Lazard’s elimination in presented Lie algebras

Vu Nguyen Dinh
LIPN - Université Sorbonne Paris Nord
This talk is based on some joint work with Prof. V. Hoang Ngoc Minh and Prof. Gérard Duchamp from Université Sorbonne Paris Nord, France.

LIPN, 01 November, 2022
Contents

- Knizhnik-Zamolodchikov equation
- Drinfeld-Kohno Lie algebra
- Quotients of Lazard’s eliminations
- Applications
- Upcoming works
- Some references
Knizhnik-Zamolodchikov equation

- Assume that k is a commutative ring with unit.
- For $n \geq 2$, we denoted by $\mathcal{T}_n = \{ t_{i,j} \}_{1 \leq i < j \leq n}$ the set of noncommutative variables.
- The Knizhnik-Zamolodchikov equation (see for instance Drinfeld [1], Minh [5])

$$(KZ_n) \quad dF(z) = \Omega_n(z) F(z) \quad (1)$$

defined over the complex configuration space

$$\mathbb{C}_n^* = \{ z = (z_1, \ldots, z_n) \in \mathbb{C}^n | z_i \neq z_j \text{ for } i \neq j \},$$

where the system (so called the KZ connection)

$$\Omega_n(z) = \sum_{1 \leq i < j \leq n} \frac{t_{i,j}}{2i\pi} d \log(z_i - z_j), \quad (2)$$

where the logarithmic function is relative to some section of $\widetilde{\mathbb{C}}_n^*$, for example $\mathbb{C} \setminus [-\infty, 0]$.
As a consequence of Arnold's theorem, the system (2) is completely integrable i.e. \(d\Omega_n - \Omega_n \wedge \Omega_n = 0\), it is equivalent to the fact that \(T_n = \{t_{i,j}\}_{1 \leq i < j \leq n}\) satisfy the infinitesimal pure braid relations

\[
R[n] = \begin{cases}
R_1[n] & [t_{i,j}, t_{i,k} + t_{j,k}] \\
R_2[n] & [t_{i,j} + t_{i,k}, t_{j,k}] \\
R_3[n] & [t_{i,j}, t_{k,l}] \\
\end{cases}
\]

for \(1 \leq i < j < k \leq n\), for \(1 \leq i < j < k \leq n\), and \(|\{i,j,k,l\}| = 4\).

The *Drinfeld-Kohno Lie algebra* \(\text{DK}_{k,n}\) is presented as

\[
\mathcal{L}_k(T_n) / \mathcal{J}_{R[n]}
\]

where \(\mathcal{J}_{R[n]}\) is the Lie ideal of \(\mathcal{L}_k(T_n)\) generated by \(R[n]\) (3).
By using the Knizhnik-Zamolodchikov equations, Kohno proved in [2] that $DK_{k,n}$ can be identified with $\mathfrak{gr}_k(\mathcal{PB}_n)$ the graded Lie algebra of the pure braid group \mathcal{PB}_n. Thus, Drinfeld-Kohno Lie algebra $DK_{k,n}$ is also called the Lie algebra of infinitesimal braids.

By some steps, we can construct a commutative diagram of k-modules with split short exact rows

$$
\begin{array}{cccccc}
0 & \longrightarrow & \mathfrak{gr}_k(F_n) & \longrightarrow & \mathfrak{gr}_k(\mathcal{PB}_{n+1}) & \longrightarrow & \mathfrak{gr}_k(\mathcal{PB}_n) & \longrightarrow & 0 \\
& & \downarrow \cong & & \downarrow \cong & & \downarrow \cong & & \\
0 & \longrightarrow & \mathcal{L}_k(x_1,\ldots,x_n) & \longrightarrow & DK_{k,n+1} & \longrightarrow & DK_{k,n} & \longrightarrow & 0
\end{array}
$$

In particular, we obtain an isomorphism of k-modules

$$DK_{k,n+1} \cong \mathcal{L}_k(x_1,\ldots,x_n) \oplus DK_{k,n}. \quad (5)$$
A natural question is how to construct a Lie isomorphism from the Drinfeld-Kohno Lie algebra to a semidirect product of Lie algebras

\[\text{DK}_{k,n+1} \rightarrow \mathcal{L}_k(x_1, \ldots, x_n) \rtimes \text{DK}_{k,n}. \]

We call the phenomenon by "the decomposition of Drinfeld-Kohno Lie algebra".

In this talk, we will give a proof for the existence of the decomposition of Drinfeld-Kohno Lie algebra as a corollary of our main theorem and Proposition 2.
Let us recall briefly Lazard’s elimination theorem in our setting.

Lazard elimination theorem

Let $X = B \sqcup Z$ be a set partitioned in two blocks. We have an isomorphism of split short exact sequences

\[
0 \to \mathcal{L}_k(B^*Z) \xrightarrow{j_{B|Z}} \mathcal{L}_k(X) \xrightarrow{p_{B|Z}} \mathcal{L}_k(B) \to 0
\]

with

- $u = b_1 \ldots b_k \in B^*$ and $z \in Z$ for

\[
rn(uz) = \left(\text{ad}_{b_1}^{\mathcal{L}_k(X)} \circ \ldots \circ \text{ad}_{b_k}^{\mathcal{L}_k(X)} \right)(z) =: \text{ad}_{(u)}^{\mathcal{L}_k(X)}(z)
\]
Lazard elimination theorem

- bracketing and \overline{rn} is the restriction of rn to its image as in the diagram.
- if $j_B : \mathcal{L}_k(B) \to \mathcal{L}_k(X)$ is the subalphabet embedding, (so that the restriction to its image is the isomorphism $\overline{j_B}$) then $\overline{j_B} \circ p_B|_Z$ is the projector on

$$\mathcal{L}_k(X)_B = \bigoplus_{\alpha \in \mathcal{N}(X)} \mathcal{L}_k(X)_\alpha$$

The kernel of $p_B|_Z$ is

$$\mathcal{L}_k(X)_{BZ} = \bigoplus_{\alpha \in \mathcal{N}(X)} \mathcal{L}_k(X)_\alpha$$

- The above diagram is a split SES, its section is given by j_B.

The kernel of $p_B|_Z$ is

$$\mathcal{L}_k(X)_{BZ} = \bigoplus_{\alpha \in \mathcal{N}(X)} \mathcal{L}_k(X)_\alpha$$

The above diagram is a split SES, its section is given by j_B.

The kernel of $p_B|_Z$ is
Main results: Quotients of Lazard’s eliminations

- **Observation and ideas**: Put $\mathcal{T}_{n+1} = \mathcal{T}_n \sqcup \mathcal{T}_{n+1}$ a set partitioned in two blocks, then the infinitesimal pure braid relator $R[n+1] \subset L_k(\mathcal{T}_{n+1})$ is compatible with the alphabet partition (see Example 1). Thus we deal with a special kind of relators i.e. relators being compatible with an elimination scheme.

- In general, let $X = B \sqcup Z$ be a set partitioned in two blocks. We suppose given a relator $r = \{r_j\}_{j \in J} \subset L_k(X)$ which is compatible with the alphabet partition i.e. there exists a partition of the set of indices $J = J_Z \sqcup J_B$ such that $r_B = \{r_j\}_{j \in J_B} = r \cap L_k(X)_B$ and $r_Z = \{r_j\}_{j \in J_Z} = r \cap L_k(X)_{BZ}$. The notations being as above, we construct the following ideals:
 1. \mathcal{I}_B is the Lie ideal of $L_k(X)_B$ generated by $\{r_j\}_{j \in J_B}$
 2. $\mathcal{I}, \mathcal{I}_Z$ and \mathcal{I}_{BZ} are the Lie ideals of $L_k(X)$ generated respectively by r, r_Z and $r_{BZ} := \{\text{ad}_Q z\}_{Q \in \mathcal{I}_B, z \in Z}$.
Example 1.

A typical example is for the partitioned $X := \mathcal{T}_{n+1} = \mathcal{T}_n \sqcup \mathcal{T}_{n+1} := B \sqcup Z$ and the infinitesimal pure braid relator $r := R[n+1] \subset \mathcal{L}_k(\mathcal{T}_{n+1})$. In this case, we observe that the relator $r_{\mathcal{T}_n} = R[n+1] \cap \mathcal{L}_k(\mathcal{T}_{n+1}) \mathcal{T}_n = R[n]$ and the relator $r_{\mathcal{T}_{n+1}} = R[n+1] \cap \mathcal{L}_k(\mathcal{T}_{n+1}) \mathcal{T}_n \mathcal{T}_{n+1} =$

\[
\begin{cases}
R_1^{-}[n+1] & [t_i,j, t_i,n+1 + t_j,n+1] & \text{for } 1 \leq i < j \leq n, \\
R_2^{-}[n+1] & [t_i,j + t_i,n+1, t_j,n+1] & \text{for } 1 \leq i < j \leq n, \\
R_3^{-}[n+1] & \pm[t_i,j, t_k,n+1] & \text{for } 1 \leq i < j \leq n, 1 \leq k \leq n, \text{ and } |\{i,j,k\}| = 3.
\end{cases}
\]

Then we can construct the following Lie ideals

- $\mathcal{J}_{\mathcal{T}_n} = \mathcal{J}_{R[n]}$ is the Lie ideal of $\mathcal{L}_k(\mathcal{T}_n)$ generated by the infinitesimal pure braid relator $r_{\mathcal{T}_n} = R[n]$.

- $\mathcal{J}_{\mathcal{T}_{n+1}}$ (resp. $\mathcal{J}_{\mathcal{T}_n \mathcal{T}_{n+1}}$) is the Lie ideal of $\mathcal{L}_k(\mathcal{T}_{n+1})$ generated by the relator $r_{\mathcal{T}_{n+1}}$ (resp. $r_{\mathcal{T}_n \mathcal{T}_{n+1}} = \{\text{ad}Q \ z\} Q \in \mathcal{J}_{R[n]}, z \in \mathcal{T}_{n+1}$).

- $\mathcal{J} = \mathcal{J}_{R[n+1]}$ is the Lie ideal of $\mathcal{L}_k(\mathcal{T}_{n+1})$ generated by $R[n+1]$.
Main Theorem.

With our constructions above, we get the following properties:

i) we have \((\mathcal{J}_Z + \mathcal{J}_{BZ}) \subset \mathcal{L}_k(X)_{BZ}\) (and then \((\mathcal{J}_Z + \mathcal{J}_{BZ}) \cap \mathcal{J}_B = \{0\}\)). Moreover, \((\mathcal{J}_Z + \mathcal{J}_{BZ})\) is a Lie ideal of \(\mathcal{L}_k(X)_{BZ}\) (and even, by definition, of \(\mathcal{L}_k(X)\)).

ii) the action of \(\mathcal{L}_k(X)_B\) on \(\text{Der}(\mathcal{L}_k(X)_{BZ})\) (by internal \(\text{ad}\)) passes to quotients as an action \(\alpha : \mathcal{L}_k(X)_B \to \text{Der}(\mathcal{L}_k(X)_{BZ} / (\mathcal{J}_Z + \mathcal{J}_{BZ}))\) such that \(r_B \subset \ker(\alpha)\) and then, we get an action

\[
\overline{\alpha} : \mathcal{L}_k(X)_B / \mathcal{J}_B \to \text{Der}(\mathcal{L}_k(X)_{BZ} / (\mathcal{J}_Z + \mathcal{J}_{BZ})) \tag{7}
\]

iii) we can construct an isomorphism from presented Lie algebra \(\mathcal{L}_k(X) / \mathcal{J}\) by the set \(r = \{r_j\}_{j \in J}\) of relators onto the semidirect product of Lie algebras \(\mathcal{L}_k(X)_{BZ} / (\mathcal{J}_Z + \mathcal{J}_{BZ}) \rtimes \mathcal{L}_k(X)_B / \mathcal{J}_B\).
Main Theorem.

iii) which will be denoted by

\[\Phi : \mathcal{L}_k(X) / \mathcal{J} \cong \mathcal{L}_k(X)_{BZ} / (\mathcal{J}_Z + \mathcal{J}_{BZ}) \rtimes \mathcal{L}_k(X)_B / \mathcal{J}_B. \] (8)

iv) In fact, one has a commutative diagram of Lie algebras with split short exact rows

\[
\begin{array}{ccccccccc}
0 & \longrightarrow & \mathcal{L}_k(X)_{BZ} & \xrightarrow{j} & \mathcal{L}_k(X) & \xrightarrow{p} & \mathcal{L}_k(X)_B & \longrightarrow & 0 \\
& & \downarrow^{s\mathcal{J}_Z + \mathcal{J}_{BZ}} & & \downarrow^{s\mathcal{J}} & & \downarrow^{s\mathcal{J}_B} & \\
0 & \longrightarrow & \mathcal{L}_k(X)_{BZ} / (\mathcal{J}_Z + \mathcal{J}_{BZ}) & \longrightarrow & \mathcal{L}_k(X) / \mathcal{J} & \longrightarrow & \mathcal{L}_k(X)_B / \mathcal{J}_B & \longrightarrow & 0
\end{array}
\]
Elimination of the subalphabet Z

- In certain cases (which is that of the Lie algebras $DK_{k,n}$), it can happen that the left factor of the semidirect product (8) be isomorphic to $\mathcal{L}_k(Z)$. We start from the previous commutative diagram with an additional arrow

$$
\begin{array}{cccccc}
\mathcal{L}_k(Z) \\
j_Z \downarrow & & & & & \\
0 & \longrightarrow & \mathcal{L}_k(X)_{BZ} & \overset{j}{\longrightarrow} & \mathcal{L}_k(X) & \overset{p}{\longrightarrow} & \mathcal{L}_k(X)_B & \longrightarrow & 0 \\
\downarrow \scriptstyle{sJ_Z+J_{BZ}} & & & & & \downarrow \scriptstyle{sJ} & & \downarrow \scriptstyle{sJ_B} \\
0 & \longrightarrow & \mathcal{L}_k(X)_{BZ} \big/ (J_Z+J_{BZ}) & \longrightarrow & \mathcal{L}_k(X) \big/ J & \longrightarrow & \mathcal{L}_k(X)_B \big/ J_B & \longrightarrow & 0
\end{array}
$$

where j_Z is the subalphabet embedding such that

$$
\text{Im}(j_Z) = \mathcal{L}_k(X)_Z = \bigoplus_{\alpha \in \mathbb{N}(X)} \mathcal{L}_k(X)_{\alpha}.
$$

(9)
We are now in the position to state the following

Proposition 2.

With the notations as in Main Theorem, let us consider the composite map

\[\beta = s\mathcal{J}_Z + \mathcal{J}_{BZ} \circ j_Z, \]

then

a. In order that \(\beta \) be injective, it is necessary and sufficient that

\[(\mathcal{J}_Z + \mathcal{J}_{BZ}) \cap \mathcal{L}_k(X)_Z = \{0\}. \]

b. In order that \(\beta \) be surjective, it is necessary and sufficient that, for all \((b, z) \in B \times Z\), we had

\[s\mathcal{J}_Z + \mathcal{J}_{BZ}([b, z]) \in s\mathcal{J}_Z + \mathcal{J}_{BZ}(\mathcal{L}_k(X)_Z). \]

(10)
Applications

The existence of the decomposition of Drinfeld-Kohno Lie algebra

Recall in Example 1, we denoted by $\mathcal{T}_{n+1} = \mathcal{T}_n \sqcup \mathcal{T}_{n+1}$ and the infinitesimal pure braid relator $R[n+1] \subset \mathcal{L}_k(\mathcal{T}_{n+1})$. In this case, the existence of the decomposition of Drinfeld-Kohno Lie algebra can be obtained as a consequence of our main theorem and by Proposition 2.

Corollary 3.

There is the decomposition of Drinfeld-Kohno Lie algebra i.e. in the category k-Lie,

$$DK_{k,n+1} \cong \mathcal{L}_k(X_n) \rtimes DK_{k,n}$$ \hfill (11)

where X_n is any alphabet of cardinality n.
About M.-P. Schützenberger’s questions on the Partially Commutative Free Lie algebra

- Let \(X \in \text{Set} \) be a set viewed as an alphabet. A commutation relation on \(X \) is a reflexive and symmetric graph \(\theta \subset X^2 \) (i.e. \(\theta = \theta^{-1} \) and \(\{(x, x)\}_{x \in X} \), the diagonal of \(X \), is a subset of \(\theta \)).

- Firstly, the free partially commutative monoid \(M(X, \theta) \) is the quotient of \(X^* \) by the congruence generated by the family \((xy = yx)_{(x, y) \in \theta} \).

- We will consider the canonical surjection \(s_\theta : X^* \to M(X, \theta) \) as well as \(j_\theta : M(X, \theta) \to X^* \) an arbitrary set-theoretical section of it.

- The terminal alphabet \(\text{TAIph}(t) \) (where \(t \in M(X, \theta) \)) can be characterized as the set of last letters of preimages of \(t \) w.r.t. \(s_\theta \), it means that \(\text{TAIph}(t) = \{x \in X \mid t \in M(X, \theta).x\} \).

- Secondly, the free partially commutative Lie algebra \(\mathcal{L}_k(X, \theta) \) is the quotient of \(\mathcal{L}_k(X) \) by the ideal generated by the relator \(r_\theta = \{[x, y]\}_{(x, y) \in \theta} \).
Theorem 4.

Let \((X, \theta)\) be an alphabet with commutations. We consider a partition of \(X\), \(X = B \sqcup Z\) such that \(Z\) is totally non-commutative i.e. no two letters of \(Z\) commute between themselves \((\theta \cap Z^2 = \Delta_Z)\) and the code

\[
C_B(Z) = \{ s_\theta(uz) | u \in B^*, z \in Z, T\text{Alph}(s_\theta(uz)) = \{ z \} \} \quad (12)
\]

Let \(C = j_\theta(C_B(Z))\) and \(j_C\) be the subalphabet embedding, we have the diagram
Theorem 4.

Then, with the above hypotheses (Z totally non-commutative and $C = j_\theta(C_B(Z))$, $sJ_Z + J_{BZ} \circ j_C$ is an isomorphism. In particular, the left factor of the semi-direct product (8), here $\mathcal{L}_k(X)_{BZ} \left/ (J_Z + J_{BZ}) \right. \rightarrow \mathcal{L}_k(X) \left/ J \right. \rightarrow \mathcal{L}_k(X)_B \left/ J_B \right. \rightarrow 0$ is a free Lie algebra.
It would be interesting to have alternative proofs for answers to Schützenberger’s questions about the Partially Commutative Free Lie algebra (cf. Duchamp and Krob [4], Thm. III.3) as a consequence of our main theorem.

Corollary 5. (Lazard’s Partially Commutative Elimination)

Let X be a set equipped with a commutation relation θ and B be a subset of X such that $Z = X - B$ is totally non-commutative. Then there is an isomorphism from the free partially commutative Lie algebra $\mathcal{L}_k(X, \theta)$ to the semidirect of product of Lie algebras, namely

$$\mathcal{L}_k(X, \theta) \simeq_{k-Lie} \mathcal{L}_k(C) \rtimes \mathcal{L}_k(B, \theta_B).$$

(13)
Suppose that a commutative ring \(k \) of characteristic zero (hence \(\mathbb{Q} \hookrightarrow k \)) and \(X = B \sqcup Z \) is a set partitioned in two blocks, where \(B = \{b_1, \ldots, b_n\} \) and \(Z = \{z_1, z_2, z_3, \ldots\} \). Let us consider the polynomial algebra

\[
k\langle X \rangle = k\langle b_1, \ldots, b_n, z_1, z_2, z_3, \ldots \rangle.
\]

The collection (called by Magnus polynomials (cf. Nakamura [3]))

\[
u. \text{ad}(w_1) z_{i_1} \ldots \text{ad}(w_k) z_{i_k},
\]

where \(k \geq 0, w_1, \ldots, w_k \in B^*, i_1, \ldots, i_k \geq 1 \) and \(u \in B^* \), are \(k \)-linear basis of \(k\langle X \rangle \).
We introduce the *half-shuffle* in the polynomial algebra $k\langle X \rangle$ as the linear extension of the binary product on words given by

$$(x_1 \ldots x_p)\frac{\shuffle}{2} (x_{p+1} \ldots x_n) = x_1 (x_2 \ldots x_p \shuffle x_{p+1} \ldots x_n),$$

$$1x^* \frac{\shuffle}{2} (x_{p+1} \ldots x_n) = 0,$$

$$(x_1 \ldots x_p)\frac{\shuffle}{2} 1x^* = x_1 \ldots x_p$$

and then elements arising by the half-shuffle of ZB^*:

$$z_{i_1} w_1 \frac{\shuffle}{2} (z_{i_2} w_2 \frac{\shuffle}{2} (\ldots \frac{\shuffle}{2} (z_{i_{k-1}} w_{k-1} \frac{\shuffle}{2} z_i w_k) \ldots), (15)$$

where $k \geq 0, w_1, \ldots, w_k \in B^*, i_1, \ldots, i_k \geq 1$ (if $k = 0$ then (15) will be denoted by $1x^*$). Henceforth we write simply $z_{i_1} w_1 \frac{\shuffle}{2} \ldots \frac{\shuffle}{2} z_i w_k$ instead of (15).
The purpose of the following theorem is to describe the dual of Magnus basis under the standard pairing $\langle \bullet | \bullet \rangle : k\langle X \rangle^\vee \otimes k\langle X \rangle = k\langle\langle X \rangle\rangle \otimes k\langle X \rangle \to k$

with respect to the monomials of $k\langle X \rangle$ (here for all $S \in k\langle\langle X \rangle\rangle$ and $P \in k\langle X \rangle$ then the pairing $\langle S|P \rangle = \sum_{w \in X^*} \langle S|w \rangle \langle P|w \rangle$).

Theorem 6.

The collections

$$\{ u.(-1)^{|w_1|} \text{ad}_{(w_1)} z_{i_1} \ldots (-1)^{|w_k|} \text{ad}_{(w_k)} z_{i_k} \}_{i_1,\ldots,i_k \geq 1, u \in B^*}^{k \geq 0, w_1,\ldots,w_k \in B^*}$$

and

$$\{ u \sqcup \left(z_{i_1} \tilde{w}_1 \frac{w_1}{2} \ldots \frac{w_k}{2} z_{i_k} \tilde{w}_k \right) \}_{i_1,\ldots,i_k \geq 1, u \in B^*}^{k \geq 0, w_1,\ldots,w_k \in B^*}$$

are dual bases of, respectively $k\langle X \rangle$ and $k\langle X \rangle^\vee$, where $\tilde{w} = b_{i_k} b_{i_{k-1}} \ldots b_{i_1}$ reverses the order of letters in the word $w = b_{i_1} b_{i_2} \ldots b_{i_k} \in B^*$.
Describe the dual basis in a suitable algebraic framework.

Applying the dual basis to provide finally solutions for Knizhnik-Zamolodchikov equations given in (1) with asymptotic conditions by dévissage.
Some references

Thank you very much for your attention!