Coefficientwise Hankel-total positivity of the Laguerre polynomials

Bishal Deb

Laboratoire de Probabilities, Statistique et Modelisation, Sorbonne Université and Université Paris-Cité, CNRS

May 28, 2024
Séminaire CALIN, LIPN

Based on joint work with
Alexander Dyachenko, Matthias Pétréolle, Alan Sokal

Statement

Define

$$
\mathcal{L}_{n}^{(-1+\lambda)}(x)=\sum_{k=0}^{n}\binom{n}{k}(k+\lambda)(k+1+\lambda) \cdots(n-1+\lambda) x^{k}
$$

Then the following is true:

Statement

Define

$$
\mathcal{L}_{n}^{(-1+\lambda)}(x)=\sum_{k=0}^{n}\binom{n}{k}(k+\lambda)(k+1+\lambda) \cdots(n-1+\lambda) x^{k}
$$

Then the following is true:

Theorem

The (Hankel) matrix $H=\left(\mathcal{L}_{n+k}^{(-1+\lambda)}(x)\right)_{n, k \geq 0}$ is coefficientwise totally positive,

Statement

Define

$$
\mathcal{L}_{n}^{(-1+\lambda)}(x)=\sum_{k=0}^{n}\binom{n}{k}(k+\lambda)(k+1+\lambda) \cdots(n-1+\lambda) x^{k}
$$

Then the following is true:

Theorem

The (Hankel) matrix $H=\left(\mathcal{L}_{n+k}^{(-1+\lambda)}(x)\right)_{n, k \geq 0}$ is coefficientwise totally positive, i.e., all minors of H have non-negative coefficients.

Define

$$
\mathcal{L}_{n}^{(-1+\lambda)}(x)=\sum_{k=0}^{n}\binom{n}{k}(k+\lambda)(k+1+\lambda) \cdots(n-1+\lambda) x^{k}
$$

Then the following is true:

Theorem

The (Hankel) matrix $H=\left(\mathcal{L}_{n+k}^{(-1+\lambda)}(x)\right)_{n, k \geq 0}$ is coefficientwise totally positive, i.e., all minors of H have non-negative coefficients.

Conjectured by Corteel and Sokal (unpublished) in 2017.

Define

$$
\mathcal{L}_{n}^{(-1+\lambda)}(x)=\sum_{k=0}^{n}\binom{n}{k}(k+\lambda)(k+1+\lambda) \cdots(n-1+\lambda) x^{k}
$$

Then the following is true:

Theorem

The (Hankel) matrix $H=\left(\mathcal{L}_{n+k}^{(-1+\lambda)}(x)\right)_{n, k \geq 0}$ is coefficientwise totally positive, i.e., all minors of H have non-negative coefficients.

Conjectured by Corteel and Sokal (unpublished) in 2017.
First proof by Bao-Xuan Zhu (2021)

Define

$$
\mathcal{L}_{n}^{(-1+\lambda)}(x)=\sum_{k=0}^{n}\binom{n}{k}(k+\lambda)(k+1+\lambda) \cdots(n-1+\lambda) x^{k}
$$

Then the following is true:

Theorem

The (Hankel) matrix $H=\left(\mathcal{L}_{n+k}^{(-1+\lambda)}(x)\right)_{n, k \geq 0}$ is coefficientwise totally positive, i.e., all minors of H have non-negative coefficients.

Conjectured by Corteel and Sokal (unpublished) in 2017.
First proof by Bao-Xuan Zhu (2021)
We provide a multivariate generalisation

Introduction

Definition (Total Positivity (TP))

A matrix of real numbers said to be totally positive (TP) if all its minors are non-negative

Introduction

Definition (Total Positivity (TP))

A matrix of real numbers said to be totally positive (TP) if all its minors are non-negative i.e., determinants of all finite square submatrices are non-negative.

Introduction

Definition (Total Positivity (TP))

A matrix of real numbers said to be totally positive (TP) if all its minors are non-negative i.e., determinants of all finite square submatrices are non-negative.

Array of numbers and not linear operator.

Introduction

Definition (Total Positivity (TP))

A matrix of real numbers said to be totally positive (TP) if all its minors are non-negative i.e., determinants of all finite square submatrices are non-negative.

Array of numbers and not linear operator.
Need not be a square matrix,

Introduction

Definition (Total Positivity (TP))

A matrix of real numbers said to be totally positive (TP) if all its minors are non-negative i.e., determinants of all finite square submatrices are non-negative.

Array of numbers and not linear operator.
Need not be a square matrix, or finite!

Introduction

Definition (Total Positivity (TP))

A matrix of real numbers said to be totally positive (TP) if all its minors are non-negative i.e., determinants of all finite square submatrices are non-negative.

Array of numbers and not linear operator.
Need not be a square matrix, or finite!
Will consider a matrix of polynomials soon!

Historical Note

First defined independently by two different groups in the 30s

(a) M.G. Krein (1907-1989)

(b) I.J. Schoenberg (1903-1990)

Source: MacTutor History of Mathematics Archive
We use Schoenberg's terminology.

Hankel Matrix

Given a sequence a_{0}, a_{1}, \ldots the infinite matrix $H_{\infty}(\mathbf{a})$ whose $i j^{\text {th }}$ entry is a_{i+j} is called the Hankel matrix of $\left(a_{n}\right)_{n \geq 0}$.

a_{0}	a_{1}	a_{2}	a_{3}	a_{4}	\ldots
a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	\ldots
a_{2}	a_{3}	a_{4}	a_{5}	a_{6}	\ldots
a_{3}	a_{4}	a_{5}	a_{6}	a_{7}	\ldots
a_{4}	a_{5}	a_{6}	a_{7}	a_{8}	\ldots
\vdots	\vdots	\vdots	\vdots	\vdots	

Hankel Matrix

Given a sequence a_{0}, a_{1}, \ldots the infinite matrix $H_{\infty}(\mathbf{a})$ whose $i j^{\text {th }}$ entry is a_{i+j} is called the Hankel matrix of $\left(a_{n}\right)_{n \geq 0}$.

a_{0}	a_{1}	a_{2}	a_{3}	a_{4}	\ldots
a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	\ldots
a_{2}	a_{3}	a_{4}	a_{5}	a_{6}	\ldots
a_{3}	a_{4}	a_{5}	a_{6}	a_{7}	\ldots
a_{4}	a_{5}	a_{6}	a_{7}	a_{8}	\ldots
\vdots	\vdots	\vdots	\vdots	\vdots	

We say that a sequence $\left(a_{n}\right)_{n \geq 0}$ is Hankel-totally positive (Hankel-TP in short) if its Hankel matrix is TP.

Hankel Matrix

Given a sequence a_{0}, a_{1}, \ldots the infinite matrix $H_{\infty}(\mathbf{a})$ whose $i j^{\text {th }}$ entry is a_{i+j} is called the Hankel matrix of $\left(a_{n}\right)_{n \geq 0}$.

a_{0}	a_{1}	a_{2}	a_{3}	a_{4}	\ldots
a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	\ldots
a_{2}	a_{3}	a_{4}	a_{5}	a_{6}	\ldots
a_{3}	a_{4}	a_{5}	a_{6}	a_{7}	\ldots
a_{4}	a_{5}	a_{6}	a_{7}	a_{8}	\ldots
\vdots	\vdots	\vdots	\vdots	\vdots	

We say that a sequence $\left(a_{n}\right)_{n \geq 0}$ is Hankel-totally positive (Hankel-TP in short) if its Hankel matrix is TP.
It implies that the sequence is log-convex but much stronger.

Theorem (Stieltjes(1894) + Gantmacher-Krein(1937))
For a sequence $\left(a_{n}\right)_{n \geq 0}$ of real numbers. TFAE:

Theorem (Stieltjes(1894) + Gantmacher-Krein(1937))
For a sequence $\left(a_{n}\right)_{n \geq 0}$ of real numbers. TFAE:
(1) $\left(a_{n}\right)_{n \geq 0}$ is Hankel-TP.

Fundamental Fact about Hankel-TP

Theorem (Stieltjes(1894) + Gantmacher-Krein(1937))

For a sequence $\left(a_{n}\right)_{n \geq 0}$ of real numbers. TFAE:
(1) $\left(a_{n}\right)_{n \geq 0}$ is Hankel-TP.
(2) There exists a positive measure μ on $[0, \infty)$ such that

$$
a_{n}=\int_{0}^{\infty} x^{n} d \mu(x)
$$

for all $n \geq 0$.

Fundamental Fact about Hankel-TP

Theorem (Stieltjes(1894) + Gantmacher-Krein(1937))

For a sequence $\left(a_{n}\right)_{n \geq 0}$ of real numbers. TFAE:
(1) $\left(a_{n}\right)_{n \geq 0}$ is Hankel-TP.
(2) There exists a positive measure μ on $[0, \infty)$ such that

$$
a_{n}=\int_{0}^{\infty} x^{n} d \mu(x)
$$

for all $n \geq 0$.
(3) There exists numbers $\alpha_{0}, \alpha_{1}, \ldots \geq 0$ such that

$$
\sum_{n=0}^{\infty} a_{n} t^{n}=\frac{\alpha_{0}}{1-\frac{\alpha_{1} t}{1-\frac{\alpha_{2} t}{1-\ddots}}} .
$$

Many important combinatorial sequences are Stieltjes moment sequences

- Catalan numbers. Have $\alpha_{n} 1,1,1,1,1,1,1 \ldots$

Many important combinatorial sequences are Stieltjes moment sequences

- Catalan numbers. Have $\alpha_{n} 1,1,1,1,1,1,1 \ldots$
- $n!$.

Have $\alpha_{n} 1,1,2,2,3,3,4,4, \ldots$.

Many important combinatorial sequences are Stieltjes moment sequences

- Catalan numbers. Have $\alpha_{n} 1,1,1,1,1,1,1 \ldots$
- $n!$.

Have $\alpha_{n} 1,1,2,2,3,3,4,4, \ldots$.

- $(2 n-1)!!=1 \times 3 \times \cdots \times(2 n-1)$. Have $\alpha_{n} 1,2,3,4,5,6, \ldots$

Slide from talk of Elvey Price, Permutation Patterns 2023

Guessing Stieltues-ness with OEIS

We ran the Euler-Viskovatov algorithm on all 304698 OEIS sequences with at least 15 terms (only considering terms a_{n} with $n \leq 150$ and $a_{n} \leq 10^{150}$).
For 6719 sequences the terms are consistent with being Stieltjes
$6719-\epsilon$ open questions: Which of these sequences are really Stieltjes?
Refined results:

- In 1667 such cases, one of the terms $\alpha_{j}=0$, so the generating function $A(t)$ is rational
- In 798 cases (including 328 rational cases), the coefficients α_{j} are all integers.
- For 7344 sequences the first 15 terms are consistent with being Stieltjes (625 of these not Stieltjes because of later terms)

Refined counting

We often count using polynomials rather than integers.
Example:

- Bell polynomials $B_{n}(x)=\sum_{k=0}^{n}\left\{\begin{array}{l}n \\ k\end{array}\right\} x^{k}$ count number of set partitions of the set $\{1,2, \ldots, n\}$ by keeping track of the number of blocks.

Refined counting

We often count using polynomials rather than integers.
Example:

- Bell polynomials $B_{n}(x)=\sum_{k=0}^{n}\left\{\begin{array}{l}n \\ k\end{array}\right\} x^{k}$ count number of set partitions of the set $\{1,2, \ldots, n\}$ by keeping track of the number of blocks.
- Stirling cycle polynomials $x(x+1) \cdots(x+n-1)=\sum_{k=0}^{n}\left[\begin{array}{l}n \\ k\end{array}\right] x^{k}$. Count permutations of n letters with k cycles.

Refined counting

We often count using polynomials rather than integers.
Example:

- Bell polynomials $B_{n}(x)=\sum_{k=0}^{n}\left\{\begin{array}{l}n \\ k\end{array}\right\} x^{k}$ count number of set partitions of the set $\{1,2, \ldots, n\}$ by keeping track of the number of blocks.
- Stirling cycle polynomials $x(x+1) \cdots(x+n-1)=\sum_{k=0}^{n}\left[\begin{array}{l}n \\ k\end{array}\right] x^{k}$. Count permutations of n letters with k cycles.
- Eulerian polynomials $\sum_{k=0}^{n}\binom{n}{k} x^{k}$. Count permutations of n letters with k descents.

Refined counting

We often count using polynomials rather than integers.
Example:

- Bell polynomials $B_{n}(x)=\sum_{k=0}^{n}\left\{\begin{array}{l}n \\ k\end{array}\right\} x^{k}$ count number of set partitions of the set $\{1,2, \ldots, n\}$ by keeping track of the number of blocks.
- Stirling cycle polynomials $x(x+1) \cdots(x+n-1)=\sum_{k=0}^{n}\left[\begin{array}{l}n \\ k\end{array}\right] x^{k}$. Count permutations of n letters with k cycles.
- Eulerian polynomials $\sum_{k=0}^{n}\binom{n}{k} x^{k}$. Count permutations of n letters with k descents.
These polynomials can also be multivariate counting several statistics simultaneously.

Coefficientwise TP

We extend the notion of total positivity to matrices of polynomials:
Definition (Coefficientwise TP)

Coefficientwise TP

We extend the notion of total positivity to matrices of polynomials:

Definition (Coefficientwise TP)

A matrix of polynomials with real coefficients is said to be coefficientwise totally positive (coefficientwise TP) if all its minors have non-negative coefficients.

One or several variables.

Coefficientwise TP

We extend the notion of total positivity to matrices of polynomials:

Definition (Coefficientwise TP)

A matrix of polynomials with real coefficients is said to be coefficientwise totally positive (coefficientwise TP) if all its minors have non-negative coefficients.

One or several variables.
Coefficientwise TP \Longrightarrow Pointwise TP.

Coefficientwise TP

We extend the notion of total positivity to matrices of polynomials:

Definition (Coefficientwise TP)

A matrix of polynomials with real coefficients is said to be coefficientwise totally positive (coefficientwise TP) if all its minors have non-negative coefficients.

One or several variables.
Coefficientwise TP \Longrightarrow Pointwise TP.
But much stronger.

Coefficientwise TP

We extend the notion of total positivity to matrices of polynomials:

Definition (Coefficientwise TP)

A matrix of polynomials with real coefficients is said to be coefficientwise totally positive (coefficientwise TP) if all its minors have non-negative coefficients.

One or several variables.
Coefficientwise TP \Longrightarrow Pointwise TP.
But much stronger.
Coefficientwise TP of Hankel matrix of a sequence $\left(p_{n}(x)\right)_{n \geq 0}$ implies its coefficientwise log-convex

Recall fact about Hankel-TP

Theorem (Stieltjes(1894) + Gantmacher-Krein(1937))

For a sequence $\left(a_{n}\right)_{n \geq 0}$ of real numbers. TFAE:
(1) $\left(a_{n}\right)_{n \geq 0}$ is Hankel-TP.
(2) There exists a positive measure μ on $[0, \infty)$ such that

$$
a_{n}=\int_{0}^{\infty} x^{n} d \mu(x)
$$

for all $n \geq 0$.
(3) There exists numbers $\alpha_{0}, \alpha_{1}, \ldots \geq 0$ such that

$$
\sum_{n=0}^{\infty} a_{n} t^{n}=\frac{\alpha_{0}}{1-\frac{\alpha_{1} t}{1-\frac{\alpha_{2} t}{1-\ddots}}} .
$$

Coefficientwise Hankel TP from continued fractions

Theorem (Sokal(2014), Pétréolle-Sokal-Zhu (2023))

Let $\boldsymbol{\alpha}=\alpha_{1}, \alpha_{2}, \ldots$ be a sequence of indeterminates and let $S_{n}(\boldsymbol{\alpha})$ be a polynomial defined by

$$
\sum_{n=0}^{\infty} S_{n}(\boldsymbol{\alpha}) t^{n}:=\frac{1}{1-\frac{\alpha_{1} t}{1-\frac{\alpha_{2} t}{1-\ddots}}} .
$$

Then $\left(S_{n}(\boldsymbol{\alpha})\right)_{n \geq 0}$ is coefficientwise Hankel-TP.

Coefficientwise Hankel TP from continued fractions

Theorem (Sokal(2014), Pétréolle-Sokal-Zhu (2023))

Let $\boldsymbol{\alpha}=\alpha_{1}, \alpha_{2}, \ldots$ be a sequence of indeterminates and let $S_{n}(\boldsymbol{\alpha})$ be a polynomial defined by

$$
\sum_{n=0}^{\infty} S_{n}(\boldsymbol{\alpha}) t^{n}:=\frac{1}{1-\frac{\alpha_{1} t}{1-\frac{\alpha_{2} t}{1-\ddots}}} .
$$

Then $\left(S_{n}(\boldsymbol{\alpha})\right)_{n \geq 0}$ is coefficientwise Hankel-TP.
Easy corollary of Flajolet(1980)+ Lindström-Gessel-Viennot lemma.

Coefficientwise Hankel TP from continued fractions

Theorem (Sokal(2014), Pétréolle-Sokal-Zhu (2023))

Let $\boldsymbol{\alpha}=\alpha_{1}, \alpha_{2}, \ldots$ be a sequence of indeterminates and let $S_{n}(\boldsymbol{\alpha})$ be a polynomial defined by

$$
\sum_{n=0}^{\infty} S_{n}(\boldsymbol{\alpha}) t^{n}:=\frac{1}{1-\frac{\alpha_{1} t}{1-\frac{\alpha_{2} t}{1-\ddots}}}
$$

Then $\left(S_{n}(\boldsymbol{\alpha})\right)_{n \geq 0}$ is coefficientwise Hankel-TP.
Easy corollary of Flajolet(1980)+ Lindström-Gessel-Viennot lemma.
Converse need not be true. Continued fraction only a sufficient condition to prove coefficientwise Hankel-TP.

Coefficientwise Hankel TP from continued fractions

Theorem (Sokal(2014), Pétréolle-Sokal-Zhu (2023))

Let $\boldsymbol{\alpha}=\alpha_{1}, \alpha_{2}, \ldots$ be a sequence of indeterminates and let $S_{n}(\boldsymbol{\alpha})$ be a polynomial defined by

$$
\sum_{n=0}^{\infty} S_{n}(\boldsymbol{\alpha}) t^{n}:=\frac{1}{1-\frac{\alpha_{1} t}{1-\frac{\alpha_{2} t}{1-\ddots}}}
$$

Then $\left(S_{n}(\boldsymbol{\alpha})\right)_{n \geq 0}$ is coefficientwise Hankel-TP.
Easy corollary of Flajolet(1980)+ Lindström-Gessel-Viennot lemma.
Converse need not be true. Continued fraction only a sufficient condition to prove coefficientwise Hankel-TP.

Coefficientwise Hankel TP from continued fractions

Theorem (Sokal(2014), Pétréolle-Sokal-Zhu (2023))

Let $\boldsymbol{\alpha}=\alpha_{1}, \alpha_{2}, \ldots$ be a sequence of indeterminates and let $S_{n}(\boldsymbol{\alpha})$ be a polynomial defined by

$$
\sum_{n=0}^{\infty} \underbrace{S_{n}(\boldsymbol{\alpha})}_{\text {Stieltjes-Rogers polynomials }} t^{n}:=\frac{1}{1-\frac{\alpha_{1} t}{1-\frac{\alpha_{2} t}{1-\ddots}}}
$$

Then $\left(S_{n}(\boldsymbol{\alpha})\right)_{n \geq 0}$ is coefficientwise Hankel-TP.
Easy corollary of Flajolet(1980)+ Lindström-Gessel-Viennot lemma.
Converse need not be true. Continued fraction only a sufficient condition to prove coefficientwise Hankel-TP.

Rising factorials

Euler (1760) found the following continued fraction:

$$
\sum_{n=0}^{\infty} x(x+1) \cdots(x+n-1) t^{n}=\frac{1}{1-\frac{x t}{1-\frac{t}{1-\frac{(x+1) t}{1-\frac{2 t}{1-\frac{(x+2) t}{1-\frac{3 t}{\ddots}}}}}}}
$$

Rising factorials

Euler (1760) found the following continued fraction:

$$
\sum_{n=0}^{\infty} x(x+1) \cdots(x+n-1) t^{n}=\frac{1}{1-\frac{x t}{1-\frac{t}{1-\frac{(x+1) t}{1-\frac{2 t}{1-\frac{(x+2) t}{3 t}}}}}}
$$

Thus the sequence of rising factorials is coefficientwise Hankel TP.

Combinatorial theory of orthogonal polynomials

For a measure μ and sequence of monic polynomials $\left(p_{n}(x)\right)_{n \geq 0}$ with $\operatorname{deg} p_{n}(x)=x$, we say that $\left(p_{n}(x)\right)_{n \geq 0}$ is orthogonal with respect to μ if $\int p_{n}(x) p_{m}(x) d \mu(x)=0$ for $m \neq n$.

Askey-scheme

Orthogonal polynomials of hypergeometric type are classified using the Askey-scheme

Askey-scheme

Orthogonal polynomials of hypergeometric type are classified using the Ackav_crhame

Askey scheme as proposed by Jacques Labelle at the first OPSFA meeting in Bar-Le-Duc (France) in 1984

Big programme in combinatorics started in 1980s to find interpretations for the moments (of the measures) and coefficients for these polynomials

Big programme in combinatorics started in 1980s to find interpretations for the moments (of the measures) and coefficients for these polynomials

Askey-Wilson moments are related to stationary distributions of particle exclusion process models (Corteel-Williams 2010) Several interesting combinatorial models

Big programme in combinatorics started in 1980s to find interpretations for the moments (of the measures) and coefficients for these polynomials

Askey-Wilson moments are related to stationary distributions of particle exclusion process models (Corteel-Williams 2010) Several interesting combinatorial models

We will restrict to Laguerre polynomials

Laguerre polynomials

Laguerre polynomials are a sequence of orthogonal polynomials

$$
L_{n}^{(\alpha)}(x)=\sum_{k=0}^{n}\binom{n+\alpha}{n-k} \frac{(-x)^{k}}{k!}
$$

Orthogonal wrt measure $\mu(x)=x^{\alpha} e^{-x}$.

Laguerre polynomials

Laguerre polynomials are a sequence of orthogonal polynomials

$$
L_{n}^{(\alpha)}(x)=\sum_{k=0}^{n}\binom{n+\alpha}{n-k} \frac{(-x)^{k}}{k!}
$$

Orthogonal wrt measure $\mu(x)=x^{\alpha} e^{-x}$.
Moments are rising powers of α.

Laguerre polynomials

Laguerre polynomials are a sequence of orthogonal polynomials

$$
L_{n}^{(\alpha)}(x)=\sum_{k=0}^{n}\binom{n+\alpha}{n-k} \frac{(-x)^{k}}{k!}
$$

Orthogonal wrt measure $\mu(x)=x^{\alpha} e^{-x}$.
Moments are rising powers of α.
Combinatorialists' Laguerre polynomials

$$
\mathcal{L}_{n}^{(\alpha)}(x)=n!L_{n}^{(\alpha)}(-x)=\sum_{k=0}^{n}\binom{n}{k}(n+\alpha)(n-1+\alpha) \cdots(k+1+\alpha) x^{k}
$$

Integral representation of Laguerre polynomials

For $\alpha \geq-1$ and $x \geq 0$, the Laguerre polynomials are a Stieltjes moment sequence

$$
\mathcal{L}_{n}^{(\alpha)}(x)=e^{-x} x^{-\alpha / 2} \int_{0}^{\infty} u^{n+\alpha / 2} e^{-u} I_{\alpha}(2 \sqrt{x u}) d u
$$

where $I_{\alpha}(z)$ is the modified Bessel function

$$
I_{\alpha}(z)=\sum_{k=0}^{\infty} \frac{(z / 2)^{\alpha+2 k}}{k!\Gamma(\alpha+k+1)} .
$$

Integral representation of Laguerre polynomials

For $\alpha \geq-1$ and $x \geq 0$, the Laguerre polynomials are a Stieltjes moment sequence

$$
\mathcal{L}_{n}^{(\alpha)}(x)=e^{-x} x^{-\alpha / 2} \int_{0}^{\infty} u^{n+\alpha / 2} e^{-u} I_{\alpha}(2 \sqrt{x u}) d u
$$

where $I_{\alpha}(z)$ is the modified Bessel function

$$
I_{\alpha}(z)=\sum_{k=0}^{\infty} \frac{(z / 2)^{\alpha+2 k}}{k!\Gamma(\alpha+k+1)} .
$$

Thus, these polynomials are themselves Stieltjes moment sequences.

Conjecture

Based on this integral representation, Corteel and Sokal (2017) conjectured

Conjecture

The sequence $\left(\mathcal{L}_{n}^{(-1+\lambda)}(x)\right)_{n \geq 0}$ is coefficientwise Hankel-TP in λ and x.

Statement of univariate result

Let

$$
\mathrm{L}=\left(\binom{n}{k}(k+\lambda)(k+1+\lambda) \cdots(n-1+\lambda)\right)_{n, k \geq 0}
$$

be the matrix of coefficients of the Laguerre polynomials.

Theorem (Zhu(2021,22), D.-Dyachenko-Pétréolle-Sokal('23))

(a) The matrix L is totally positive.
(b) The sequence $\left(\mathcal{L}_{n}^{(-1+\lambda)}(x)\right)_{n \geq 0}$ is coefficientwise Hankel-TP.

Statement of univariate result

Let

$$
\mathrm{L}=\left(\binom{n}{k}(k+\lambda)(k+1+\lambda) \cdots(n-1+\lambda)\right)_{n, k \geq 0}
$$

be the matrix of coefficients of the Laguerre polynomials.

Theorem (Zhu(2021,22), D.-Dyachenko-Pétréolle-Sokal('23))

(a) The matrix L is totally positive.
(b) The sequence $\left(\mathcal{L}_{n}^{(-1+\lambda)}(x)\right)_{n \geq 0}$ is coefficientwise Hankel-TP.

We also provide a multivariate generalisation.
First need a combinatorial interpretation.

Laguerre digraph

Definition

A Laguerre digraph of size n is a directed graph where each vertex has a distinct label from the label set $\{1, \ldots, n\}$ and has indegree 0 or 1 and outdegree 0 or 1 .

Laguerre digraph

Definition

A Laguerre digraph of size n is a directed graph where each vertex has a distinct label from the label set $\{1, \ldots, n\}$ and has indegree 0 or 1 and outdegree 0 or 1 .

Example:

Connected components

Connected components

Connected components

- Directed cycle
- Directed paths

Connected components

Connected components

- Directed cycle
- Directed paths

Laguerre digraphs generalise permutations

Laguerre digraphs generalise permutations in 2 different ways

Laguerre digraphs generalise permutations

Laguerre digraphs generalise permutations in 2 different ways
(1) No paths - Cyclic structure of permutations

$$
\sigma=(1,5,2,6,7,3)(4)
$$

Laguerre digraphs generalise permutations

Laguerre digraphs generalise permutations in 2 different ways
(1) No paths - Cyclic structure of permutations

$$
\sigma=(1,5,2,6,7,3)(4)
$$

(2) One path, no cycles - linear structure of permutation

Enumeration

$\mathrm{LD}_{n, k}$ - Set of Laguerre digraphs on n vertices with k paths

Enumeration

$\mathrm{LD}_{n, k}$ - Set of Laguerre digraphs on n vertices with k paths
Let $G \in \mathrm{LD}_{n, k}$
$\operatorname{cyc}(G)$ - number of cycles
$\mathrm{pa}(G)$ - number of paths
Here $\mathrm{pa}(G)=k$

Enumeration

$\mathrm{LD}_{n, k}$ - Set of Laguerre digraphs on n vertices with k paths
Let $G \in \mathrm{LD}_{n, k}$
$\operatorname{cyc}(G)$ - number of cycles
$\mathrm{pa}(G)$ - number of paths
Here $\mathrm{pa}(G)=k$

Proposition

$$
\sum_{n=0}^{\infty} \sum_{G \in \mathrm{LD}_{n}} \lambda^{\mathrm{cyc}(G)} x^{\mathrm{pa}(G)} \frac{t^{n}}{n!}=\exp \left(\frac{x t}{1-t}+\lambda \log \frac{1}{1-t}\right)
$$

In particular, $\mathrm{LD}_{n, k}$ is enumerated by

$$
\sum_{G \in \mathrm{LD}_{n, k}} \lambda^{\mathrm{cyc}(G)}=\binom{n}{k}(n-1+\lambda)(n-2+\lambda) \cdots(k+\lambda)
$$

Enumeration

$\mathrm{LD}_{n, k}$ - Set of Laguerre digraphs on n vertices with k paths
Let $G \in \mathrm{LD}_{n, k}$
$\operatorname{cyc}(G)$ - number of cycles
$\mathrm{pa}(G)$ - number of paths
Here $\mathrm{pa}(G)=k$

Proposition

$$
\sum_{n=0}^{\infty} \sum_{G \in \mathrm{LD}_{n}} \lambda^{\operatorname{cyc}(G)} x^{\mathrm{pa}(G)} \frac{t^{n}}{n!}=\exp \left(\frac{x t}{1-t}+\lambda \log \frac{1}{1-t}\right)
$$

In particular, $\mathrm{LD}_{n, k}$ is enumerated by

$$
\sum_{G \in \mathrm{LD}_{n, k}} \lambda^{\operatorname{cyc}(G)}=\binom{n}{k}(n-1+\lambda)(n-2+\lambda) \cdots(k+\lambda)
$$

Therefore

$$
\left|\mathrm{LD}_{n, k}\right|=\binom{n}{k} \frac{n!}{k!}
$$

Enumeration

Proposition

$$
\sum_{n=0}^{\infty} \sum_{G \in \mathrm{LD}_{n}} \lambda^{\operatorname{cyc}(G)} x^{\mathrm{pa}(G)} \frac{t^{n}}{n!}=\exp \left(\frac{x t}{1-t}+\lambda \log \frac{1}{1-t}\right)
$$

Enumeration

Proposition

$$
\sum_{n=0}^{\infty} \sum_{G \in \mathrm{LD}_{n}} \lambda^{\operatorname{cyc}(G)} x^{\operatorname{pa}(G)} \frac{t^{n}}{n!}=\exp \left(\frac{x t}{1-t}+\lambda \log \frac{1}{1-t}\right)
$$

Proof: Assign weights

Enumeration

Proposition

$$
\sum_{n=0}^{\infty} \sum_{G \in \mathrm{LD}_{n}} \lambda^{\operatorname{cyc}(G)} x^{\operatorname{pa}(G)} \frac{t^{n}}{n!}=\exp \left(\frac{x t}{1-t}+\lambda \log \frac{1}{1-t}\right)
$$

Proof: Assign weights

- t - each vertex
- x - each path
- λ - each cycle

Enumeration

Proposition

$$
\sum_{n=0}^{\infty} \sum_{G \in \mathrm{LD}_{n}} \lambda^{\operatorname{cyc}(G)} x^{\operatorname{pa}(G)} \frac{t^{n}}{n!}=\exp \left(\frac{x t}{1-t}+\lambda \log \frac{1}{1-t}\right)
$$

Proof: Assign weights

- t - each vertex
- x - each path
- λ - each cycle

$$
\sum_{n=0}^{\infty} \sum_{G \in \mathrm{LD}_{n}} \lambda^{\mathrm{cyc}(G)} x^{\mathrm{pa}(G)} \frac{t^{n}}{n!}=\exp (
$$

Each Laguerre digraph is a labelled collection of

Enumeration

Proposition

$$
\sum_{n=0}^{\infty} \sum_{G \in \mathrm{LD} D_{n}} \lambda^{\operatorname{cyc}(G)} x^{\operatorname{pa}(G)} \frac{t^{n}}{n!}=\exp \left(\frac{x t}{1-t}+\lambda \log \frac{1}{1-t}\right)
$$

Proof: Assign weights

- t - each vertex
- x - each path
- λ - each cycle

$$
\sum_{n=0}^{\infty} \sum_{G \in \mathrm{LD}_{n}} \lambda^{\operatorname{cyc}(G)} x^{\mathrm{pa}(G)} \frac{t^{n}}{n!}=\exp \left(\frac{x t}{1-t}\right.
$$

d

Each Laguerre digraph is a labelled collection of directed paths and

Proposition

$$
\sum_{n=0}^{\infty} \sum_{G \in \mathrm{LD}_{n}} \lambda^{\mathrm{cyc}(G)} x^{\mathrm{pa}(G)} \frac{t^{n}}{n!}=\exp \left(\frac{x t}{1-t}+\lambda \log \frac{1}{1-t}\right)
$$

Proof: Assign weights

- t - each vertex
- x - each path
- λ - each cycle

$$
\sum_{n=0}^{\infty} \sum_{G \in \mathrm{LD}_{n}} \lambda^{\mathrm{cyc}(G)} x^{\mathrm{pa}(G)} \frac{t^{n}}{n!}=\exp \left(\frac{x t}{1-t}+\lambda \log \frac{1}{1-t}\right)
$$

Each Laguerre digraph is a labelled collection of directed paths and directed cycles

Nomenclature

Foata-Strehl (1984) call them Laguerre configurations

Nomenclature

Foata-Strehl (1984) call them Laguerre configurations
Other authors often use partial permutations

Nomenclature

Foata-Strehl (1984) call them Laguerre configurations
Other authors often use partial permutations
Slightly different definitions

Nomenclature

Foata-Strehl (1984) call them Laguerre configurations
Other authors often use partial permutations
Slightly different definitions
Laguerre digraphs after Sokal (2022)

Nomenclature

Foata-Strehl (1984) call them Laguerre configurations
Other authors often use partial permutations
Slightly different definitions
Laguerre digraphs after Sokal (2022)
We have shown

$$
\mathcal{L}_{n}^{(-1+\lambda)}(x)=\sum_{G \in \mathrm{LD}_{n}} \lambda^{\mathrm{cyc}(G)} x^{\mathrm{pa}(G)}
$$

Classification of vertices

Let $G \in \mathrm{LD}_{n, k}$ and let i be a vertex of G. We define

- $p(i)$: the predecessor of i if it exists else $p(i)=0$.
- $s(i)$: the successor of i if it exists else $s(i)=0$.

Classification of vertices

Let $G \in \mathrm{LD}_{n, k}$ and let i be a vertex of G. We define

- $p(i)$: the predecessor of i if it exists else $p(i)=0$.
- $s(i)$: the successor of i if it exists else $s(i)=0$.

We classify the vertices $i \in[n]$ into five types:

- peak (p) if $p(i)<i>s(i)$;
- valley (v) if $p(i)>i<s(i)$;
- double ascent (da) if $p(i)<i<s(i)$;
- double descent (dd) if $p(i)>i>s(i)$;
- fixed point (fp) if $p(i)=i=s(i)$.

Illustration with example

Here

- Peaks $\{7,10,9,8,11\}$
- Valleys $\{1,6\}$
- Double ascents $\{3\}$
- Double descents $\{2,4\}$
- Fixed points (or loops) $\{5\}$

Multivariate Laguerre polynomials

Let $\operatorname{wt}(G)=y_{\mathrm{p}}^{\mathrm{p}(G)} y_{\mathrm{v}}^{\mathrm{v}(G)} y_{\mathrm{da}}^{\mathrm{da}(G)} y_{\mathrm{dd}}^{\mathrm{dd}(G)} y_{\mathrm{fp}}^{\mathrm{fp}(G)} \lambda^{\operatorname{cyc}(G)}$

Multivariate Laguerre polynomials

Let $\mathrm{wt}(G)=y_{\mathrm{p}}^{\mathrm{p}(G)} y_{\mathrm{v}}^{\mathrm{v}(G)} y_{\mathrm{da}}^{\mathrm{da}(G)} y_{\mathrm{dd}}^{\mathrm{dd}(G)} y_{\mathrm{fp}}^{\mathrm{fp}(G)} \lambda^{\mathrm{cyc}(G)}$
Define

$$
\mathcal{L}_{n}^{(-1+\lambda)}\left(x ; y_{\mathrm{p}}, y_{\mathrm{v}}, y_{\mathrm{da}}, y_{\mathrm{dd}}, y_{\mathrm{fp}}\right)=\sum_{G \in \mathrm{LD}_{n}} \mathrm{wt}(G) x^{\mathrm{pa}(G)}
$$

Statement of multivariate result

Let

$$
\mathrm{L}=\left(\frac{1}{y_{\mathrm{p}}^{k}} \sum_{G \in \mathrm{LD}_{n, k}} \mathrm{wt}(G)\right)_{n, k \geq 0}
$$

Theorem (D.-Dyachenko-Pétréolle-Sokal('23))
Assume $\lambda y_{\mathrm{fp}}-\lambda y_{\mathrm{p}},\left(y_{\mathrm{da}}+y_{\mathrm{dd}}\right)-\left(y_{\mathrm{p}}+y_{\mathrm{v}}\right)$ are non-negative. Then
(a) The matrix L is totally positive.
(b) The sequence $\left(\mathcal{L}_{n}^{(-1+\lambda)}\left(x ; y_{\mathrm{p}}, y_{\mathrm{v}}, y_{\mathrm{da}}, y_{\mathrm{dd}}, y_{\mathrm{fp}}\right)\right)_{n \geq 0}$ is coefficientwise Hankel-TP.

Proof uses the production-matrix method and Riordan arrays

Production matrices

Let $P=\left(p_{i j}\right)_{i, j \geq 0}$ be a row-finite or column-finite matrix.

Production matrices

Let $P=\left(p_{i j}\right)_{i, j \geq 0}$ be a row-finite or column-finite matrix.
Define matrix $A=\left(a_{n, k}\right)_{n, k \geq 0}$ where $a_{n, k}=\left(P^{n}\right)_{0 k}$

Production matrices

Let $P=\left(p_{i j}\right)_{i, j \geq 0}$ be a row-finite or column-finite matrix.
Define matrix $A=\left(a_{n, k}\right)_{n, k \geq 0}$ where $a_{n, k}=\left(P^{n}\right)_{0 k}$
(n-step walks on \mathbb{N} from $0 \rightarrow k$ with weight $p_{i j}$ for step $i \rightarrow j$)

Production matrices

Let $P=\left(p_{i j}\right)_{i, j \geq 0}$ be a row-finite or column-finite matrix.
Define matrix $A=\left(a_{n, k}\right)_{n, k \geq 0}$ where $a_{n, k}=\left(P^{n}\right)_{0 k}$
(n-step walks on \mathbb{N} from $0 \rightarrow k$ with weight $p_{i j}$ for step $i \rightarrow j$)
Theorem
If matrix P is coefficientwise totally positive the
(a) the matrix A is totally positive.
(b) the sequence $\left(a_{n, 0}\right)_{n \geq 0}$ is Hankel-TP.

Gives a sufficient but far from necessary condition to prove TP.

Production matrices

Let $P=\left(p_{i j}\right)_{i, j \geq 0}$ be a row-finite or column-finite matrix.
Define matrix $A=\left(a_{n, k}\right)_{n, k \geq 0}$ where $a_{n, k}=\left(P^{n}\right)_{0 k}$
(n-step walks on \mathbb{N} from $0 \rightarrow k$ with weight $p_{i j}$ for step $i \rightarrow j$)

Theorem

If matrix P is coefficientwise totally positive the
(a) the matrix A is totally positive.
(b) the sequence $\left(a_{n, 0}\right)_{n \geq 0}$ is Hankel-TP.

Gives a sufficient but far from necessary condition to prove TP.
Existence of S-fraction is a special case.

Production matrices

Let $P=\left(p_{i j}\right)_{i, j \geq 0}$ be a row-finite or column-finite matrix.
Define matrix $A=\left(a_{n, k}\right)_{n, k \geq 0}$ where $a_{n, k}=\left(P^{n}\right)_{0 k}$
(n-step walks on \mathbb{N} from $0 \rightarrow k$ with weight $p_{i j}$ for step $i \rightarrow j$)

Theorem

If matrix P is coefficientwise totally positive the
(a) the matrix A is totally positive.
(b) the sequence $\left(a_{n, 0}\right)_{n \geq 0}$ is Hankel-TP.

Gives a sufficient but far from necessary condition to prove TP.
Existence of S-fraction is a special case.
If P is tridiagonal matrix $a_{n, 0}$ counts Motzkin paths of length n.

Production matrices

Let $P=\left(p_{i j}\right)_{i, j \geq 0}$ be a row-finite or column-finite matrix.
Define matrix $A=\left(a_{n, k}\right)_{n, k \geq 0}$ where $a_{n, k}=\left(P^{n}\right)_{0 k}$
(n-step walks on \mathbb{N} from $0 \rightarrow k$ with weight $p_{i j}$ for step $i \rightarrow j$)

Theorem

If matrix P is coefficientwise totally positive the
(a) the matrix A is totally positive.
(b) the sequence $\left(a_{n, 0}\right)_{n \geq 0}$ is Hankel-TP.

Gives a sufficient but far from necessary condition to prove TP.
Existence of S-fraction is a special case.
If P is tridiagonal matrix $a_{n, 0}$ counts Motzkin paths of length n.
Hamburger moment sequences a la Flajolet (1980).

Guessing production matrices

A guesswork problem: given a Hankel-TP sequence $\left(a_{n}\right)_{n \geq 0}$ construct a matrix A with a_{n} in its zeroth column such that production matrix of P is TP.

Guessing production matrices

A guesswork problem: given a Hankel-TP sequence $\left(a_{n}\right)_{n \geq 0}$ construct a matrix A with a_{n} in its zeroth column such that production matrix of P is TP.

If A is lower-triangular with invertible diagonal entries, production matrix P can be computed

$$
P=A^{-1} \Delta A
$$

where $\Delta=\left(\delta_{i+1, j}\right)_{i, j \geq 0}$.

Proof of result

The proof consists of two steps:
(1) Guess production matrix and prove that it is the production matrix.
(2) Prove that the production matrix is totally positive.

The proof consists of two steps:
(1) Guess production matrix and prove that it is the production matrix.
(2) Prove that the production matrix is totally positive.

The hardest part is usually to guess the production matrix.

Guessing the production matrix

Strategy:

Guessing the production matrix

Strategy:

(1) Find the production matrix P for the coefficient matrix L . In our case, it is totally positive. Does not guarantee the Hankel-total positivity of the row-generating polynomials.

Guessing the production matrix

Strategy:
(1) Find the production matrix P for the coefficient matrix L. In our case, it is totally positive. Does not guarantee the Hankel-total positivity of the row-generating polynomials.
(2) Consider the matrix

$$
B_{x}=\left(\binom{n}{k} x^{n-k}\right)_{n, k \geq 0}
$$

The matrix $\mathrm{L} \cdot B_{x}$ has the multivariate Laguerre polynomials in its zeroth column.

Guessing the production matrix

Strategy:
(1) Find the production matrix P for the coefficient matrix L. In our case, it is totally positive. Does not guarantee the Hankel-total positivity of the row-generating polynomials.
(2) Consider the matrix

$$
B_{x}=\left(\binom{n}{k} x^{n-k}\right)_{n, k \geq 0}
$$

The matrix $\mathrm{L} \cdot B_{x}$ has the multivariate Laguerre polynomials in its zeroth column. It has production matrix $B_{x}^{-1} P B_{x}$.

Guessing the production matrix

Strategy:

(1) Find the production matrix P for the coefficient matrix L . In our case, it is totally positive. Does not guarantee the Hankel-total positivity of the row-generating polynomials.
(2) Consider the matrix

$$
B_{x}=\left(\binom{n}{k} x^{n-k}\right)_{n, k \geq 0}
$$

The matrix $\mathrm{L} \cdot B_{x}$ has the multivariate Laguerre polynomials in its zeroth column. It has production matrix $B_{x}^{-1} P B_{x}$.
If both production matrices P and $B_{x}^{-1} P B_{x}$ are totally positive, our theorem is proved.

Guessing the production matrix

Strategy:

(1) Find the production matrix P for the coefficient matrix L . In our case, it is totally positive. Does not guarantee the Hankel-total positivity of the row-generating polynomials.
(2) Consider the matrix

$$
B_{x}=\left(\binom{n}{k} x^{n-k}\right)_{n, k \geq 0}
$$

The matrix $\mathrm{L} \cdot B_{x}$ has the multivariate Laguerre polynomials in its zeroth column. It has production matrix $B_{x}^{-1} P B_{x}$.
If both production matrices P and $B_{x}^{-1} P B_{x}$ are totally positive, our theorem is proved.

Turns out P is tridiagonal in our situation and $B_{x}^{-1} P B_{x}$ is quadridiagonal.

How we proved the theorem

(1) To prove that the guessed production matrix is indeed the production matrix, we have two proofs:

How we proved the theorem

(1) To prove that the guessed production matrix is indeed the production matrix, we have two proofs:

- The coefficient matrix L is an exponential Riordan array. Used general theory of production matrices for exponential Riordan arrays to prove our production matrix P along with generating functions due to Zeng (1994).

How we proved the theorem

(1) To prove that the guessed production matrix is indeed the production matrix, we have two proofs:

- The coefficient matrix L is an exponential Riordan array. Used general theory of production matrices for exponential Riordan arrays to prove our production matrix P along with generating functions due to Zeng (1994).
- Bijective proof. Gives finer control and a lot more statistics on Laguerre digraphs.

How we proved the theorem

(1) To prove that the guessed production matrix is indeed the production matrix, we have two proofs:

- The coefficient matrix L is an exponential Riordan array. Used general theory of production matrices for exponential Riordan arrays to prove our production matrix P along with generating functions due to Zeng (1994).
- Bijective proof. Gives finer control and a lot more statistics on Laguerre digraphs. Hope to extend to infinitely many statistics on Laguerre digraphs.

How we proved the theorem

(1) To prove that the guessed production matrix is indeed the production matrix, we have two proofs:

- The coefficient matrix L is an exponential Riordan array. Used general theory of production matrices for exponential Riordan arrays to prove our production matrix P along with generating functions due to Zeng (1994).
- Bijective proof. Gives finer control and a lot more statistics on Laguerre digraphs. Hope to extend to infinitely many statistics on Laguerre digraphs.
(2) Prove that P and $B_{x}^{-1} P B_{x}$ are totally positive. Simple in the univariate case but difficult in the multivariate case.

The production matrices
The production matrix for the coefficient matrix L is

$$
\begin{aligned}
p_{n, n+1}^{\mathrm{o}} & =1 \\
p_{n, n}^{\mathrm{ob}} & =(1+\alpha) y_{\mathrm{fp}}+n\left(y_{\mathrm{da}}+y_{\mathrm{dd}}\right) \\
p_{n, n-1}^{\mathrm{ob}} & =n(n+\alpha) y_{\mathrm{p}} y_{\mathrm{v}} \\
p_{n, k}^{\mathrm{ob}} & =0 \quad \text { if } k<n-1 \text { or } k>n+1
\end{aligned}
$$

The production matrices
The production matrix for the coefficient matrix L is

$$
\begin{aligned}
p_{n, n+1}^{\mathrm{o}} & =1 \\
p_{n, n}^{\mathrm{ob}} & =(1+\alpha) y_{\mathrm{fp}}+n\left(y_{\mathrm{da}}+y_{\mathrm{dd}}\right) \\
p_{n, n-1}^{\circ} & =n(n+\alpha) y_{\mathrm{p}} y_{\mathrm{v}} \\
p_{n, k}^{\circ b} & =0 \quad \text { if } k<n-1 \text { or } k>n+1
\end{aligned}
$$

The production matrix for $B_{x}^{-1} \mathrm{~L} B_{x}$ is

$$
\begin{aligned}
p_{n, n+1}^{b} & =1 \\
p_{n, n}^{b} & =(1+\alpha) y_{\mathrm{fp}}+n\left(y_{\mathrm{da}}+y_{\mathrm{dd}}\right)+x \\
p_{n, n-1}^{b} & =n(n+\alpha) y_{\mathrm{p}} y_{\mathrm{v}}+n\left(y_{\mathrm{da}}+y_{\mathrm{dd}}\right) x \\
p_{n, n-2}^{b} & =n(n-1) y_{\mathrm{p}} y_{\mathrm{v}} x \\
p_{n, k}^{b} & =0 \quad \text { if } k<n-2 \text { or } k>n+1
\end{aligned}
$$

Proof of production matrix: tridiagonal case

The production matrix P of L of factorises as $P=P_{1} P_{2}$ where P_{1} is a lower bidiagonal matrix and P_{2} is an upper bidiagonal matrix.

Proof of production matrix: quadridiagonal case

Let P be the production matrix for the matrix $B_{x}^{-1} \mathrm{~L} B_{\chi}$.

Proof of production matrix: quadridiagonal case

Let P be the production matrix for the matrix $B_{x}^{-1} \mathrm{~L} B_{x}$.

- In the univariate case with $y_{\mathrm{p}}=y_{\mathrm{v}}=y_{\mathrm{da}}=y_{\mathrm{dd}}=y_{\mathrm{fp}}=1$, the proof is not too difficult and uses the tridiagonal comparison theorem. This suffices for the original conjecture of Corteel-Sokal.

Proof of production matrix: quadridiagonal case

Let P be the production matrix for the matrix $B_{x}^{-1} \mathrm{~L} B_{x}$.

- In the univariate case with $y_{\mathrm{p}}=y_{\mathrm{v}}=y_{\mathrm{da}}=y_{\mathrm{dd}}=y_{\mathrm{fp}}=1$, the proof is not too difficult and uses the tridiagonal comparison theorem. This suffices for the original conjecture of Corteel-Sokal.
- Non-trivial result for the multivariate case.

Theorem

Let T be a tridiagonal matrix which is $T P$ and let D be a diagonal matrix with non-negative entries. Then the matrix $T+D$ is also TP.

Theorem

Let T be a tridiagonal matrix which is $T P$ and let D be a diagonal matrix with non-negative entries. Then the matrix $T+D$ is also TP.

Particularly true when $T=L U$ where L is upper bidiagonal and U is lower bidiagonal, both with non-negative entries.

Theorem

Let T be a tridiagonal matrix which is $T P$ and let D be a diagonal matrix with non-negative entries. Then the matrix $T+D$ is also TP.

Particularly true when $T=L U$ where L is upper bidiagonal and U is lower bidiagonal, both with non-negative entries.

Very useful result for proving total positivity of tridiagonal matrices.

Theorem

Let L_{1}, L_{2} be lower bidiagonal matrices, U be an upper bidiagonal matrix and D_{1}, D_{2} be two diagonal matrices, all with nonnegative entries.

Theorem

Let L_{1}, L_{2} be lower bidiagonal matrices, U be an upper bidiagonal matrix and D_{1}, D_{2} be two diagonal matrices, all with nonnegative entries. Then the matrix

$$
P=L_{1} U L_{2}+D_{1} L_{2}+L_{1} D_{1}
$$

is totally positive.

Theorem

Let L_{1}, L_{2} be lower bidiagonal matrices, U be an upper bidiagonal matrix and D_{1}, D_{2} be two diagonal matrices, all with nonnegative entries. Then the matrix

$$
P=L_{1} U L_{2}+D_{1} L_{2}+L_{1} D_{1}
$$

is totally positive.
Proof via a difficult induction.

Theorem

Let L_{1}, L_{2} be lower bidiagonal matrices, U be an upper bidiagonal matrix and D_{1}, D_{2} be two diagonal matrices, all with nonnegative entries. Then the matrix

$$
P=L_{1} U L_{2}+D_{1} L_{2}+L_{1} D_{1}
$$

is totally positive.
Proof via a difficult induction.
A non-trivial tridiagonal case is used to prove Hankel-total positivity of Schett polynomials

Final remarks

- Given a measure, one can consider its sequence of moments and also its sequence of orthogonal polynomials.

Final remarks

- Given a measure, one can consider its sequence of moments and also its sequence of orthogonal polynomials.
- A lot of important combinatorial sequences are moment sequences.
- Given a measure, one can consider its sequence of moments and also its sequence of orthogonal polynomials.
- A lot of important combinatorial sequences are moment sequences.
- The Laguerre polynomials are orthogonal polynomials as well as moment sequences.
- Given a measure, one can consider its sequence of moments and also its sequence of orthogonal polynomials.
- A lot of important combinatorial sequences are moment sequences.
- The Laguerre polynomials are orthogonal polynomials as well as moment sequences.
- Coefficientwise Hankel total positivity generalises Stieltjes moment sequences and important combinatorial polynomials seem to be coefficientwise Hankel-TP.
- Given a measure, one can consider its sequence of moments and also its sequence of orthogonal polynomials.
- A lot of important combinatorial sequences are moment sequences.
- The Laguerre polynomials are orthogonal polynomials as well as moment sequences.
- Coefficientwise Hankel total positivity generalises Stieltjes moment sequences and important combinatorial polynomials seem to be coefficientwise Hankel-TP.
- The production-matrix method is a sufficient condition but far from necessary tool used to prove coefficientwise Hankel-TP.
- Given a measure, one can consider its sequence of moments and also its sequence of orthogonal polynomials.
- A lot of important combinatorial sequences are moment sequences.
- The Laguerre polynomials are orthogonal polynomials as well as moment sequences.
- Coefficientwise Hankel total positivity generalises Stieltjes moment sequences and important combinatorial polynomials seem to be coefficientwise Hankel-TP.
- The production-matrix method is a sufficient condition but far from necessary tool used to prove coefficientwise Hankel-TP.
- Tridiagonal production matrices have been considered for a long time as Jacobi-type continued fraction. The Laguerre polynomials are the first instance of a family of polynomials obtained using quadridiagonal production matrices.
- Given a measure, one can consider its sequence of moments and also its sequence of orthogonal polynomials.
- A lot of important combinatorial sequences are moment sequences.
- The Laguerre polynomials are orthogonal polynomials as well as moment sequences.
- Coefficientwise Hankel total positivity generalises Stieltjes moment sequences and important combinatorial polynomials seem to be coefficientwise Hankel-TP.
- The production-matrix method is a sufficient condition but far from necessary tool used to prove coefficientwise Hankel-TP.
- Tridiagonal production matrices have been considered for a long time as Jacobi-type continued fraction. The Laguerre polynomials are the first instance of a family of polynomials obtained using quadridiagonal production matrices. Another family are the Schett polynomials (D.-Sokal '23).

