Flip Graphs and Matroids

Jean Cardinal, ULB
Outline

Flip Graphs

Problems

Matroids

Polymatroids

Hypergraphic polytopes

Graph associahedra

References
Table of Contents

Flip Graphs
Problems
Matroids
Polymatroids
Hypergraphic polytopes
Graph associahedra
References
Flip Graphs

Graph on a set of combinatorial objects, such that two adjacent objects differ by a single, reversible, exchange operation between elements composing the structure.
Flip Graphs

Graph on a set of combinatorial objects, such that two adjacent objects differ by a single, reversible, exchange operation between elements composing the structure.
Spanning trees
Permutations

(T. Piesk, Creative Commons)
Acyclic orientations

(D. Eppstein, Wikimedia commons)
Triangulations

(Fomin, Zelevinsky)
Perfect matchings
Table of Contents

Flip Graphs

Problems

Matroids

Polymatroids

Hypergraphic polytopes

Graph associahedra

References
Polytopal flip graphs

Many flip graphs are skeletons of polytopes:
Polytopal flip graphs

Many flip graphs are skeletons of polytopes:

- **Spanning trees** Spannning tree polytopes
 Edmonds 1971
Polytopal flip graphs

Many flip graphs are skeletons of polytopes:

Spanning trees Spanning tree polytopes
Permutations Permutohedra

Edmonds 1971

Schoute 1911, Guilbaud-Rosenstiehl 1963
Many flip graphs are skeletons of polytopes:

- **Spanning trees** Spanning tree polytopes Edmonds 1971
- **Permutations** Permutohedra Schoute 1911, Guilbaud-Rosenstiehl 1963
- **Acyclic orientations** Graphical zonotopes Greene 1977, Greene-Zaslavsky 1983

Polytopal flip graphs
Polytopal flip graphs

Many flip graphs are skeletons of polytopes:

Spanning trees Spanning tree polytopes Edmonds 1971

Permutations Permutohedra Schoute 1911, Guilbaud-Rosenstiehl 1963

Acyclic orientations Graphical zonotopes Greene 1977, Greene-Zaslavsky 1983

Triangulations Associahedra Tamari 1951, Stasheff 1963, Loday 2004
Polytopal flip graphs

Many flip graphs are skeletons of polytopes:

- **Spanning trees** Spanning tree polytopes
 - Edmonds 1971
- **Permutations** Permutohedra
 - Schoute 1911, Guilbaud-Rosenstiehl 1963
- **Acyclic orientations** Graphical zonotopes
 - Greene 1977, Greene-Zaslavsky 1983
- **Triangulations** Associahedra
 - Tamari 1951, Stasheff 1963, Loday 2004
- **Perfect matchings** Perfect matching polytope
 - Chvátal 1972
Polymatroidal flip graphs

Flip graphs are skeletons of (poly)matroid polytopes:
Polymatroidal flip graphs

Flip graphs are skeletons of (poly)matroid polytopes:

| Spanning tree polytopes | Matroids |
Flip graphs are skeletons of (poly)matroid polytopes:

<table>
<thead>
<tr>
<th>Spanning tree polytopes</th>
<th>Matroids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permutohedra</td>
<td>Polymatroids</td>
</tr>
<tr>
<td>Associahedra</td>
<td></td>
</tr>
<tr>
<td>Graphical zonotopes</td>
<td></td>
</tr>
</tbody>
</table>
Polymatroidal flip graphs

Flip graphs are skeletons of (poly)matroid polytopes:

<table>
<thead>
<tr>
<th>Spanning tree polytopes</th>
<th>Matroids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permutohedra</td>
<td>Polymatroids</td>
</tr>
<tr>
<td>Associahedra</td>
<td></td>
</tr>
<tr>
<td>Graphical zonotopes</td>
<td></td>
</tr>
<tr>
<td>Perfect matching polytope</td>
<td>Matroid intersections</td>
</tr>
</tbody>
</table>
Flip distances

Given two vertices of the polytope, can we efficiently compute the shortest path between them, on the skeleton of the polytope?
Flip distances

Given two vertices of the polytope, can we efficiently compute the shortest path between them, on the skeleton of the polytope?

Given two combinatorial objects of the same size, can we efficiently compute the flip distance between them?
Flip distances

Given two vertices of the polytope, can we efficiently compute the shortest path between them, on the skeleton of the polytope?

Given two combinatorial objects of the same size, can we efficiently compute the flip distance between them?

Geodesics vs. Combinatorial reconfiguration formulation
Flip distances

Given two vertices of the polytope, can we efficiently compute the shortest path between them, on the skeleton of the polytope?

Given two combinatorial objects of the same size, can we efficiently compute the flip distance between them?

Geodesics vs. Combinatorial reconfiguration formulation

https://reconf.wikidot.com/
Flip distances

Given two vertices of the polytope, can we efficiently compute the shortest path between them, on the skeleton of the polytope?

Given two combinatorial objects of the same size, can we efficiently compute the flip distance between them?

Geodesics vs. Combinatorial reconfiguration formulation
https://reconf.wikidot.com/

What is the complexity of computing the rotation distance between two binary trees?
Diameter

What is the diameter of the polytope?
Diameter

What is the diameter of the polytope?

What is the largest flip distance between any two combinatorial objects of some size?
Diameter

What is the diameter of the polytope?

What is the largest flip distance between any two combinatorial objects of some size?

Two questions:

Combinatorial What are the best upper and lower bounds?

Computational Can we compute the diameter efficiently?
Diameter

What is the diameter of the polytope?

What is the largest flip distance between any two combinatorial objects of some size?

Two questions:

Combinatorial What are the best upper and lower bounds?

Computational Can we compute the diameter efficiently?

Hirsch conjecture: The diameter of dimension n polytopes with f faces is at most $f - n$.

Santos 2012
Diameter

What is the diameter of the polytope?

What is the largest flip distance between any two combinatorial objects of some size?

Two questions:

Combinatorial What are the best upper and lower bounds?

Computational Can we compute the diameter efficiently?

Hirsch conjecture: The diameter of dimension n polytopes with f faces is at most f/n.

Santos 2012

Polynomial Hirsch conjecture: The diameter of dimension n polytopes with f faces is at most some polynomial in n and f.
Hamiltonicity

Is the skeleton of the polytope Hamiltonian?

Hamilton 1856
Hamiltonicity

Is the skeleton of the polytope Hamiltonian?

Is there a **Gray code** for the combinatorial objects?

Hamilton 1856
Hamiltonicity

Is the skeleton of the polytope Hamiltonian? Hamilton 1856

Is there a Gray code for the combinatorial objects?

Again, two versions:

Combinatorial Does there always exist a Hamiltonian cycle?
Computational Can we compute it efficiently, say with bounded delay?
Table of Contents

Flip Graphs

Problems

Matroids

Polymatroids

Hypergraphic polytopes

Graph associahedra

References
Matroids

A matroid can also be defined as $M = (E, \mathcal{B})$, where \mathcal{B} is a set of bases, satisfying the basis exchange axiom:
Matroids

A matroid can also be defined as $M = (E, B)$, where B is a set of bases, satisfying the basis exchange axiom:

If A and B are two distinct bases, then for any element $a \in A \setminus B$, there exists an element $b \in B \setminus A$ such that $A \setminus \{a\} \cup \{b\} \in B$.

Whitney 1935, Nakasawa 1935-38, McLane 1936, Rado 1940s, Tutte 1950s
The bases of M are its maximal independent sets.
Bases

- \(\{a, b, c\} \) with \(11100 \)
- \(\{a, b, d\} \) with \(11010 \)

\[\begin{align*}
\text{Base} & \quad \text{Label} & \text{Index} \\
\{a, b, c\} & \quad abc & \quad 11100 \\
\{a, b, d\} & \quad abd & \quad 11010
\end{align*} \]
Matroid polytopes

The polytope of M is the convex hull of the indicator vectors of the bases of M:

$$P_M = \text{conv}\{e_B : B \in \mathcal{B}\}$$
Matroid polytopes

The polytope of M is the convex hull of the indicator vectors of the bases of M:

$$P_M = \text{conv}\{e_B : B \in \mathcal{B}\}$$

Theorem

A 0/1 polytope P is the polytope of a matroid if and only if:

- every edge of P is a translate of $e_i - e_j$, for some i, j,
- there exists a submodular rank function $r : 2^E \rightarrow \mathbb{N}$ s.t.:

$$P = P_r := \{x \in \mathbb{R}^E : \sum_{i \in U} x_i \leq r(U) \forall U \subset E \land \sum_{i \in E} x_i = r(E)\}.$$

Gel’fand, Goresky, MacPherson, Serganova 1987
Distances and Hamiltonicity

- From the basis exchange axiom, the distance between two bases A and B is exactly $|AΔB|/2$.

• Can be computed in polynomial time using the Matroid Union theorem and Edmonds' Matroid partition algorithm.

• It is known that any 0/1 polytope is Hamilton-connected.

Edmonds 1965

Naddef-Pulleyblank 1984

Efficient Gray codes using linear optimization as a black box.

Merino-Mütze 2023
Distances and Hamiltonicity

- From the basis exchange axiom, the distance between two bases A and B is exactly $|A \Delta B|/2$.
- The diameter $\delta(P_M)$ is therefore (half) the maximum symmetric difference between two bases.

References

- Edmonds 1965
- Naddef-Pulleyblank 1984
- Merino-Mütze 2023
Distances and Hamiltonicity

• From the basis exchange axiom, the distance between two bases A and B is exactly $|A \Delta B|/2$.

• The diameter $\delta(P_M)$ is therefore (half) the maximum symmetric difference between two bases.

• Can be computed in polynomial time using the Matroid Union theorem and Edmonds’ Matroid partition algorithm.

 Edmonds 1965
Distances and Hamiltonicity

• From the basis exchange axiom, the distance between two bases A and B is exactly $|A\Delta B|/2$.
• The diameter $\delta(P_M)$ is therefore (half) the maximum symmetric difference between two bases.
• Can be computed in polynomial time using the Matroid Union theorem and Edmonds’ Matroid partition algorithm.

Edmonds 1965

• It is known that any 0/1 polytope is Hamilton-connected

Naddef-Pulleyblank 1984

• Efficient Gray codes using linear optimization as a black box

Merino-Mütze 2023
Table of Contents

Flip Graphs
Problems
Matroids
Polymatroids
Hypergraphic polytopes
Graph associahedra
References
Theorem

A polytope P is a polymatroid if and only if:

- every edge of P is parallel to $e_i - e_j$, for some i, j,
- there exists a submodular function $f : 2^E \mapsto \mathbb{R}$ s.t.:

$$P = P_f := \{ x \in \mathbb{R}^E : \sum_{i \in U} x_i \leq f(U) \ \forall U \subset E \land \sum_{i \in E} x_i = f(E) \}.$$
Polymatroids

Theorem

A polytope P is a polymatroid if and only if:

- every edge of P is parallel to $e_i - e_j$, for some i, j,
- there exists a submodular function $f : 2^E \mapsto \mathbb{R}$ s.t.:

\[
P = P_f := \{ x \in \mathbb{R}^E : \sum_{i \in U} x_i \leq f(U) \ \forall U \subset E \ \land \ \sum_{i \in E} x_i = f(E) \}.
\]

- Greedy optimization algorithm
- Aka generalized permutahedra, or submodular polyhedra
Table of Contents

Flip Graphs

Problems

Matroids

Polymatroids

Hypergraphic polytopes

Graph associahedra

References
Acyclic orientations and graphical zonotopes

Given a simple, connected graph $G = ([n], E)$, let $f : 2^n \to \mathbb{N}$,

$$f(U) = |\{e \in E : e \cap U \neq \emptyset\}|.$$
Acyclic orientations and graphical zonotopes

Given a simple, connected graph $G = ([n], E)$, let $f : 2^{[n]} \to \mathbb{N}$,

$$f(U) = |\{ e \in E : e \cap U \neq \emptyset \}|.$$

- P_f is the **Graphical zonotope** of G.

 Greene 1977, Greene-Zaslavsky 1983

- P_f is also the **Minkowski sum** of segments

 \[\text{conv}\{e_i, e_j\}, \ ij \in E. \]
Acyclic orientations and graphical zonotopes

Given a simple, connected graph $G = ([n], E)$, let $f : 2^{[n]} \to \mathbb{N}$,

$$f(U) = |\{e \in E : e \cap U \neq \emptyset\}|.$$

• P_f is the **Graphical zonotope** of G.

 Greene 1977, Greene-Zaslavsky 1983

• P_f is also the **Minkowski sum** of segments

 \[\text{conv}\{e_i, e_j\}, \ ij \in E. \]

• The skeleton of P_f is the **flip graph on acyclic orientations** of G.

Acyclic orientations and graphical zonotopes

Given a simple, connected graph $G = ([n], E)$, let $f : 2^n \to \mathbb{N}$,

$$f(U) = |\{e \in E : e \cap U \neq \emptyset\}|.$$

- P_f is the Graphical zonotope of G.
 Greene 1977, Greene-Zaslavsky 1983

- P_f is also the Minkowski sum of segments
 $\text{conv}\{e_i, e_j\}, \ ij \in E$.

- The skeleton of P_f is the flip graph on acyclic orientations of G.

- Distances and diameter: Easy.

- Hamiltonicity: not always. When exactly is an open problem.
Example: Permutahedron

When G is the complete graph, we obtain all permutations.
Example: Bilinski dodecahedron

When G is a 4-cycle.
Hypergraphic polytopes

Given a hypergraph $H = (V, E)$, where $E \subseteq 2^V \setminus \{\emptyset\}$, let $f_H : 2^V \to \mathbb{N}$ be defined as

$$f_H(U) := |\{ e \in E : e \cap U \neq \emptyset \}|.$$
Hypergraphic polytopes

Given a hypergraph $H = (V, \mathcal{E})$, where $\mathcal{E} \subseteq 2^V \setminus \{\emptyset\}$, let $f_H : 2^V \to \mathbb{N}$ be defined as

$$f_H(U) := |\{ e \in \mathcal{E} : e \cap U \neq \emptyset \}|.$$

- Minkowski sum of standard simplices
Hypergraphic polytopes

Given a hypergraph $H = (V, \mathcal{E})$, where $\mathcal{E} \subseteq 2^V \setminus \{\emptyset\}$, let $f_H : 2^V \to \mathbb{N}$ be defined as

$$f_H(U) := |\{ e \in \mathcal{E} : e \cap U \neq \emptyset \}|.$$

- Minkowski sum of standard simplices
- Vertices \leftrightarrow Acyclic orientations of hypergraphs, edges \leftrightarrow flips

Benedetti, Bergeron, Machacek 2018, C., Hoang, Merino, Mička, Mütze 2023
Flip distances in hypergraphic polytopes

Theorem

Computing the flip distance between two acyclic orientations of hypergraph H is APX-hard even when the input hypergraph $H = (V, \mathcal{E})$ is known to have bounded maximum degree and be such that $|e| \leq 3$ for every $e \in \mathcal{E}$.

C., Steiner 2023
Associahedra are hypergraphic

Let $H = ([n], E)$ be the set of intervals in $[n]$:

$$E := \{\{i, i + 1, \ldots, j\} : 1 \leq i < j \leq n\}.$$

Then the hypergraphic polytope of H is Loday's associahedron.

Loday 2004
Associahedra are hypergraphic

Let $H = ([n], \mathcal{E})$ be the set of intervals in $[n]$:

$$\mathcal{E} := \{\{i, i+1, \ldots, j\} : 1 \leq i < j \leq n\}.$$

Then the hypergraphic polytope of H is Loday’s associahedron.

- Complexity of computing flip distances: wide open!
Associahedra are hypergraphic.

Let \(H = ([n], \mathcal{E}) \) be the set of intervals in \([n]\):

\[
\mathcal{E} := \{\{i, i+1, \ldots, j\} : 1 \leq i < j \leq n\}.
\]

Then the hypergraphic polytope of \(H \) is Loday's associahedron.

Loday 2004

- Complexity of computing flip distances: wide open!
- Diameter is exactly \(2n - 6 \).

Sleator, Tarjan, Thurston 1988, Pournin 2014
Associahedra are hypergraphic

Let $H = ([n], \mathcal{E})$ be the set of intervals in $[n]$:

$$\mathcal{E} := \{\{i, i + 1, \ldots, j\} : 1 \leq i < j \leq n\}.$$

Then the hypergraphic polytope of H is Loday’s associahedron.

Loday 2004

- Complexity of computing flip distances: wide open!
- Diameter is exactly $2n - 6$.

Sleator, Tarjan, Thurston 1988, Pournin 2014

- Hamiltonicity: Yes.

Lucas 1987, Lucas, Roelants van Baronaigien, Ruskey 1993
Table of Contents

- Flip Graphs
- Problems
- Matroids
- Polymatroids
- Hypergraphic polytopes
- Graph associahedra
- References
Graph associahedra and elimination trees

When \(H = (V, \mathcal{E}) \) is the graphical building set of a graph \(G = (V, E) \):

\[
\mathcal{E} := \{ S \subseteq V : G[S] \text{ is connected} \},
\]

then the hypergraphic polytope \(P_H \) of \(H \) is the graph associahedron of \(G \).
Graph associahedra and elimination trees

When $H = (V, \mathcal{E})$ is the graphical building set of a graph $G = (V, E)$:

$$\mathcal{E} := \{ S \subseteq V : G[S] \text{ is connected}\},$$

then the hypergraphic polytope P_H of H is the graph associahedron of G.

- Vertices of P_H are one-to-one with elimination trees of G,
- and the skeleton of P_H is the rotation graph on elimination trees of $G.$
Elimination trees

\[a, b, c, d, e, f, g \]
Elimination trees
Elimination trees
Rotations in elimination trees
Graph Associahedra

associahedron

permutahedron

stellohedron
Distances and diameters of graph associahedra

- **Distances:** Computing rotation distances is NP-hard

 Ito, Kakimura, Kamiyama, Kobayashi, Maezawa, Nozaki, Okamoto 2023
Distances and diameters of graph associahedra

• **Distances:** Computing rotation distances is NP-hard
 Ito, Kakimura, Kamiyama, Kobayashi, Maezawa, Nozaki, Okamoto 2023

 ... unless the graph is a star or a complete split graph.
 C., Pournin, Valencia-Pabon 2023

• **Diameter:**
 • **Tree** associahedra have worst-case diameter $\Theta(n \log n)$
 C., Langerman, Perez-Lantero 2018
Distances and diameters of graph associahedra

• **Distances:** Computing rotation distances is NP-hard
 Ito, Kakimura, Kamiyama, Kobayashi, Maezawa, Nozaki, Okamoto 2023

• ... unless the graph is a star or a complete split graph.
 C., Pournin, Valencia-Pabon 2023

• **Diameter:**
 • Tree associahedra have worst-case diameter $\Theta(n \log n)$
 C., Langerman, Perez-Lantero 2018
 • Tight bounds for complete split or complete bipartite graph associahedra.
 C., Pournin, Valencia-Pabon 2022
Distances and diameters of graph associahedra

• **Distances:** Computing rotation distances is NP-hard
 Ito, Kakimura, Kamiyama, Kobayashi, Maezawa, Nozaki, Okamoto 2023
 ... unless the graph is a star or a complete split graph.
 C., Pournin, Valencia-Pabon 2023

• **Diameter:**
 • *Tree* associahedra have worst-case diameter $\Theta(n \log n)$
 C., Langerman, Perez-Lantero 2018
 • Tight bounds for complete split or complete bipartite graph
 associahedra.
 C., Pournin, Valencia-Pabon 2022

• **Hamiltonicity:** Always!
 Manneville-Pilaud 2015, C., Merino, Mütze 2023
Table of Contents

Flip Graphs
Problems
Matroids
Polymatroids
Hypergraphic polytopes
Graph associahedra

References
Associahedra

Polymatroids and generalized permutohedra

Acyclic orientations

Graph associahedra

Computational complexity

