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Statement

Define

L
(−1+λ)
n (x) =

n

∑
k=0

(
n

k
)(k + λ)(k + 1 + λ)⋯(n − 1 + λ)xk

Then the following is true:

Theorem

The (Hankel) matrix H = (L
(−1+λ)
n+k (x))

n,k≥0
is coefficientwise totally

positive, i.e., all minors of H have non-negative coefficients.

Conjectured by Corteel and Sokal (unpublished) in 2017.

First proof by Bao-Xuan Zhu (2021)

We provide a multivariate generalisation
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Introduction

Definition (Total Positivity (TP))

A matrix of real numbers said to be totally positive (TP) if all its minors
are non-negative

i.e., determinants of all finite square submatrices are
non-negative.

Need not be a square matrix,

Will consider a matrix of polynomials soon!
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Historical Note

First defined independently by two different groups in the 30s

(a) M.G. Krein (1907-1989) (b) I.J. Schoenberg
(1903-1990)

Source: MacTutor History of Mathematics Archive

We use Schoenberg’s terminology.
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Hankel Matrix

Given a sequence a0, a1, . . . the infinite matrix H∞(a) whose ijth entry is
ai+j is called the Hankel matrix of (an)n≥0.

a0 a1 a2 a3 a4 . . .
a1 a2 a3 a4 a5 . . .
a2 a3 a4 a5 a6 . . .
a3 a4 a5 a6 a7 . . .
a4 a5 a6 a7 a8 . . .
⋮ ⋮ ⋮ ⋮ ⋮

We say that a sequence (an)n≥0 is Hankel-totally positive (Hankel-TP in
short) if its Hankel matrix is TP.
It implies that the sequence is log-convex but much stronger.
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Fundamental Fact about Hankel-TP

Theorem (Stieltjes(1894) + Gantmacher-Krein(1937))

For a sequence (an)n≥0 of real numbers. TFAE:

1 (an)n≥0 is Hankel-TP.

2 There exists a positive measure µ on [0,∞) such that

an = ∫
∞

0
xndµ(x)

for all n ≥ 0.

3 There exists numbers α0, α1, . . . ≥ 0 such that

∞

∑
n=0

ant
n
=

α0

1 −
α1t

1 −
α2t

1 − ⋱

.
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Many important combinatorial sequences are Stieltjes moment sequences

Catalan numbers.
Have αn 1,1,1,1,1,1,1. . ..

n!.
Have αn 1,1,2,2,3,3,4,4,. . ..

(2n − 1)!! = 1 × 3 ×⋯ × (2n − 1).
Have αn 1,2,3,4,5,6,. . ..
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Slide from talk of Elvey Price, Permutation Patterns 2023

8 41



Refined counting

We often count using polynomials rather than integers.
Example:

Bell polynomials Bn(x) = ∑
n
k=0 {

n
k
}xk count number of set partitions

of the set {1,2, . . . ,n} by keeping track of the number of blocks.

Stirling cycle polynomials x(x + 1)⋯(x + n − 1) = ∑
n
k=0 [

n
k
]xk .

Count permutations of n letters with k cycles.

Eulerian polynomials ∑
n
k=0 ⟨

n
k
⟩xk . Count permutations of n letters

with k descents.

These polynomials can also be multivariate counting several statistics
simultaneously.
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Coefficientwise TP

We extend the notion of total positivity to matrices of polynomials:

Definition (Coefficientwise TP)

A matrix of polynomials with real coefficients is said to be coefficientwise
totally positive (coefficientwise TP) if all its minors have non-negative
coefficients.

One or several variables.

Coefficientwise TP Ô⇒ Pointwise TP.

But much stronger.

Coefficientwise TP of Hankel matrix of a sequence (pn(x))n≥0 implies its
coefficientwise log-convex
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Recall fact about Hankel-TP

Theorem (Stieltjes(1894) + Gantmacher-Krein(1937))

For a sequence (an)n≥0 of real numbers. TFAE:

1 (an)n≥0 is Hankel-TP.

2 There exists a positive measure µ on [0,∞) such that

an = ∫
∞

0
xndµ(x)

for all n ≥ 0.

3 There exists numbers α0, α1, . . . ≥ 0 such that

∞

∑
n=0

ant
n
=

α0

1 −
α1t

1 −
α2t

1 − ⋱

.
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Coefficientwise Hankel TP from continued fractions

Theorem (Sokal(2014), Pétréolle–Sokal–Zhu (2023))

Let α = α1, α2, . . . be a sequence of indeterminates and let Sn(α) be a
polynomial defined by

∞

∑
n=0

Sn(α)tn ∶=
1

1 −
α1t

1 −
α2t

1 − ⋱

.

Then (Sn(α))n≥0 is coefficientwise Hankel-TP.

Easy corollary of Flajolet(1980)+ Lindström–Gessel–Viennot lemma.

Converse need not be true. Continued fraction only a sufficient condition
to prove coefficientwise Hankel-TP.
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Rising factorials

Euler (1760) found the following continued fraction:

∞

∑
n=0

x(x + 1)⋯(x + n − 1)tn =
1

1 −
xt

1 −
t

1 −
(x + 1)t

1 −
2t

1 −
(x + 2)t

1 −
3t

⋱

Thus the sequence of rising factorials is coefficientwise Hankel TP.
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Combinatorial theory of orthogonal polynomials

For a measure µ and sequence of monic polynomials (pn(x))n≥0 with
deg pn(x) = x , we say that (pn(x))n≥0 is orthogonal with respect to µ if

∫ pn(x)pm(x)dµ(x) = 0 for m ≠ n.
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Askey-scheme

Orthogonal polynomials of hypergeometric type are classified using the
Askey-scheme
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Big programme in combinatorics started in 1980s to find interpretations
for the moments (of the measures) and coefficients for these polynomials

Askey-Wilson moments are related to stationary distributions of particle
exclusion process models (Corteel–Williams 2010)
Several interesting combinatorial models

We will restrict to Laguerre polynomials
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Laguerre polynomials

Laguerre polynomials are a sequence of orthogonal polynomials

L(α)n (x) =
n

∑
k=0

(
n + α

n − k
)
(−x)k

k!

Orthogonal wrt measure µ(x) = xαe−x .

Moments are rising powers of α.
Combinatorialists’ Laguerre polynomials

L
(α)
n (x) = n!L(α)n (−x) =

n

∑
k=0

(
n

k
)(n + α)(n − 1 + α)⋯(k + 1 + α)xk
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Integral representation of Laguerre polynomials

For α ≥ −1 and x ≥ 0, the Laguerre polynomials are a Stieltjes moment
sequence

where Iα(z) is the modified Bessel function

Thus, these polynomials are themselves Stieltjes moment sequences.
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Conjecture

Based on this integral representation, Corteel and Sokal (2017)
conjectured

Conjecture

The sequence (L
(−1+λ)
n (x))

n≥0
is coefficientwise Hankel-TP in λ and x .

19 41



Statement of univariate result

Let

L = ((
n

k
)(k + λ)(k + 1 + λ)⋯(n − 1 + λ))

n,k≥0

be the matrix of coefficients of the Laguerre polynomials.

Theorem (Zhu(2021,22), D.–Dyachenko–Pétréolle–Sokal(’23))

(a) The matrix L is totally positive.

(b) The sequence (L
(−1+λ)
n (x))

n≥0
is coefficientwise Hankel-TP.

We also provide a multivariate generalisation.

First need a combinatorial interpretation.
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Laguerre digraph

Definition

A Laguerre digraph of size n is a directed graph where each vertex has a
distinct label from the label set {1, . . . ,n} and has indegree 0 or 1 and
outdegree 0 or 1.

Example:
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Connected components

Connected components

Directed cycle

Directed paths
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Laguerre digraphs generalise permutations

Laguerre digraphs generalise permutations in 2 different ways

1 No paths - Cyclic structure of permutations

σ = (1,5,2,6,7,3)(4)

2 One path, no cycles - linear structure of permutation

σ = 5614273
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Enumeration

LDn,k - Set of Laguerre digraphs on n vertices with k paths

Let G ∈ LDn,k

cyc(G) - number of cycles

pa(G) - number of paths

Here pa(G) = k

Proposition

∞

∑
n=0
∑

G∈LDn

λcyc(G)xpa(G)
tn

n!
= exp(

xt

1 − t
+ λ log

1

1 − t
)

In particular, LDn,k is enumerated by

∑
G∈LDn,k

λcyc(G) = (
n

k
)(n − 1 + λ)(n − 2 + λ)⋯(k + λ)

Therefore

∣LDn,k ∣ = (
n

k
)
n!

k!
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Enumeration

Proposition

∞

∑
n=0
∑

G∈LDn

λcyc(G)xpa(G)
tn

n!
= exp(

xt

1 − t
+ λ log

1

1 − t
)

Proof: Assign weights

t - each vertex

x - each path

λ - each cycle

∞

∑
n=0
∑

G∈LDn

λcyc(G)xpa(G)
tn

n!
= exp(

xt

1 − t
+ λ log

1

1 − t
)

Each Laguerre digraph is a labelled collection of directed paths and
directed cycles
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Nomenclature

Foata–Strehl (1984) call them Laguerre configurations

Other authors often use partial permutations

Slightly different definitions

Laguerre digraphs after Sokal (2022)

We have shown

L
(−1+λ)
n (x) = ∑

G∈LDn

λcyc(G)xpa(G)

26 41
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Classification of vertices

Let G ∈ LDn,k and let i be a vertex of G . We define

p(i): the predecessor of i if it exists else p(i) = 0.

s(i): the successor of i if it exists else s(i) = 0.

We classify the vertices i ∈ [n] into five types:

peak (p) if p(i) < i > s(i);

valley (v) if p(i) > i < s(i);

double ascent (da) if p(i) < i < s(i);

double descent (dd) if p(i) > i > s(i);

fixed point (fp) if p(i) = i = s(i).
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Illustration with example

Here

Peaks {7,10,9,8,11}

Valleys {1,6}

Double ascents {3}

Double descents {2,4}

Fixed points (or loops) {5}
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Multivariate Laguerre polynomials

Let wt(G) = y
p(G)
p y

v(G)
v y

da(G)
da y

dd(G)
dd y

fp(G)
fp λcyc(G)

Define

L
(−1+λ)
n (x ; yp, yv, yda, ydd, yfp) = ∑

G∈LDn

wt(G) xpa(G)
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Statement of multivariate result

Let

L =
⎛

⎝

1

ypk
∑

G∈LDn,k

wt(G)
⎞

⎠
n,k≥0

Theorem (D.–Dyachenko–Pétréolle–Sokal(’23))

Assume λyfp − λyp, (yda + ydd) − (yp + yv) are non-negative. Then

(a) The matrix L is totally positive.

(b) The sequence (L
(−1+λ)
n (x ; yp, yv, yda, ydd, yfp))

n≥0
is coefficientwise

Hankel-TP.

Proof uses the production-matrix method and Riordan arrays
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Production matrices

Let P = (pij)i,j≥0 be a row-finite or column-finite matrix.

Define matrix A = (an,k)n,k≥0 where an,k = (Pn)0k

(n-step walks on N from 0→ k with weight pij for step i → j)

Theorem

If matrix P is coefficientwise totally positive the

(a) the matrix A is totally positive.

(b) the sequence (an,0)n≥0 is Hankel-TP.

Gives a sufficient but far from necessary condition to prove TP.

Existence of S-fraction is a special case.
If P is tridiagonal matrix an,0 counts Motzkin paths of length n.
Hamburger moment sequences a la Flajolet (1980).
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Guessing production matrices

A guesswork problem: given a Hankel-TP sequence (an)n≥0 construct a
matrix A with an in its zeroth column such that production matrix of P is
TP.

If A is lower-triangular with invertible diagonal entries, production matrix
P can be computed

P = A−1∆A

where ∆ = (δi+1,j)i,j≥0.
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Proof of result

The proof consists of two steps:

1 Guess production matrix and prove that it is the production matrix.

2 Prove that the production matrix is totally positive.

The hardest part is usually to guess the production matrix.
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Guessing the production matrix

Strategy:

1 Find the production matrix P for the coefficient matrix L. In our
case, it is totally positive. Does not guarantee the Hankel-total
positivity of the row-generating polynomials.

2 Consider the matrix

Bx = ((
n

k
)xn−k)

n,k≥0

The matrix L ⋅Bx has the multivariate Laguerre polynomials in its
zeroth column. It has production matrix B−1

x PBx .

If both production matrices P and B−1
x PBx are totally positive, our

theorem is proved.

Turns out P is tridiagonal in our situation and B−1
x PBx is quadridiagonal.
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How we proved the theorem

1 To prove that the guessed production matrix is indeed the
production matrix, we have two proofs:

The coefficient matrix L is an exponential Riordan array. Used
general theory of production matrices for exponential Riordan arrays
to prove our production matrix P along with generating functions
due to Zeng (1994).
Bijective proof. Gives finer control and a lot more statistics on
Laguerre digraphs. Hope to extend to infinitely many statistics on
Laguerre digraphs.

2 Prove that P and B−1
x PBx are totally positive. Simple in the

univariate case but difficult in the multivariate case.
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The production matrices

The production matrix for the coefficient matrix L is

The production matrix for B−1
x LBx is
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Proof of production matrix: tridiagonal case

The production matrix P of L of factorises as P = P1P2 where P1 is a
lower bidiagonal matrix and P2 is an upper bidiagonal matrix.
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Proof of production matrix: quadridiagonal case

Let P be the production matrix for the matrix B−1
x LBx .

In the univariate case with yp = yv = yda = ydd = yfp = 1, the proof is
not too difficult and uses the tridiagonal comparison theorem. This
suffices for the original conjecture of Corteel–Sokal.

Non-trivial result for the multivariate case.
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Tridiagonal comparison theorem

Theorem

Let T be a tridiagonal matrix which is TP and let D be a diagonal
matrix with non-negative entries. Then the matrix T +D is also TP.

Particularly true when T = LU where L is upper bidiagonal and U is lower
bidiagonal, both with non-negative entries.

Very useful result for proving total positivity of tridiagonal matrices.
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Total positivity of quadridiagonal matrices

Theorem

Let L1,L2 be lower bidiagonal matrices, U be an upper bidiagonal matrix
and D1,D2 be two diagonal matrices, all with nonnegative entries.

Then
the matrix

P = L1UL2 +D1L2 + L1D1

is totally positive.

Proof via a difficult induction.
A non-trivial tridiagonal case is used to prove Hankel-total positivity of
Schett polynomials
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Final remarks

Given a measure, one can consider its sequence of moments and also
its sequence of orthogonal polynomials.

A lot of important combinatorial sequences are moment sequences.

The Laguerre polynomials are orthogonal polynomials as well as
moment sequences.

Coefficientwise Hankel total positivity generalises Stieltjes moment
sequences and important combinatorial polynomials seem to be
coefficientwise Hankel-TP.

The production-matrix method is a sufficient condition but far from
necessary tool used to prove coefficientwise Hankel-TP.

Tridiagonal production matrices have been considered for a long
time as Jacobi-type continued fraction. The Laguerre polynomials
are the first instance of a family of polynomials obtained using
quadridiagonal production matrices. Another family are the Schett
polynomials (D.–Sokal ’23).
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