete Math., 185 (1998) 193-200.
[17] A. Vince. Star chromatic number, J. Graph Theory, 12 (1988) 551-559.

[^0]: *This work was supported by the Facultad de Ciencias de la Universidad de los Andes and by the FrenchColombian (CNRS-COLCIENCIAS) ECOS-Nord projet under grant C05M02.
 ${ }^{\dagger}$ Departamento de Matemáticas, Universidad de los Andes, Cra. 1 No. 18A - 70, Bogotá, Colombia (mvalenci@uniandes.edu.co).
 ${ }^{\ddagger}$ Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh PA 15213-3890, USA (jvera@andrew.cmu.edu).

