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Abstract

Real-time systems are often hard to control, due to their complicated structures,
quantitative time factors and even unknown delays. We present here PSyHCoS,
a tool for analyzing parametric real-time systems specified using the hierarchical
modeling language PSTCSP. PSyHCoS supports several algorithms for param-
eter synthesis and model checking, as well as state space reduction techniques.
Its architecture favors reusability in terms of syntax, semantics, and algorithms.
It comes with a friendly user interface that can be used to edit, simulate and
verify PSTCSP models. Experiments show its efficiency and applicability. We
present here the user manual of PSyHCoS.
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Chapter 1

Introduction

Ensuring the correctness of safety-critical systems, involving complex data struc-
tures with timing requirements, is crucial. The correctness of such real-time
systems usually depends on the values of some timing delays. Checking the
correctness for one particular value for each delay is usually not sufficient for
two reasons. Firstly, value for the delays are not always known, and one may
precisely want to find some values for which the system behaves well. Secondly,
even if the system is proved correct for a reference set of values, one has no guar-
antee that the correctness holds other values around the reference one, which
is also known as the robustness (see, e.g., [Marll]) of the system. Hence, it is
interesting to consider that the delays are unknown constants, or parameters,
and synthesize constraints on these parameters to guarantee a correct behavior.
In this work, we present the user manual of PSyHCoS (Parameter SYnthe-
sis for Hierarchical COncurrent Systems) [psy]. This tool performs parameter
synthesis and parametric model checking for Parametric Stateful Timed CSP
(PSTCSP) [ALSD12], a parametric extension of Stateful Timed CSP [SLD*13],
itself an extension of Timed CSP (see, e.g., [Sch00]). PSTCSP offers an intuitive
syntax for designing and analyzing hierarchical real-time concurrent systems in-
volving shared variables, complex data structures, and user defined programs.
The expressiveness of PSTCSP is incomparable with Parametric Timed Au-
tomata (PTAs) [AHV93], which are an extension of finite state automata with
clocks (variables increasing linearly) and parameters. Different from PTAs,
clocks are implicit in PSTCSP, thus avoiding the designer to write manually
clocks constraints, which is error-prone. Another advantage of PSTCSP over
PTAs is the ability to easily define hierarchical systems. Sub-systems can be
defined independently and referred in the main system. Hierarchy may allow
one to handle refinement as well as closed (“black box” or “gray box”) systems.
To be best of our knowledge, PSyHCoS is the first tool that synthesizes tim-
ing parameters for real-time systems handling both hierarchy and concurrency.



Chapter 2

System Architecture

PSyHCoS offers a complete GUI for the design and the verification of PSTCSP
models. We give in Figure 2.1 the architecture of PSyHCoS. Models are de-
scribed using an intuitive text syntax (see Chapter 3).

PSyHCoS also features a simulator (see Figure 6.2) that can be used for
step-by-step analyses, or for the graphical representation of the state space
under the form of a directed graph. Beyond educational purpose, the simulator
is interesting for better understanding (or debugging) models.

Among the verification algorithms, PSyHCoS first implements the inverse
method IM for PSTCSP [ALSD12]. IM takes as input a PSTCSP model as
well as a reference valuation for all the parameters; it synthesizes a set of pa-
rameters under the form of a convex constraint K, that guarantees the same
time-abstract behavior (sequences of actions) as for the reference valuation. A
major advantage is that K gives a quantitative measure of the robustness of
the system w.r.t. variations of the timing delays. In particular, all linear time
properties that hold for the reference valuation hold for any valuation in K.
Although parameter synthesis for PSTCSP is proved undecidable (same as for
PTAs), IM always terminates in practice. Also, a full reachability algorithm
reachAll is implemented in PSyHCoS in order to compare optimization tech-
niques. Other classical model checking algorithms (such as LTL, deadlock free-
ness, or refinement checking) are also available. Data structures and functions
can be designed within PSTCSP models directly using the C# syntax.

Internal representation and optimization techniques The semantics is
defined as a labeled transition system, where the states in the transition system
consist of a process and a constraint on clocks and parameters [ALSD12]. In
PSyHCoS, each state is implemented under the form of a pair (process id, con-
straint id), both under the form of a string. Although some processing is needed
each time a new state is computed, the constraint equality test reduces to string
equality. Also, a string format is flexible — which is necessary as we are dealing
with hierarchical systems so that different states may have very different system
architecture.
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Figure 2.1: Architecture of PSyHCoS

PSyHCoS implements a state-space reduction technique for PSTCSP intro-
duced in [ALSD12], which merges states that are equal except the names of the
clocks. This may lead to an exponential diminution of the number of states, at
the cost of several nontrivial operations (lists and strings sorting). The opti-
mized version of reachAll (resp. IM) is denoted by reachAll+ (resp. IM+).

Implementation PSyHCoS is implemented in C#, based on Microsoft .NET
framework. The constraint solver is based on the PPL library [BHZ08]. It can
run on major OS, including Linux, Unix, Mac or Windows. The tool is available
under the GNU General Public License in [psy].



Chapter 3

Input Syntax for Models

3.1 Standard Features from PSTCSP

3.1.1 Abstract Syntax of PSTCSP

We first recall here from [ALSD12] the syntax of PSTCSP. A process models the
control logic of the system using a rich set of process constructs. A process P is
defined by the grammar in Figure 3.1, where v € U.! Processes marked with *
allow the use of parameters instead of timing constants in STCSP. P denotes
the set of all possible processes.

P = Stop inaction
| Skip termination
| e— P event prefixing
| a{program} — P data operation
| if (b) {P} else {Q} conditional choice
| PlQ general choice
| P\E hiding
| P;Q sequential composition
| P|l@ parallel composition
| Wait[u] delay*
| P timeoutu] @ timeout™
| P interrupt|u] @ timed interrupt*®
| P within|u] timed responsiveness*
| P deadline[u] deadline*
| Q process referencing

Figure 3.1: Syntax of PSTCSP processes

LActually, v € (U U Q>0) would be possible too, but having u € U simplifies the reasoning
and proofs.



Definition 3.1.1 A Parametric Stateful Timed CSP (or PSTCSP) model is a
tuple M = (Var, U, Vy, P, Ko) where Var C Var, U C U, Vy is the initial variable
valuation, P € P is a process, and Ko € Ky is an initial constraint.

The initial constraint K allows one to define constrained models, where
some parameters are already related. For example, in a timed model with two
parameters min and max, one may want to constrain min to be always smaller
or equal to maz, i.e., Ko = {min < maz}.

Hierarchy comes from the nested definition of processes. Each component
may have internal hierarchies, and allow abstraction and refinement, in the
sense that a subprocess may be replaced by another equivalent one in some
cases. Also, this offers a readable syntax, starting from the top level of the
system, and being more precisely defined when one goes to lower hierarchical
levels.

Untimed constructs We first briefly describe the untimed constructs, which
are identical to the ones in STCSP, and very close to the ones of CSP. Process
Stop does nothing but idling. Process Skip terminates, possibly after idling
for some time. Process e — P engages in event e first and then behaves as P.
Note that e may serve as a synchronization barrier, if combined with parallel
composition. In order to seamlessly integrate data operations, sequential pro-
grams may be attached with events. Process a{program} — P performs data
operation a (i.e., executing the sequential program whilst generating event a)
and then behaves as P. The program may be a simple procedure updating data
variables (e.g., a{vy := 5; vy := 3}, where v1,v2 € Var) or a more complicated
sequential program. A conditional choice is written as if (b) {P} else {Q}.
If b is true, then it behaves as P; otherwise it behaves as Q). Process P|Q offers
an unconditional choice? between P and Q. Process P;(Q behaves as P until
P terminates and then behaves as ) immediately. P \ E hides occurrences of
events in E. Parallel composition of two processes is written as P || Q, where P
and @ may communicate via multi-party event synchronization (following CSP
rules [Hoa85]) or shared variables.

Timed Constructs We now explain the parametric timed constructs.

e Given a parameter u, process Wait[u| idles for an unknown (constant)
number of u time units.

e In process P timeout[u] @, the first observable event of P shall occur
before u time units elapse. Otherwise, ) takes over control after exactly
u time units.

e Process P interrupt[u] @ behaves exactly as P until « time units, and
then @ takes over. In contrast to P timeout[u] ), P may engage in

2For simplicity, external and internal choices from the classic CSP [Hoa85] have not been
defined in [ALSD12]. Nevertheless, both constructions are implemented (see Section 3.2.1),
and used in our case studies.



multiple observable events before it is interrupted. Also note that @ will
be executed in any case, whereas in P timeout[u] @, process Q will only
be executed if no observable event occurs before u time units.

e Process P within[u| must react within an unknown number of u time
units, i.e., an observable event must be engaged by process P within u time
units.

e Process P deadline[u] constrains P to terminate, possibly after engaging
in multiple observable events, before u time units.

Discussion on deadline The deadline timed construct intuitively means that
a process must terminate within a certain amount of time. Different definitions
of deadline actually appear in the literature. In [FHW99], a definition of the
deadline command is given, and an instantiation as an extension to the high-
integrity SPARK programming language is proposed. In this case, a static analy-
sis is performed during the compiling process and, in the case where an inability
to meet the timing constraints occurs, then an appropriate error feedback is sent
to the programmer. As a consequence, the deadline construction guarantees that
the constrained process will terminate before the specified deadline.

In [QDCO03], the authors use Unifying Theory of Programming in order to
formalize the semantics of TCOZ. As in [FHW99], they consider that the dead-
line imposes a timing constraint on P, which thus requires the computation of P
to be finished within the time mentioned in the deadline.

Different from [QDC03, FHW99], we here choose to stick to the semantics of
STCSP [SLD"13] and consider a deadline semantics as an attempt to terminate
a process before a certain time. If the process does not terminate before the
deadline, it is just stopped?®.

Syntactic sugar Urgent event prefixing [Dav93], written as e — P, is defined
as (e — P) within0], i.e., e must occur as soon as it is enabled.

Also note that some timed constructs can be defined using other timed con-
structs. For instance, within can be defined using deadline.

3.1.2 Input Syntax of PSTCSP in PSyHCoS

We give in Figure 3.2 the mapping between PSTCSP syntax and the ASCII-
based PSyHCoS syntax. Since some parts of PSyHCoS rely on the PAT model
checker [SLDP09, LSD11], PSyHCoS’s input syntax is rather similar to the
STCSP input syntax in the RTS module of PAT.

3Remark that, in that case, time elapsing may be stopped too.



Stop

Skip

e—+ P
a{program} — P
if (b) {P} else {Q}
PIQ

P\E

P;Q

PlQ

Wait|u]

P timeoutfu] @
P interruptlu] @
P within[u)

P deadline[u]
P=qQ

Stop

Skip

e > P

a { program } -> P
if b {P } else {Q}
P []Q

P\ { el,e2,e3 }
P;Q

P Il Q

Wait [u]

P timeout[u] Q

P interrupt[u] Q
P within[u]

P deadline[u]
P=Q

Figure 3.2: Syntax of PSTCSP processes in PSyHCoS

3.2 Syntactic Extensions of PSTCSP

3.2.1 Additional Operations

We give in Figure 3.3 additional operations on PSTCSP not strictly defined
in [ALSD12], but implemented in PSyHCoS.

P [*] Q
P <> Q

if (condl) {P} else if (cond2) {Q} else {M}

ifa (cond) {P} else {Q}
ifb (cond) {P}

[cond] P

P Il Q

atomic { P }

External choice

Internal choice

Conditional choice (nested)
Atomic conditional choice
Blocking conditional choice
Guarded process
Interleaving

Atomicity

Figure 3.3: Syntax of advanced PSTCSP processes in PSyHCoS

3.2.2 Advanced Constructs

Constants can be defined as follows: #define max 5;

Constants

Variables
is optional. Example: var knight;

Variables can be defined as follows: var knight = 0; The value



Parameters Parameters can be defined as follows: parameter Delta; Recall
that parameters are unknown constants. As a consequence, they cannot be set,
nor updated.

Data structures PSyHCoS supports advanced data structures such as lists,
arrays, matrices, and user-defined structures. A fixed-size array may be defined
as follows:

var board = [3, 5, 6, 0, 2, 7, 8, 4, 1]; where board is the array
name and its initial value is specified as the sequence, e.g., board[0] = 3. The
following defines an array of size 3.

var leader[3];

All elements in the array are initialized to be 0.

Multi-dimensional arrays may also be defined as follows.

var matrix[3*N][10];

Note: To assign values to specific elements in an array, you can use event
prefix. For example:

PO = a { matrix[1]1[9] = 0 } —> Skip;

To ease the modeling, PSyHCoS allows users to define any data structures
and use them in PSTCSP models. The following shows the syntax.
var<Type> x ; //default constructor of Type class will be called.
var<Type> x = new Type(l, 2); //constructor with two int parameters
will be called.

3.3 Example: Fischer Mutual Exclusion

We use here an example from [ALSD12] in order to present PSyHCoS’s syntax,
and show PSTCSP’s intuitive modeling facilities. Fischer’s mutual exclusion
algorithm is modeled by a process FME making use of a set of timing param-
eters U = {4,v}, and a set of variables Var = {turn, cnt}. The turn variable
indicates which process attempted to access the critical section most recently.
The cnt variable counts the number of processes accessing the critical section.
Initial valuation maps turn to —1 (which denotes that no process is attempting
initially) and cnt to 0 (which denotes that no process is in the critical section
initially). Process FME is defined as follows®.
FME proc(1) || proc(2) || - || proc(n)
proc(i) = if (turn = —1) {Active(i)} else {proc(i)}
Active(i) = (update.i{turn := i} — Wait[y]) within[d];
if (turn = 1)
cs.i{ent := cnt + 1} —
exit.i{ent := ent — 1; turn := —1} — proc(i)

else
proc(i)

4Note that this is not the real ASCII-based PSyHCoS syntax.



© 00 O Ut WN -

e e e el el
N O Uk W~ O

where n is a constant representing the number of processes. Process proc(i)
models a process with a unique integer identify i. If turn is —1 (i.e., no other
process is attempting), proc(i) behaves as specified by process Active(i). In
process Active(i), turn is first set to ¢ (i.e., the ith process is now attempting)
by action update.i. Note that update.i must occur within § time units (captured
by within[d]). Next, the process idles for v time units (captured by Wait[y]).
It then checks if turn is still 4. If so, it enters the critical section and leaves
later. Otherwise, it restarts from the beginning.
We give below the PSyHCoS-based syntax for FME.

#define N 3;
#define Idle —1;

var turn = Idle;
var counter = 0;
parameter Delta;
parameter Epsilon;

proc(i) = ifb (turn = Idle) { Active(i) };
Active (i) = ((update.i{turn=i} —> Wait[Epsilon]) within [Delta]);
if (turn = 1)
cs.i{counter++} —> exit.i{counter ——; turn=Idle}—>proc(i)
} else {
proc (i)
i
FME = ||| i:{0..N—1}@proc(i);

10




Chapter 4

Input Syntax for Analysis

4.1 Parameter Synthesis Using the Inverse Method

PSyHCoS implements the inverse method IM for PSTCSP [ALSD12], initially
defined for PTAs [ACEF09, AS13]. IM takes as input a PSTCSP model as
well as a reference valuation for all the parameters; it synthesizes a set of pa-
rameters under the form of a convex constraint K, that guarantees the same
time-abstract behavior (sequences of actions) as for the reference valuation. A
major advantage is that K gives a quantitative measure of the robustness of
the system w.r.t. variations of the timing delays. In particular, all linear time
properties that hold for the reference valuation hold for any valuation in K.
Although parameter synthesis for PSTCSP is proved undecidable (same as for
PTAs), IM always terminates in practice.
The input syntax is of the following form:

1 ‘#synthcsizc process with ul = 2, u2 = 4;

4.2 Full Reachability Analysis

A full reachability algorithm reachAll is implemented in PSyHCoS in order to
compare optimization techniques (see experiments in [ALSD12]). It computes
the whole set of reachable states; note that this algorithm may not always
terminate.

The input syntax is of the following form:

1 ‘#synthesize process reachesall;

Returned statistics include the number of states and transitions, the memory
occupation and the computation time. All states can also be returned in a text
form (for a graphical form, use the simulator).

11



4.3 Model Checking

Various model checking algorithms are implemented within PSyHCoS.
An example of syntax (for deadlock freeness checking) is given below:

1 ‘#assert P deadlockfree;

4.4 Example: Fischer Mutual Exclusion

Recall example from Section 3.3. A classical parameter synthesis problem is to
find values for  and 7 such that mutual exclusion is guaranteed.
This is achieved by the following call to the inverse method:

1 |#synthesize FME with Epsilon = 3, Delta = 4;

The constraint synthesized by PSyHCoS for Fischer is § < v, viz., the weak-
est constraint known to guarantee mutual exclusion.

4.5 State Space Optimization

As explained in [ALSD12], some states in PSTCSP considered as different are
actually equivalent. Consider the following two states:

s1 = (0, Wait|u;],, deadline(us]y,, r1 < 2 < ug)

so = (0, Wait|u;]y,deadlinelus],,, ve < 1 < ug)

It is obvious that s; = ss, except the names of the clocks. Merging these states
may lead to an exponential diminution of the number of states.

Hence, we implemented a technique of state normalization: First, the clocks
in the process are renamed so that the first one (from left to right) is named z1,
the second x5, and so on. Second, the variables in the constraint are swapped
accordingly. This technique solves this problem at the cost of several nontrivial
operations (lists and strings sorting). We denote by reachAll+ (resp. IM+) the
version of reachAll (resp. IM) using this technique.

This technique can be used for most algorithm; the choice is available in the
verification window.

12
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Chapter 5

A Complete Example

We give below an entire example of input model for PSyHCoS, with commands
for verification and parameter synthesis.
A full list of benchmarks is available in [psy].

parameter pDelta;
parameter pEpsilon;

#define N 3;
#define Delta 3;
#define Epsilon 4;
#define Idle —1;

var x = Idle;
var counter;

//untimed version
uP(i) = ifb(x = Idle) {
update.i{x = i} —>

it (x =1) {
cs.i{counter++} —> exit.i{counter ——; x=Idle} —> uP(1i)
} else {
uP (1)
}
e
uFischersProtocol = ||| 1:{0..N—1}QuP(i);

#synthesize uFischersProtocol reachesall;

//timed version
P(i) = ifb(x = Idle) {
((update.i{x = i} —> Wait[Epsilon]) within[Delta]);

if (x =1) {
cs.i{counter++} —> exit.i{counter——; x=Idle} —> P(i)
} else {
P(i)
}

I

13




36
37
38
39
40
41

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

FischersProtocol = ||| 1:{0..N-1}@QP(i);
#synthesize FischersProtocol reachesall;

//parametric timed version
PP(i) = ifb(x = ldle) {
((update.i{x = i} —> Wait[pEpsilon]) within[pDelta]);

if (x =1i) {
cs.i{counter++} —> exit.i{counter——; x=Idle} —> PP(i)
} else {
PP(i)
s
FischersProtocolParam = ||| i:{0..N-1}@PP(i);

#synthesize FischersProtocolParam with
pEpsilon = 3,
pDelta = 4

#synthesize FischersProtocolParam reachesall;

14




Chapter 6

Screenshots
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