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The Elephant Random Walk

It is a non-markovian random

walk (Sn)n⩾0 on Z introduced in

2004 in the paper:

Schütz, G. M. and Trimper, S. Elephants can

always remember: exact long-range memory

effects in a non-markovian random

walk. Physical review., E 70, 045101 (2004).
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The Elephant Random Walk

At time n = 0

−2 −1 0 1 2
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The Elephant Random Walk

At time n = 1

−2 −1 0 1 2

q1 − q

(q ∈]0, 1[ is a fixed parameter)
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The Elephant Random Walk

Let n ⩾ 1 be fixed.

At time n+ 1, the elephant chooses uniformly at

random an instant βn between 1 and n.

According to the memory parameter p, the step

at time n+ 1 is given by

Xn+1 =

{
+Xβn with probability p
−Xβn with probability 1 − p
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The Elephant Random Walk

It means that Xn+1 = αnXβn with

βn ∼ U ({1, ..., n})

αn =

{
1 with probability p
−1 with probability 1 − p

αn, βn and Fn := σ(X1, ...,Xn) are independent.
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The Elephant Random Walk

So, the position Sn+1 of the elephant at time n+ 1 is given by

Sn+1 = Sn + Xn+1.

At time n+ 1

SnSn − 1 Sn + 1

p1 − p

if Xβn = +1

p 1 − p

if Xβn = −1

If p = 1/2 the ERW reduces to the simple random walk on Z.

R. Aguech Gaussian Fluctuations for the ERW April, 2025 14 / 53



The Elephant Random Walk

So, the position Sn+1 of the elephant at time n+ 1 is given by

Sn+1 = Sn + Xn+1.

At time n+ 1

SnSn − 1 Sn + 1

p1 − p

if Xβn = +1

p 1 − p

if Xβn = −1

If p = 1/2 the ERW reduces to the simple random walk on Z.

R. Aguech Gaussian Fluctuations for the ERW April, 2025 14 / 53



When elephants meet martingales…

One can notice that

E[Xn+1|Fn] = E[αn]E[Xβn |Fn] = (2p− 1)
Sn
n
.

Moreover, since Sn+1 = Sn + Xn+1, we obtain

E[Sn+1|Fn] = γnSn with γn =
n+ 2p− 1

n
.

Question: Can we find (an)n⩾1 ∈ RN∗
such that

E[an+1Sn+1|Fn] = anSn?

If it is true then M := (anSn)n⩾1 is a martingale !
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When elephants meet martingales…

So, it sufficies to consider (an)n⩾1 satisfying

a1 = 1 and an = an+1γn for any n ⩾ 1.

That is, for any n ⩾ 2, we have

an = Πn−1

k=1
γ−1

k =
Γ(n)Γ(2p)

Γ(n+ 2p− 1)

where Γ(x) =
∫ +∞

0
tx−1e−tdt .

Consequently, if Mn := anSn then

E[Mn+1|Fn] = E[an+1Sn+1|Fn] = an+1γnSn = anSn = Mn.

Strategy : Use martingale theory in order to get asymptotic properties for(Sn)n⩾1.

B. Bercu, A martingale approach for the elephant random walk, J. Phys. A: Math. Theor., 51
015201, (2018)
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Gaussian fluctuations of the ERW

Theorem (Bercu, 2018)

1 If 0 < p < 3/4 (diffusive regime) then n−1/2Sn
law−−−−→

n→∞
N
(

0, 1

3−4p

)
.

2 If p = 3/4 (critical regime) then (n log n)−1/2Sn
law−−−−→

n→∞
N (0, 1).

3 If 3/4 < p ⩽ 1 (superdiffusive regime) then n−2p+1Sn
a.s. and L4

−−−−→
n→∞

L where L is a non

gaussian random variable.

Theorem (Kubota and Takei, 2019)

If 3/4 < p ⩽ 1 then n2p− 3

2 (n−2p+1Sn − L) Law−−−−→
n→+∞

N
(

0, 1

4p−3

)
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Gaussian fluctuations of the ERW

CLT for reversed martingales (Heyde, 1977)

Let (Mn)n⩾0 be a square-integrable martingale with M0 = 0. Denote Xk := Mk −Mk−1,
k ⩾ 1 and s2

n :=
∑+∞

k=n E[X 2

k ]. Assume that
∑∞

k=1
E[X 2

k ] < +∞. Then,

Mn
a.s. and L2

−−−−→
n→+∞

M∞ :=
+∞∑
k=1

Xk < ∞.

Moreover, if

1 s−2

n
∑+∞

k=n X
2

k
P−−−−→

n→+∞
1 and

2 s−2

n
∑+∞

k=n E[X 2

k 11{|Xk |>εsn}] −−−−→n→+∞
0 for any ε > 0.

Then
M∞ −Mn

sn+1

=

∑+∞
k=n+1

Xk

sn+1

Law−−−−→
n→+∞

N (0, 1) .
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The Elephant RandomWalk with Gradually
Increasing Memory
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ERW with gradually increasing memory

Gut and Stadtmüller (2022) introduced a variation of the ERW.

A. Gut and U. Stadtmüller, The elephant random walk with gradually increasing
memory, Statist. Proab. Lett., 189:Paper No 109598, 10 (2022)

Let (mn)n⩾1 be positive integers such that for any k, ℓ and n,

mn ⩽ n,

k < ℓ ⇒ mk ⩽ mℓ.

At time n+ 1, the elephant remembers the steps {1, 2, ...,mn} instead of {1, 2, ..., n}.

It means that Xn+1 = αnXβn with

P (αn = 1) = P (αn = −1) = 1/2 and βn ↪→ U ({1, 2, ...,mn}) .
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ERW with gradually increasing memory

n = 6 and mn = [n/2] = 3

X1 X2 X3 X4 X5 X6

∀k ∈ {2, 3} Xk = αk−1Xβk−1
with βk−1 ↪→ U ({1, .., k − 1})

∀k ∈ {4, 5, 6} Xk = αk−1Xβk−1
with βk−1 ↪→ U ({1, 2, 3})
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ERW with gradually increasing memory

n = 7 and mn = [n/2] = 3

X1 X2 X3 X4 X5 X6 X7

∀k ∈ {2, 3} Xk = αk−1Xβk−1
with βk−1 ↪→ U ({1, .., k − 1})

∀k ∈ {4, 5, 6, 7} Xk = αk−1Xβk−1
with βk−1 ↪→ U ({1, 2, 3})
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ERW with gradually increasing memory

n = 8 and mn = [n/2] = 4

X1 X2 X3 X4 X5 X6 X7 X8

∀k ∈ {2, 3, 4} Xk = αk−1Xβk−1
with βk−1 ↪→ U ({1, .., k − 1})

∀k ∈ {5, 6, 7, 8} Xk = αk−1Xβk−1
with βk−1 ↪→ U ({1, 2, 3, 4})
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ERW with gradually increasing memory

For any integer 1 ⩽ ℓ ⩽ n,

Sℓ =
ℓ∑

k=1

Xk and Fℓ = σ(Xk ; 1 ⩽ k ⩽ ℓ).

It is important to note that the elephant can not choose among its steps

mn + 1,mn + 2, . . . , k to determine its (k + 1)th step for any mn ⩽ k < n.

So, we have

E[Xk+1|Fk ] =

{
(2p− 1)m−1

n Smn if mn < k ⩽ n,
(2p− 1)k−1Sk if 1 ⩽ k ⩽ mn.
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ERW with gradually increasing memory

Consequently, for 1 ⩽ k < mn,

E[Sk+1|Fk ] = Sk + E[Xk+1|Fk ] = γkSk with γk = 1 +
2p− 1

k
.

If we denote ak =
∏k−1

ℓ=1
γ−1

ℓ and Mk := akSk then (Mk)1⩽k⩽mn is a martingale with

respect to the filtration (Fk)1⩽k⩽mn which can be written

Mk =
k∑

ℓ=1

aℓεℓ with εℓ = Sℓ − γℓ−1Sℓ−1

satisfying E[εℓ|Fℓ−1] = 0 for any 1 ⩽ ℓ ⩽ mn.
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ERW with gradually increasing memory

Consider also the martingale (Mk)1⩽k⩽n defined by

Mk :=
k∑

ℓ=1

aℓ (Sℓ − E[Sℓ|Fℓ−1])

=

{ ∑k
ℓ=1

aℓεℓ if k ⩽ mn∑mn
ℓ=1

aℓεℓ +
∑k

ℓ=mn+1
aℓ (Xℓ − E[Xℓ|Fℓ−1]) if k > mn
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Gaussian fluctuations (previous result)

Theorem (Gut and Stadtmüller, 2022)

Let (mn)n⩾1 be a nondecreasing sequence of positive integers satisfying mn ⩽ n and
limn→+∞ n−1mn = 0.

1) If 0 < p < 3/4 then n−1
√
mnSn

Law−−−−→
n→+∞

N
(

0, (2p−1)2

3−4p

)
.

2) If p = 3/4 then n−1Sn
√
mn/ logmn

Law−−−−→
n→+∞

N
(
0, 1

4

)
.

3) If 3/4 < p < 1 then n−1Snm
2(1−p)
n

a.s.−−−−→
n→+∞

(2p− 1)L

where L is a non-gaussian random variable.

A. Gut and U. Stadtmüller, The elephant random walk with gradually increasing
memory, Statist. Proab. Lett., 189:Paper No 109598, 10 (2022)

Question: what happen if limn→+∞ n−1mn = θ for some θ ∈]0, 1] ?
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Gaussian fluctuations (new result)

Theorem (Aguech, E.M., 2023)

Let (mn)n⩾1 be a non-decreasing sequence of positive integers such that
limn→+∞ n−1mn = θ for some θ ∈ [0, 1] and denote τ := θ + (1 − θ)(2p− 1).

1) if 0 < p < 3/4 then n−1
√
mn Sn

Law−−−−→
n→+∞

N
(

0, τ 2

3−4p + θ(1 − θ)
)
.

2) if p = 3/4 then n−1

√
mn/ logmn Sn

Law−−−−→
n→+∞

N
(

0, (1+θ)2

4

)
.

3) if 3/4 < p < 1 then n−1m2(1−p)
n Sn

a.s. and L4

−−−−→
n→+∞

τL.

In addition, if limn→+∞ m
2p− 3

2

n |n−1mn − θ| = 0 then

m
2p− 3

2

n

(
n−1Snm2(1−p)

n − τL
)

Law−−−−→
n→+∞

N
(

0,
τ 2

4p− 3

+ θ(1 − θ)

)
.
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Idea of proof

Let θ ∈ [0, 1] such that n−1mn → θ and τ := θ + (1 − θ)(2p− 1).

First, we write

Sn
√
mn

n
=

√
mn

n

mn∑
k=1

Xk +

√
mn

n

n∑
k=mn+1

Xk .

Since E[Xk |Fk−1] = (2p− 1)m−1

n Smn for k > mn, we get

Sn
√
mn

n
=

τnSmn√
mn

+

√
mn

n

n∑
k=mn+1

(Xk − E[Xk |Fk−1])

where τn :=
mn
n +

(
1 − mn

n

)
(2p− 1) −−−−→

n→+∞
τ := θ + (1 − θ)(2p− 1).
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Idea of proof

Since amnSmn =
∑mn

ℓ=1
aℓεℓ with εℓ = Sℓ − γℓ−1Sℓ−1, we obtain

Sn
√
mn

n
=

τn
∑mn

ℓ=1
aℓεℓ

amn

√
mn

+

√
mn

n

n∑
k=mn+1

(Xk − E[Xk |Fk−1]) =
n∑

k=1

∆k

where

∆k =

{
τn
(√

mn amn

)−1

akεk if k ⩽ mn

n−1
√
mn (Xk − E[Xk |Fk−1]) if k > mn.
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Idea of proof

Let φ : R → R be a function with compact support and two bounded and

continuous derivatives.

Let (Zk)1⩽k⩽n be independent N (0,E[∆2

k ])-random variables which are assumed

to be independent of the sequence (Xk)1⩽k⩽n.

Applying Lindeberg’s method, it suffices to show that the term

In(φ) := E

[
φ

(
n∑

k=1

∆k

)]
− E

[
φ

(
n∑

k=1

Zk

)]

goes to zero as n goes to infinity.
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Idea of proof

For any 1 ⩽ k ⩽ n, we consider the notation

Uk = ∆1 + · · ·+∆k + Zk+1 + · · ·+ Zn.

Then, using the Lindeberg’s trick, we have

In(φ) =
n∑

k=1

E[φ (Uk)− φ (Uk−1)] =
n∑

k=1

bk(φ)

where

bk(φ) = E [(φ (Wk +∆k)−φ (Wk))− (φ (Wk + Zk)−φ(Wk))]

and

Wk = ∆1 + · · ·+∆k−1 + Zk+1 + · · ·+ Zn.
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Idea of proof

Using Taylor’s formula, we have

bk(φ) = E
[
∆kφ

′
(Wk)

]
+

1

2

E
[
φ′′(Wk)∆

2

k

]
+ E[Rk ]

−
(
E
[
Zkφ

′
(Wk)

]
+

1

2

E
[
φ′′(Wk)Z 2

k

]
+ E[rk ]

)
with |Rk | ⩽ |∆k |3 and |rk | ⩽ |Zk |3.

Since E[∆k |Fk−1] = 0, we have E[∆kφ
′
(Wk)] = 0.

Moreover, E[Zkφ
′
(Wk)] = E[Zk ]E[φ

′
(Wk)] = 0. Consequently,

In(φ) =
n∑

k=1

bk(φ) =
1

2

n∑
k=1

E[φ′′(Wk)
(
∆2

k − Z 2

k

)
] +

n∑
k=1

E[Rk ]−
n∑

k=1

E[rk ].

So, it suffices to control the partial sums of each term above…
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How to estimate the memory parameter p ?
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How to estimate the memory p ?

We follow the approach by Bercu and Laulin (2022).

If mn ⩽ k ⩽ n then βk ↪→ U ({1, 2, ...,mn}) and

P (Xk+1 = 1|Fk) = P (Xk+1 = 1|Fmn)

= P (Xk+1 = 1, αk = 1|Fmn) + P (Xk+1 = −1, αk = −1|Fmn)

= pP (Xβk = 1|Fmn) + (1 − p)P (Xβk = −1|Fmn)

=
p
mn

mn∑
k=1

11{Xk=1} +
1 − p
mn

mn∑
k=1

11{Xk=−1}

=
p (mn + Smn)

2mn
+

(1 − p) (mn − Smn)

2mn

=
1

2

(
1 + (2p− 1)

Smn

mn

)
.

B. Bercu and L. Laulin, How to estimate the memory of the elephant random walk,

Communications in Statistics - Theory and Methods (2022).
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B. Bercu and L. Laulin, How to estimate the memory of the elephant random walk,

Communications in Statistics - Theory and Methods (2022).

R. Aguech Gaussian Fluctuations for the ERW April, 2025 37 / 53



How to estimate the memory p ?

If 1 ⩽ k < mn then βk ↪→ U ({1, 2, ..., k}) and

P (Xk+1 = 1|Fk) = P (Xk+1 = 1, αk = 1|Fk) + P (Xk+1 = −1, αk = −1|Fk)

= pP (Xβk = 1|Fk) + (1 − p)P (Xβk = −1|Fk)

=
p
k

k∑
j=1

11{Xj=1} +
1 − p
k

k∑
j=1

11{Xj=−1}

=
p (k + Sk)

2k
+

(1 − p) (k − Sk)
2k

=
1

2

(
1 + (2p− 1)

Sk
k

)
.
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How to estimate the memory p ?

It means that P (Xk+1 = 1|Fk) = pk where

pℓ =

{
1

2

(
1 + a Sℓ

ℓ

)
if ℓ < mn

1

2

(
1 + a Smn

mn

)
if ℓ ⩾ mn

and a = 2p− 1. Therefore, for any xk+1 ∈ {−1, 1},

P (Xk+1 = xk+1|Fk) = p
1+xk+1

2

k (1 − pk)
1−xk+1

2 .

So, for any n ⩾ 1 and any x = (x1, ..., xn) ∈ {−1, 1}n, we have

P (X1 = x1,X2 = x2, ...,Xn = xn)

=
n−1∏
k=1

P (Xk+1 = xk+1|X1 = x1, ...,Xk = xk)P (X1 = x1)

=
n−1∏
k=1

p(1+xk+1)/2

k (1 − pk)(1−xk+1)/2q(1+x1)/2(1 − q)(1−x1)/2
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How to estimate the memory p ?

Consequently, the log-likelihood function associated with (X1, ...,Xn) is given by

ℓn(a) = c(q,X1) +
n−1∑
k=1

(
1 + Xk+1

2

)
log pk +

(
1 − Xk+1

2

)
log(1 − pk)

with c(q,X1) :=
(

1+X1

2

)
log q +

(
1−X1

2

)
log(1 − q) and

pℓ =

{
1

2

(
1 + a Sℓ

ℓ

)
if ℓ < mn

1

2

(
1 + a Smn

mn

)
if ℓ ⩾ mn

The second order Taylor approximation of ℓn(a) is given by

λn(a) = −(n− 1) log 2 + c(q,X1) + a
n−1∑
k=1

Xk+1Tk −
a2

2

n−1∑
k=1

T 2

k

where

Tk =
{

k−1Sk if k < mn

m−1

n Smn if k ⩾ mn
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How to estimate the memory p ?

Since

λ′
n(a) =

n−1∑
k=1

Xk+1Tk − a
n−1∑
k=1

T 2

k ,

we get

λ′
n(a) = 0 ⇔ â =

∑n−1

k=1
Xk+1Tk∑n−1

k=1
T 2

k

.

Since a = 2p− 1, we obtain

p̂n =

∑n−1

k=1
Tk (Xk+1 + Tk)

2

∑n−1

k=1
T 2

k

where Tk =
{

k−1Sk if k < mn

m−1

n Smn if k ⩾ mn

R. Aguech Gaussian Fluctuations for the ERW April, 2025 41 / 53



Consistency of p̂n

Consequently, we get

p̂n − p =

∑n−1

k=1
Tk (Xk+1 − (2p− 1)Tk)

2

∑n−1

k=1
T 2

k

.

Since (2p− 1)Tk = E[Xk+1|Fk ] for any 1 ⩽ k ⩽ n, we derive

p̂n − p =
Mn

Vn

where Mn :=
∑n−1

k=1
Tk (Xk+1 − E[Xk+1|Fk ]) and Vn := 2

∑n−1

k=1
T 2

k .

Remark: (Mn)n⩾0 is a martingale !
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Consistency of p̂n

Moreover, its quadratic variation is given by

⟨M⟩n =
n−1∑
k=1

E
[
(Mk −Mk−1)

2 |Fk

]
=

n−1∑
k=1

T 2

k (1 − a2T 2

k ).

So,

⟨M⟩n
Vn

=

∑n−1

k=1
T 2

k (1 − a2T 2

k )

2

∑n−1

k=1
T 2

k

a.s.−−−−→
n→+∞

1

2

.

From Bercu (2018), we know that

1

log n

mn∑
k=1

(
Sk
k

)
2

a.s.−−−−→
n→+∞

1

3 − 4p
.

So, we get

⟨M⟩n ⩾ (1 − a2)

mn−1∑
k=1

(
Sk
k

)
2

a.s.−−−−→
n→+∞

+∞
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Consistency of p̂n

LLN for martingales (Neveu, 1968)

Let (Mn)n⩾0 be a square-integrable martingale. If limn→+∞⟨M⟩n = +∞ a.s. then, for
any γ > 0,

Mn

⟨M⟩n
= oa.s.

(
log1+γ⟨M⟩n

⟨M⟩n

)
.

Consequently, we obtain

p̂n − p =
Mn

Vn
=

⟨M⟩n
Vn

× Mn

⟨M⟩n
a.s.−−−−→

n→+∞

1

2

× 0 = 0.

It means that the consistency of p̂n holds for any 0 ⩽ p ⩽ 1.
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Gaussian fluctuations of p̂n

One can notice that

1

log n

n∑
k=1

T 2

k =
1

log n

mn∑
k=1

(
Sk
k

)
2

+
n−mn

log n

(
Smn

mn

)
2

.

From Bercu (2018), we know that

1

log n

mn∑
k=1

(
Sk
k

)
2

a.s.−−−−→
n→+∞

1

3 − 4p
.
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Gaussian fluctuations of p̂n

Moreover, for any λ > 0,

P

(∣∣∣∣∣n−mn

log n

(
Smn

mn

)
2

∣∣∣∣∣ > λ2

)
= P

(
|Smn | >

λmn
√
log n√

n−mn

)
= P

(
|amnSmn | >

λmnamn

√
log n√

n−mn

)
= P

(∣∣∣∣∣
mn∑
k=1

akεk

∣∣∣∣∣ > λmnamn

√
log n√

n−mn

)

⩽ exp

(−λ2a2

mn
m2

n log n
(n−mn)νmn

)
where νmn =

∑mn
k=1

a2

k and εk = Sk − γk−1Sk−1
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Gaussian fluctuations of p̂n

Since 0 ⩽ p < 3/4, we have

lim
n→+∞

n2p−1an = Γ(2p) and lim
n→+∞

n4p−3νn =
Γ2(2p)
3 − 4p

.

So, we get

P

(∣∣∣∣∣n−mn

log n

(
Smn

mn

)
2

> λ2

)
≲ exp

(
−λ2(3 − 4p)mn log n

n−mn

)
≲ n

−λ2(3−4p)θ
1−θ −−−−→

n→+∞
0.

That is,

n−mn

log n

(
Smn

mn

)
2

P−−−−→
n→+∞

0.
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Gaussian fluctuations of p̂n

So, we get the following QWLLN:

1

log n

n∑
k=1

T 2

k =
1

log n

mn∑
k=1

(
Sk
k

)
2

+
n−mn

log n

(
Smn

mn

)
2

P−−−−→
n→+∞

1

3 − 4p

and (log n)−1Vn
P−−−−→

n→+∞
2/(3 − 4p). Moreover, for any ε > 0,

Ln(ε) :=
1

log n

n−1∑
k=1

E[(Mk+1 −Mk)
2 11{|Mk+1−Mk |>ε

√
log n}|Fk ] ⩽

2Vn

ε2(log n)2

So, we get Ln(ε)
P−−−−→

n→+∞
0. Moreover, from the QWLLN, we have

n−1∑
k=1

(
Mk+1 −Mk√

log n

)
2

P−−−−→
n→+∞

1

3 − 4p
.
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Gaussian fluctuations of p̂n

Theorem (McLeish, 1974)

Let (Mk,n,Fk,n)1⩽k⩽n be a zero-mean, square-integrable martingale array with
differences (Xk,n)1⩽k⩽n and let η2 be an a.s. finite random variable. Assume that∑n

k=1
X 2

k,n
P−−−−→

n→+∞
η2

For any ε > 0,
∑n

k=1
E[X 2

k,n|Fk−1,n]
P−−−−→

n→+∞
0

Fk,n ⊂ Fk,n+1 for any 1 ⩽ k ⩽ n

Then,
n∑

k=1

Xk,n
Law−−−−→

n→+∞
Z

where Z has characteristic function E[exp(−η2t2/2)].
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Gaussian fluctuations of p̂n

Applying McLeish’s CLT, we obtain

Mn√
log n

Law−−−−→
n→+∞

N
(

0,
1

3 − 4p

)
.

Finally, by Slutsky’s lemma, we get

√
log n (p̂n − p) =

(
Vn

log n

)−1 Mn√
log n

Law−−−−→
n→+∞

N
(

0,
3 − 4p

4

)
.
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Gaussian fluctuations of p̂n

Applying McLeish’s CLT, we obtain

Mn√
log n

Law−−−−→
n→+∞

N
(

0,
1

3 − 4p

)
.

Finally, by Slutsky’s lemma, we get

√
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log n
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log n
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N
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)
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Conclusion
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Open questions

How to obtain the rate of convergence in the CLT for the ERW with gradually

increasing memory ?

How to obtain the rate of convergence for the estimator of p ?

How to extend the results for an ERW with memory {n−mn, ..., n} intead of

{1, ...,mn} with limn→+∞ n−1mn = θ ?
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