On the solutions of Knizhnik-Zamolodchikov differential equations by noncommutative Picard-Vessiot theory

V.C. Bui0, J.Y. Enjalbert3, V. Hoang Ngoc Minh2,3, V. Nguyen Dinh1,3, Q.H. Ngô4.

0Hue University of Sciences, 77 - Nguyen Hue street - Hue city, Vietnam.
1Université Sorbonne-Paris Nord, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse, France.
2Université Lille, 1 Place Déliot, 59024 Lille, France.
3LIPN-UMR 7030, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse, France.
4University of Hai Phong, 171, Phan Dang Luu, Kien An, Hai Phong, Viet Nam.

Séminaire Calin, 31 Mai 2022, Villetaneuse.
Outline

1. Introduction:
 1.1 Knizhnik-Zamolodchikov differential equations
 1.2 Infinitesimal braid relations
 1.3 Polylogarithms and polyzetas

2. Background on PV theory of noncommutative differential equations
 2.1 Lazard elimination and diagonal series
 2.2 Independences of iterated integrals over differential ring
 2.3 Noncommutative differential equations

3. Algorithmic and computational aspects of solutions of KZ_n by dévissage
 3.1 Solutions of KZ_n ($n \geq 4$) with asymptotic conditions
 3.2 KZ_3 : simplest non-trivial case
 3.3 KZ_4 : other example of non-trivial case
1. **Abstract**: In this work, basing on the algebraic combinatorics on noncommutative formal series with holomorphic coefficients and, on the other hand, a Picard-Vessiot theory of noncommutative differential equations, we give a recursive construction of solutions of Knizhnik-Zamolodchikov equations satisfying asymptotic conditions.
Knizhnik-Zamolodchikov differential equations

Let \((\mathcal{H}(\mathcal{V}), 1_{\mathcal{H}(\mathcal{V})})\) be the ring of holomorphic functions over the manifold \(\mathcal{V} = \mathbb{C}_n^*\), the universal covering of the configuration space of \(n\) points, i.e.
\[
\mathbb{C}_n^* := \{z = (z_1, \ldots, z_n) \in \mathbb{C}^n | z_i \neq z_j \text{ for } i \neq j\}.
\]
Let \(\mathcal{H}(\mathcal{V})\langle\langle T_n \rangle\rangle\) be the ring of noncommutative series over the alphabet \(T_n := \{t_{i,j} \}_{1 \leq i < j \leq n}\) and with coefficients in \(\mathcal{H}(\mathcal{V})\).
The following noncommutative differential equation is so called \(KZ_n\)
\[
dF(z) = \Omega_n(z)F(z), \quad \text{where} \quad \Omega_n(z) := \sum_{1 \leq i < j \leq n} \frac{t_{i,j}}{2i\pi} d\log(z_i - z_j)
\]
for which solutions can be computed by convergent iterations, for the discrete topology\(^2\) of pointwise convergence over \(\mathcal{H}(\mathcal{V})\langle\langle T_n \rangle\rangle\), for instance
\[
F_0(z) = 1_{\mathcal{H}(\mathcal{V})} \quad \text{and} \quad F_l(z) = \int_{z_0}^z \Omega_n(s)F_{l-1}(s).
\]

Remark (dévissage)
\[
\Omega_n(z) = \sum_{1 \leq i < j \leq n-1} \frac{t_{i,j}}{2i\pi} \frac{d(z_j - z_i)}{z_j - z_i} + \sum_{j=1}^{n-2} \frac{t_{i,j}}{2i\pi} \frac{d(z_n - z_j)}{z_n - z_j} + \frac{t_{n-1,n}}{2i\pi} \frac{d(z_n - z_{n-1})}{z_n - z_{n-1}}.
\]

for \(z_n \to z_{n-1}\), c.f. hyperlogarithms

2. \(\forall S, T \in \mathcal{H}(\mathcal{V})\langle\langle T_n \rangle\rangle, d(S, T) = 2^{\varpi(S-T)}\), where \(\varpi\) denotes the valuation, i.e.
 If \(S \neq 0\) then \(\varpi(S) = \inf\{|w|, w \in \text{supp}(S)\}\) else \(+\infty\).
Quadratic relations among $\{t_{i,j}\}_{1 \leq i < j \leq n}$

According to Drinfel’d, KZ_n is completely integrable if $\Omega_n(z)$ is flat, i.e.

$$d\Omega_n(z) - \Omega_n(z) \wedge \Omega_n(z) = 0.$$

It turns out that this condition induces the following quadratic relations in $\{t_{i,j}\}_{1 \leq i < j \leq n}$:

$$\mathcal{R}_n = \begin{cases}
[t_{i,k} + t_{j,k}, t_{i,j}] = 0 & \text{for distinct } i, j, k \text{ and } 1 \leq i < j < k \leq n, \\
[t_{i,j} + t_{i,k}, t_{j,k}] = 0 & \text{for distinct } i, j, k \text{ and } 1 \leq i < j < k \leq n, \\
[t_{i,j}, t_{k,l}] = 0 & \text{for distinct } i, j, k, l \text{ and } \{1 \leq i < j \leq n, 1 \leq k < l \leq n\},
\end{cases}$$

generating the Lie ideal $\mathcal{I}_{\mathcal{R}_n}$.

Solutions of KZ_n belong now to $\mathcal{H}(\mathcal{V})\langle\langle T_n \rangle\rangle/\mathcal{I}_{\mathcal{R}_n}$.
Examples of KZ_n

Example (KZ_2 : trivial case)
One has $\mathcal{T}_2 = \{t_{1,2}\}$ and $dF(z) = \Omega_2(z)F(z)$, where
\[\Omega_2(z) = \left(t_{1,2}/2i\pi\right)d\log(z_1 - z_2), \]
is $F(z_1, z_2) = e^{t_{1,2}/2i\pi}\log(z_1 - z_2) = (z_1 - z_2)^{t_{1,2}/2i\pi} \in \mathcal{H}(\mathbb{C}_*^\infty)\langle\langle\mathcal{T}_2\rangle\rangle$.

Example (KZ_3 : simplest non-trivial case)
One has $\mathcal{T}_3 = \{t_{1,2}, t_{1,3}, t_{2,3}\}$ and $dF(z) = \Omega_3(z)F(z)$, where
\[\Omega_3(z) = \frac{1}{2i\pi} \left(t_{1,2} \frac{d(z_1 - z_2)}{z_1 - z_2} + t_{1,3} \frac{d(z_1 - z_3)}{z_1 - z_3} + t_{2,3} \frac{d(z_2 - z_3)}{z_2 - z_3} \right). \]
Drinfel’d proposed a following solution on $]0, 1[$
\[F(z) = (z_1 - z_2)^{(t_{1,2}+t_{1,3}+t_{2,3})/2i\pi} G\left(\frac{z_3 - z_2}{z_1 - z_2}\right), \]
where G satisfies the following noncommutative differential equation
\[(DE1) \quad dG(s) = \left(A \frac{ds}{s} - B \frac{ds}{1-s}\right) G(s), \quad \begin{cases} A := t_{1,2}/2i\pi, \\ B := t_{2,3}/2i\pi. \end{cases} \]
He stated that there is a unique solution G_0 (resp. G_1) satisfying
$G_0(s) \sim_0 e^{A\log(s)} = s^A$ (resp. $G_1(s) \sim_1 e^{-B\log(1-s)} = (1-s)^{-B}$),
and a unique series Φ_{KZ}, so-called Drinfel’d series 3, s.t. $G_0 = G_1 \Phi_{KZ}$.

\[\text{3. Cartier, Gonzalez-Lorca, Racinet defined associators as group like series satisfying the relations duality, pentagonal and hexagonal : } \Phi_{KZ} \text{ is an associator.} \]
log Φ_{KZ} determined by Drinfel’d

1. Assuming that \([A, B] = 0\), he proposed an approximation solution for (DE1) over \([0, 1]\), \(z^A(1 - z)^B\) (a group like series) satisfying standard asymptotic conditions. Hence, the logarithm of such approximation solution of \(KZ_3\) belongs to

\[
\mathcal{L}ie_{\mathcal{H}(\mathbb{C}^3_*)} \langle \langle t_{1,2}, t_{1,3}, t_{2,3} \rangle \rangle / [\mathcal{L}ie_{\mathcal{H}(\mathbb{C}^3_*)} \langle \langle t_{1,2}, t_{1,3} \rangle \rangle, \mathcal{L}ie_{\mathcal{H}(\mathbb{C}^3_*)} \langle \langle t_{1,2}, t_{2,3} \rangle \rangle],
\]

2. He also proposed, over \([0, 1]\),

\[
G_0(z) = z^A(1 - z)^B V_0(z) \quad \text{and} \quad G_1(z) = z^A(1 - z)^B V_1(z).
\]

\(V_0\) and \(V_1\) have continuous extensions to \([0, 1]\) and are group like solutions of the following noncommutative differential equation

\[
(\text{DE2}) \quad dS(z) = Q(z)S(z), \quad Q(z) := e^{\text{ad}_B - \log(1 - z)B} e^{\text{ad}_A - \log(z)A} \frac{B}{z - 1} \in \mathfrak{p},
\]

with the initial conditions \(V_0(0) = 1\), \(V_1(1) = 1\) and \(\mathfrak{p}\) is the topological free Lie algebra generated by \(\{\text{ad}^k_A \text{ad}^l_B [A, B]\}_{k, l \geq 0}\).

3. Since \(G_9 = G_1 \Phi_{KZ}\) then the group like series \(\Phi_{KZ}\) equals to \(V(0)V(1)^{-1}\), where \(V\) is a solution of (DE2) and then the coefficients \(\{c_{k,l}\}_{k, l \geq 0}\) of \(\log \Phi_{KZ}\) are obtained, in \(\mathfrak{p}/[\mathfrak{p}, \mathfrak{p}]\), by

\[
\log \Phi_{KZ} = \sum_{k, l \geq 0} c_{k,l} B^{k+1} A^{l+1} = \int_0^1 Q(z)dz \mod [\mathfrak{p}, \mathfrak{p}].
\]
Polylogarithms

Denoting \((X^*, 1_{X^*})\) the monoid generated by \(X = \{x_0, x_1\}\), recall that

\[L(s) := \sum_{w \in X^*} \text{Li}_w(s)w \in \mathcal{H}(\tilde{B})\langle X \rangle, \quad \text{where} \quad B := \mathbb{C} \setminus \{0, 1\} \]

where \(\text{Li}_\bullet\) is the character of \((\mathcal{H}(\tilde{B})\langle X \rangle, \sqcup, 1_{X^*})\) defined by

\[\text{Li}_{1_{X^*}} = 1_{\mathcal{H}(\tilde{B})}, \quad \text{Li}_{x_0}(s) = \log(s), \quad \text{Li}_{x_1}(s) = \log(1 - s) \]

and, for any \(x_iw \in \mathcal{L}ynX \setminus X\),

\[\text{Li}_{x_iw}(s) = \int^s_0 \omega_i(\sigma)\text{Li}_w(\sigma), \quad \text{where} \quad \left\{ \begin{array}{l} \omega_0(s) = ds/s, \\ \omega_1(s) = ds/(1 - s). \end{array} \right. \]

\(\{\text{Li}_l\}_{l \in \mathcal{L}ynX}\) (resp. \(\{\text{Li}_w\}_{w \in X^*}\)) are \(\mathbb{C}\)-algebraically (resp. linearly) free.

By the Friedrichs criteron, \(L\) is group like. Thus\(^4\),

\[L(s) = \prod_{l \in \mathcal{L}ynX} e^{\text{Li}_l(s)P_l} \quad \text{and then} \quad \left\{ \begin{array}{l} \lim_{z \to 0} L(s) e^{-x_0 \log z} = 1, \\ \lim_{z \to 1} e^{x_1 \log(1-z)} L(s) = \Phi_{KZ}, \end{array} \right. \]

and \(\Phi_{KZ}\) admits \(\{\text{Li}_l(1)\}_{l \in \mathcal{L}ynX \setminus X}\) as convergent locale coordinates

\[\Phi_{KZ} := \prod_{l \in \mathcal{L}ynX \setminus X} e^{\text{Li}_l(1)P_l} \in \mathbb{R}\langle X \rangle, \quad \text{for} \quad \left\{ \begin{array}{l} x_0 = \frac{t_{1,2}}{2i\pi}, \\ x_1 = -\frac{t_{2,3}}{2i\pi}. \end{array} \right. \]

\(^4\) \(\{P_l\}_{l \in \mathcal{L}ynT_n}\) is the basis of \(\mathcal{L}ie_{\mathcal{H}(\tilde{B})}\langle X \rangle\) over which are constructed the PBW basis \(\{P_w\}_{w \in T^*_n} \) of \(\mathcal{U}(\mathcal{L}ie_{\mathcal{H}(\tilde{B})}\langle X \rangle)\) and its dual, \(\{S_w\}_{w \in X^*}\), containing the pure transcendence basis \(\{S_l\}_{l \in \mathcal{L}ynX}\).
BACKGROUND ON PV THEORY OF NONCOMMUTATIVE DIFFERENTIAL EQUATIONS
Differential ring of holomorphic functions

- \(\mathcal{V} \): simply connected manifold of \(\mathbb{C}^n \) (\(n > 0 \)).

- \(\mathcal{A} = (\mathcal{H}(\mathcal{V}), \partial_1, \ldots, \partial_n) \): the differential ring of holomorphic functions on \(\mathcal{V} \) and equipped \(1_{\mathcal{H}(\mathcal{V})} \) as the neutral element.

 For any \(f \in \mathcal{H}(\mathcal{V}) \), one has \(df = (\partial_1 f)dz_1 + \ldots + (\partial_n f)dz_n \).

- Let \(\mathcal{C} \) be a sub differential ring of \(\mathcal{A} \) (i.e. \(\partial_i \mathcal{C} \subset \mathcal{C} \), for \(1 \leq i \leq n \)) and let \(\varsigma \leadsto z \) denotes a path (with fixed endpoints, \((\varsigma, z)\)) over \(\mathcal{V} \), i.e. the parametrized curve \(\gamma : [0, 1] \rightarrow \mathcal{V} \) such that \(\gamma(0) = \varsigma = (\varsigma_1, \ldots, \varsigma_n) \) and \(\gamma(1) = z = (z_1, \ldots, z_n) \).

- For any integers \(i, j \) such that \(1 \leq i < j \leq n \), let \(\omega_{i,j} \) denote the 1-differential forms\(^5\), in \(\Omega^1(\mathcal{V}) \), \(\omega_{i,j} = d\xi_{i,j} \), with \(\xi_{i,j} \in \mathcal{C} \).

Example \((\xi_{i,j}(z) = \log(z_i - z_j), 1 \leq i < j \leq n) \)

Let \(\mathcal{C}_0 := \mathbb{C}[(\partial_1 \xi_{i,j})^{\pm1}, \ldots, (\partial_n \xi_{i,j})^{\pm1}]_{1 \leq i < j \leq n} \).

Then \(\mathcal{C}_0 \) is a sub differential ring of \(\mathcal{A} \).

\(^5 \) Over \(\mathcal{V} \), the holomorphic function \(\xi_{i,j} \) is called a primitive for \(\omega_{i,j} \) which is said to be a exact form and then is a closed form (i.e. \(d\omega_{i,j} = 0 \)).
Notations

► \((\mathcal{T}_n^*, 1_{\mathcal{T}_n^*})\) is the free monoid generated by \(\mathcal{T}_n\).

► \(A\langle\langle \mathcal{T}_n \rangle\rangle\) (resp. \(A\langle \mathcal{T}_n \rangle\)) is the set of series (resp. polynomials) over \(\mathcal{T}_n\) with coefficients in \(A\). \(\text{Lyn} \mathcal{T}_n\) (resp. \(\text{Lyn} \mathcal{T}\)) is the set of Lyndon words over \(\mathcal{T}_n\) (resp. \(\mathcal{T}\)).

► \(T_k := \{t_{j,k}\}_{1 \leq j \leq k-1}\), \(\mathcal{T} := \{T_2, \ldots, T_n\}\) s.t. \(T_k = T_k \sqcup T_{k-1}\), \(k \leq n\). \(|\mathcal{T}_n| = n(n-1)/2\) and \(|\mathcal{T}_n| = n - 1\). If \(n \geq 4\) then \(|\mathcal{T}_{n-1}| \geq |\mathcal{T}_n|\).

Example

► \(\mathcal{T}_5 = \{t_{1,2}, t_{1,3}, t_{1,4}, t_{1,5}, t_{2,3}, t_{2,4}, t_{2,5}, t_{3,4}, t_{3,5}, t_{4,4}\}\), one has \(T_5 = \{t_{1,5}, t_{2,5}, t_{3,5}, t_{4,5}\}\) and \(\mathcal{T}_4\).

► \(\mathcal{T}_4 = \{t_{1,2}, t_{1,3}, t_{1,4}, t_{2,3}, t_{2,4}, t_{3,4}\}\), one has \(T_4 = \{t_{1,4}, t_{2,4}, t_{3,4}\}\) and \(\mathcal{T}_3\).

► \(\mathcal{T}_3 = \{t_{1,2}, t_{1,3}, t_{2,3}\}\), one has \(T_3 = \{t_{1,3}, t_{2,3}\}\) and \(\mathcal{T}_2 = \{t_{1,2}\}\).

► In \((A\langle\langle \mathcal{T}_n \rangle\rangle, \partial_1, \ldots, \partial_n)\), for any \(S \in A\langle\langle \mathcal{T}_n \rangle\rangle\), one defines

\[
\partial_i S = \sum_{w \in \mathcal{T}_n^*} (\partial_i \langle S \mid w \rangle) w \quad \text{and} \quad dS = \sum_{i=1}^{n} (\partial_i S) dz_i.
\]

\(\text{Const}(A) = \mathbb{C}.1_{\mathcal{H}(\Omega)}\) and \(\text{Const}(A\langle\langle \mathcal{T}_n \rangle\rangle) = \mathbb{C}\langle\langle \mathcal{T}_n \rangle\rangle\).
Lazard elimination: $\mathcal{L}ie_A\langle T_n \rangle = \mathcal{I}_n \oplus \mathcal{L}ie_A\langle T_n \rangle$

Let ρ the right normed bracketing which is the unique linear endomorphism of $A\langle\langle T_n \rangle\rangle$ defined, by $\rho(1_{T_n^\ast}) = 0$ and, for $w = t_1 \ldots t_k \in T_n^\ast$, by

$$\rho(w) = [t_1, [\ldots, [t_{k-1}, t_k]] \ldots] = \text{ad}_{t_1} \ldots \text{ad}_{t_{k-1}} t_k.$$

\mathcal{I}_n : Lie subalg. generated by $\{\text{ad}_{T_n}^k t_{i,j}\}_{t_i,j \in T_{n-1}} = \{(-1)^{|w|} \rho(vt)/|v|!\}_{v \in T_{n-1}^\ast}$.

By PBW, $U(\mathcal{I}_n)$ is freely generated by

$$\{\text{ad}_{T_n}^{k_1} t_1 \ldots \text{ad}_{T_n}^{k_p} t_p\}_{t_1, \ldots, t_p \in T_{n-1}}^{k_1, \ldots, k_p \geq 0, p \geq 0}$$

which are associated to the following family of polynomials of $U(\mathcal{I}_n)^\vee$

$$\{t_1(\bar{T}_n^{k_1} \bowtie (\ldots \bowtie (t_p \bar{T}_n^{k_p}) \ldots))\}_{t_1, \ldots, t_p \in T_{n-1}}^{k_1, \ldots, k_p \geq 0, p \geq 0},$$

$$\{t_1(\bar{v}_1 \bowtie (\ldots \bowtie (t_p \bar{v}_p) \ldots))\}_{v_1 \in T_n^{k_1}, \ldots, v_p \in T_n^{k_p}, t_1, \ldots, t_k \in T_{n-1}}^{k_1, \ldots, k_p \geq 0, p \geq 0},$$

$$\{(t_1 \bar{v}_1) \circ \ldots \circ (t_p \bar{v}_p)\}_{v_1 \in T_n^{k_1}, \ldots, v_p \in T_n^{k_p}, t_1, \ldots, t_k \in T_{n-1}}^{k_1, \ldots, k_p \geq 0, p \geq 0},$$

$$\{(t_1 \bar{T}_n^{k_1}) \circ \ldots \circ (t_p \bar{T}_n^{k_p})\}_{t_1, \ldots, t_p \in T_{n-1}}^{k_1, \ldots, k_p \geq 0, p \geq 0},$$

where $\bar{T}_n^k = \{\bar{v} \in T_n^k, |v| = k\}$ and the composite operator \circ is defined, for any H and $R \in A\langle\langle T_n \rangle\rangle$ and $t \in T_{n-1}$, by

If $R \neq 1_{T_n^\ast}$ then $(tH) \circ R = t(H \bowtie R)$ else $(tH) \circ R = tH$.

6. \bar{v} is the polynomial $t_1 \bowtie \ldots \bowtie t_k$ associated to $v = t_1 \ldots t_k.$
Lexicographic ordering

\(\text{Lie}_A\langle T_n \rangle \) is the set of Lie polynomials over \(T_n \) with coefficients in \(A \) and is equipped with the basis \(\{ P_l \}_{l \in \text{Lyn}T_n} \) over which are constructed the PBW basis \(\{ P_w \}_{w \in T_n^*} \) of \(\mathcal{U}(\text{Lie}_A\langle T_n \rangle) \) and its dual, \(\{ S_w \}_{w \in T_n^*} \), containing the pure transcendence basis \(\{ S_l \}_{l \in \text{Lyn}T_n} \) of \(\mathcal{U}(\text{Lie}_A\langle T_n \rangle), \sqcup, 1_{T_n^*} \).

Example (in \(KZ_3 \), \(T_3 = \{ t_{1,2}, t_{1,3}, t_{2,3} \} \) and \(t_{1,2} < t_{1,3} < t_{2,3} \))

\[\forall k \geq 0, i = 1 \text{ or } 2, \quad t_{1,2}^k t_{i,3} \in \text{Lyn}T_3, \quad P_{t_{1,2}^k t_{i,3}} = \text{ad}_{t_{1,2}}^k t_{i,3}, \quad S_{t_{1,2}^k t_{i,3}} = t_{1,2}^k t_{i,3}. \]

In the sequel, let \(\text{Lyn}T_n \) (resp. \(T_k \)) be the set of Lyndon words over \(T_n \) (resp. \(T_k \)) equipped the following total order over \(T_k \) (\(n \geq k \geq 2 \)) :

\[t_{1,k} \succ \ldots \succ t_{k-1,k}, \quad T_2 \succ \ldots \succ T_n, \quad \text{Lyn}T_2 \succ \ldots \succ \text{Lyn}T_n. \]

By the standard factorization \(^8\) of Lyndon words, one has

\[\text{Lyn}T_{n-1} \succ \text{Lyn}T_n \cdot \text{Lyn}T_{n-1} \succ \text{Lyn}T_n, \]

More generally, for any \((t_1, t_2) \in T_{k_1} \times T_{k_2}, 2 \leq k_1 < k_2 \leq n\), one also has

\[t_2 t_1 \in \text{Lyn}T_{k_2} \subset \text{Lyn}T_n \quad \text{and} \quad t_2 \prec t_2 t_1 \prec t_1. \]

\(^7\) in which one defines \(\Delta_{\sqcup} x = x \otimes 1_{T_n^*} + 1_{T_n^*} \otimes x \), or equivalently,

\[u \sqcup 1_{T_n^*} = 1_{T_n^*} \sqcup u = u \quad \text{and} \quad xu \sqcup yv = x(u \sqcup yv) + y(xu \sqcup v). \]

\(^8\) \(i.e. st(l) = (l_1, l_2), \) where \(l_2 \) is the longest nontrivial proper right factor of a Lyndon word \(l \), or equivalently, its smallest such for the lexicographic ordering.
1. If $l \in \mathcal{L}yn T_{k-1}$ and $t \in T_k$, $2 \leq k \leq n$ then $tl \in \mathcal{L}yn T_n$ and $t < tl < l$.

2. If $l_1 \in \mathcal{L}yn T_{k_1}$ and $l_2 \in \mathcal{L}yn T_{k_2}$ (for $2 \leq k_1 < k_2 \leq n$) then $l_2 l_1 \in \mathcal{L}yn T_{k_2} \subset \mathcal{L}yn T_n$ and $l_2 < l_2 l_1 < l_1$.

3. If $l_1 \in \mathcal{L}yn T_k$ and $l_2 \in \mathcal{L}yn T_{k-1}$ (for $2 \leq k_1 < k_2 \leq n$) then $l_1 l_2 \in \mathcal{L}yn T_n$ and $l_1 < l_1 l_2 < l_2$.

In $\mathcal{A}(T_n) \hat{\otimes} \mathcal{A}(T_n)$, let $\nabla S = S - 1_{T_n^*} \otimes 1_{T_n^*}$. The diagonal series is defined by

$$D_{T_n} := M^*,$$

with

$$M := \sum_{t \in T_n} t \otimes t,$$

and is the unique solution of $\nabla S = M S$ and $\nabla S = S M$. Then

$$D_{T_n} = D_{T_n-1} \left(\prod_{l_1 = l, l_2 \in \mathcal{L}yn T_{n-1}, l_1 \in \mathcal{L}yn T_n} e^{S_l \otimes P_l} \right) D_{T_n}, \quad \text{for} \quad n > 2.$$
More about notations

Let us back to the relations

\[\mathcal{R}_n = \begin{cases}
[t_{i,k} + t_{j,k}, t_{i,j}] = 0 & \text{for distinct } i, j, k \quad \text{and } 1 \leq i < j < k \leq n, \\
[t_{i,j} + t_{i,k}, t_{j,k}] = 0 & \text{for distinct } i, j, k \quad \text{and } 1 \leq i < j < k \leq n, \\
[t_{i,j}, t_{k,l}] = 0 & \text{for distinct } i, j, k, l \quad \text{and } \{ 1 \leq i < j \leq n, 1 \leq k < l \leq n, \}.
\]

generating the Lie ideal \(\mathcal{J}_{\mathcal{R}_n} \).

- The monoid (resp. the set of Lyndon words) generated by \(T_n \) satisfying the relations \(\mathcal{R}_n \) is denoted by \(\langle T_n^*; \mathcal{J}_{\mathcal{R}_n} \rangle \) (resp. \(\langle \text{Lyn}T_n; \mathcal{J}_{\mathcal{R}_n} \rangle \)).

- The set of noncommutative polynomials (resp. series) with coefficients in \(A \), over \(T_n \), satisfying \(\mathcal{R}_n \), is denoted by \(A\langle T_n \rangle / \mathcal{J}_{\mathcal{R}_n} \) (resp. \(A\langle \langle T_n \rangle \rangle / \mathcal{J}_{\mathcal{R}_n} \)).

- The set of Lie polynomials (resp. Lie series) with coefficients in \(A \), over \(T_n \), satisfying \(\mathcal{R}_n \), is denoted by \(\text{Lie}_A \langle T_n \rangle / \mathcal{J}_{\mathcal{R}_n} \) (resp. \(\text{Lie}_A \langle \langle T_n \rangle \rangle / \mathcal{J}_{\mathcal{R}_n} \)).

- \(H_\boxplus (T_n) / \mathcal{J}_{\mathcal{R}_n} \) denotes \((A\langle T_n \rangle / \mathcal{J}_{\mathcal{R}_n}, \text{conc}, \Delta_\boxplus, 1_{T^*_n}) \).
Iterated integrals and Chen series

The iterated integral associated, of the 1-differential forms \(\{ \omega_{i,j} \}_{1 \leq i < j \leq n} \) and along the path \(\varsigma \leadsto z \), is given by \(\alpha^\varsigma(1_{T^*_n}) = 1_{\mathcal{H}(V)} \) and, for any \(w = t_{i_1,j_1} t_{i_2,j_2} \cdots t_{i_k,j_k} \in T^*_n \),

\[
\alpha^\varsigma(w) := \int^z_\varsigma \omega_{i_1,j_1}(s_1) \int^s_\varsigma \omega_{i_2,j_2}(s_2) \cdots \int^{s_k-1}_\varsigma \omega_{i_k,j_k}(s_k) \in \mathcal{H}(V),
\]

where \((\varsigma, s_1 \ldots, s_{k-1}, z) \) is a subdivision of \(\varsigma \leadsto z \).

The Chen series, of the differential forms \(\{ \omega_{i,j} \}_{1 \leq i < j \leq n} \) and along a path \(\varsigma \leadsto z \), is the following noncommutative generating series

\[
C_{\varsigma \leadsto z} := \sum_{w \in T^*_n} \alpha^\varsigma(w) w \in \mathcal{H}(V) \langle \langle T^*_n \rangle \rangle.
\]

Proposition

1. \(\forall u, v \text{ in } T^*_n, \alpha^\varsigma(u \uplus v) = \alpha^\varsigma(u) \alpha^\varsigma(v) \) (Chen’s lemma).

2. \(\forall t \in T_n, k \geq 0, \alpha^\varsigma(t^k) = (\alpha^\varsigma(t))^k / k! \) and then \(\alpha^\varsigma(t^*) = e^{\alpha^\varsigma(t)} \).

3. For any compact \(K \subset V \), there is \(c > 0 \) and a morphism of monoids \(\mu : T^*_n \rightarrow \mathbb{R}_{\geq 0} \) s.t. \(\|C_{\varsigma \leadsto z} w\|_K \leq c \mu(w) |w|^{-1} \), for \(w \in T^*_n \), and then \(C_{\varsigma \leadsto z} \) is said to be exponentially bounded from above.
Basic triangular theorem over a differential ring

Let \mathcal{C} be a sub differential ring of \mathcal{A}. For any $S \in \mathcal{C}\ll\mathcal{T}_n\gg$, let $\mathcal{F}(S) := \text{span}_{\mathcal{C}}\{\langle S|w\rangle\}_{w \in \mathcal{T}_n^*}$

Lemma

The following assertions are equivalent \(^9\)

1. The following map is injective

 $$(\mathcal{C}\ll\mathcal{T}_n\gg, \oplus, 1_{\mathcal{T}_n^*}) \longrightarrow (\mathcal{H}(\mathcal{V}), *, 1_{\mathcal{H}(\mathcal{V})}), \quad w \longmapsto \alpha^*_\varsigma(w).$$

2. $\{\alpha^*_\varsigma(w)\}_{w \in \mathcal{T}_n^*}$ is linearly free over \mathcal{C}.

3. $\{\alpha^*_\varsigma(l)\}_{l \in \mathcal{L}_{\text{yn}}\mathcal{T}_n}$ is algebraically free over \mathcal{C}.

4. $\{\alpha^*_\varsigma(t)\}_{t \in \mathcal{T}_n}$ is algebraically free over \mathcal{C}.

5. $\{\alpha^*_\varsigma(t)\}_{t \in \mathcal{T}_n \cup \{1_{\mathcal{T}_n^*}\}}$ is linearly free over \mathcal{C}.

6. For any $\mathcal{C} \in \mathcal{L}_{\text{ie}}\ll\mathcal{T}_n\gg$, there is an automorphism ψ of $\mathcal{F}(C_{\varsigma \rightsquigarrow z})$ such that $\psi(C_{\varsigma \rightsquigarrow z}) = C_{\varsigma \rightsquigarrow z}e^\mathcal{C}$.

\(^9\) This is the abstract form, over ring, of (Deneufchâtel, Duchamp, HNM & Solomon, 2011).
Noncommutative differential equations

\[(NCDE) \quad dS = M_n S, \quad \text{where} \quad M_n = \sum_{1 \leq i < j \leq n} \omega_{i,j} t_{i,j}.\]

Proposition

1. \(C_\zeta \mapsto z\), satisfying \((NCDE)\), is group-like and \(\log C_\zeta \mapsto z\) is primitive:
 \[
 C_\zeta \mapsto z = \prod_{l \in \mathcal{L} \in T_n} e^{\alpha_{\zeta}^z(S_l) P_l} \quad \text{and} \quad \log C_\zeta \mapsto z = \sum_{w \in T_n^*} \alpha_{\zeta}^z(w) \pi_1(w),
 \]
 where \(\pi_1(w) = \sum_{k \geq 1} \frac{(-1)^{k-1}}{k} \sum_{u_1, \ldots, u_k \in T_n T_n^*} \langle w | u_1 \sqcup \ldots \sqcup u_k \rangle u_1 \ldots u_k.\)

2. Let \(C \in \mathbb{C} \langle \langle T_n \rangle \rangle, \langle C | 1_{T_n^*} \rangle = 1\). Then \(C_\zeta \mapsto z C\) satisfies \((NCDE)\).
 Moreover, \(C_\zeta \mapsto z C\) is group-like if and only if \(C\) is group-like.

From this, it follows that the differential Galois group of \((NCDE)\) + group-like solutions is the group \(\{ e^C \} \subseteq \text{Lie}_{\mathbb{C}}_{1_{\mathfrak{H}(\mathcal{V})}} \langle \langle \mathcal{H} \rangle \rangle \). Which leads to

the definition of the PV extension related to \((NCDE)\) as \(\hat{C}_0 \mathcal{X} \{ C_{\zeta \mapsto z} \}\).

10. \(M_n \in \Omega^1(\mathcal{V}) \langle T_n \rangle \) and \(\Delta_{\sqcup \ldots \sqcup} M_n = 1_{T_n^*} \otimes M_n + M_n \otimes 1_{T_n^*}.\)
11. In fact, the Hausdorff group (group of characters) of \((\mathcal{A} \langle T_n \rangle, \sqcup, 1_{T_n^*})\).
ALGORITHMIC AND COMPUTATIONAL ASPECTS OF SOLUTIONS OF KZ_n BY DEVISSAGE
Solutions of (\textbf{NCDE}) by \(\{ V_m(\varsigma, z) \}_{m \geq 0} \) (1/2)

\[
V_m(\varsigma, z) = V_0(\varsigma, z) \sum_{t_i, j \in T_{n-1}} \int_{\varsigma}^{z} e^{\sum_{t \in T_n} \text{ad}_{-\alpha_{\varsigma}^t} \omega_{i, j}(s) t_{i, j} V_{m-1}(\varsigma, s)},
\]

\[
V_0(\varsigma, z) = \prod_{l \in L \cap T_n} e^{\alpha_{\varsigma}^z (S_l) P_l} \mod [\mathcal{L} \mathcal{e}_A \langle T_n \rangle, \mathcal{L} \mathcal{e}_A \langle T_n \rangle]
\]

\[
= e^{\sum_{t \in T_n} \alpha_{\varsigma}^z(t) t}.
\]

1. \((\alpha_{\varsigma}^z \otimes \text{Id}) \mathcal{D}_{T_n}\) satisfies the differential equation \(\text{d} F = N_{n-1} F \), where.

\[
N_{n-1} := \sum_{k=1}^{n-1} \omega_{k, n} t_{k, n} \in \mathcal{L} \mathcal{e}_\Omega^1(\nu) \langle T_n \rangle.
\]

2. \(V_0 \) satisfies the partial differential equation \(\partial_n f = N_{n-1} f \).

3. For any \(m \geq 1 \), on obtains explicitly

\[
V_m(\varsigma, z) = \sum_{w = t_{i_1, j_1} \cdots t_{i_m, j_m} \in T^*_{n-1}} \int_{\varsigma}^{z} \omega_{i_1, j_1}(s_1) \cdots \int_{\varsigma}^{s_{m-1}} \omega_{i_m, j_m}(s_m) \kappa_w(\varsigma, s_1, \cdots, s_m),
\]

where (using the identity \(e^{-a} be^a = e^{\text{ad}_{-a} b} \))

\[
V_0(\varsigma, z)^{-1} \kappa_w(\varsigma, s_1, \cdots, s_m)
\]

\[
= \prod_{p=1}^{m} e^{\text{ad}_{-\sum_{t \in T_n} \alpha_{\varsigma}^t(t)} t_{i_p, j_p}} = \sum_{q_1, \cdots, q_k \geq 0} \prod_{p=1}^{m} \frac{1}{q_p!} \text{ad}_{q_p}^{q_p} - \sum_{t \in T_n} \alpha_{\varsigma}^{s_p}(t) t_{i_p, j_p}.
\]
Solutions of \((NCDE)\) by \(\{V_m(\varsigma, z)\}_{m\geq 0}\) (2/2)

Proposition

1. \((NCDE)\) admits \(V_0(\varsigma, z)G(\varsigma, z)\) as solution, with
\[
G(\varsigma, z) = (\alpha^z_\varsigma \otimes \text{Id}) \sum_{k \geq 0} \sum_{\substack{v_1, j_1, \ldots, v_k, j_k \in T^*_n \\text{ s.t. } \ t_1, j_1, \ldots, t_{k}, j_k \in T_{n-1}}} \frac{(-1)^{|v_1, j_1| \ldots |v_k, j_k|}}{|v_1, j_1| \ldots |v_k, j_k|}
\]
\[
(t_{i_1, j_1} \tilde{v}_{i_1, j_1}) \circ \cdots \circ (t_{i_k, j_k} \tilde{v}_{i_k, j_k}) \otimes \rho(v_{i_1, j_1} t_{i_1, j_1}) \cdots \rho(v_{i_k, j_k} t_{i_k, j_k})
\]

2. There is a diffeomorphism \(g\) of \(V\) s.t. \(G(\varsigma, z)\) is group like series and is the Chen series, along the path \(g(\varsigma \rightsquigarrow z)\) and of the differential forms \(\{\omega_{i,j}\}_{1 \leq i < j \leq n-1}\), and then satisfies
\[
dS = M^*_{n-1}S, \quad \text{where} \quad M^*_{n-1} = \sum_{1 \leq i < j \leq n-1} g^*\omega_{i,j} t_{i,j} \in \text{Lie}_{\Omega^1(V)}\langle T_{n-1}\rangle.
\]

3. If the restricted \(\rightsquigarrow\)-morphism \(\alpha^z_{\varsigma}\), on \(\mathbb{C}\langle T_n\rangle\), is injective then there is a primitive series \(C \in \text{Lie}_{\mathbb{C}}\langle\langle T_{n-1}\rangle\rangle\) such that
\[
G(\varsigma, z) = \left(\sum_{w \in T^*_n} \alpha^z_{\varsigma}(w)w \right) e^C.
\]
Solutions of $KZ_n \ (n \geq 4)$

For any $1 \leq i < j \leq n - 1$, let $(P_{i,j}) : z_i - z_j = 1$.

Theorem $(\omega_{i,j}(z) = d \log(z_i - z_j), t_{i,j} \leftarrow t_{i,j}/2i\pi)$

For $z_n \rightarrow z_{n-1}$, solution of $dF = M_nF$ can be put in the form $f(z)G(z_1, \ldots, z_{n-1})$ such that

1. $f(z) \sim (z_{n-1} - z_n)^{t_{n-1,n}}$ satisfying $\partial_n f = N_{n-1} f$, where
$$N_{n-1}(z) = \sum_{k=1}^{n-1} t_{k,n} \frac{dz_n}{z_n - z_k} = \sum_{k=1}^{n-1} t_{k,n} \frac{ds}{s - s_k}, \quad \text{with} \quad \begin{cases} s = z_n, \\ s_k = z_n - z_k. \end{cases}$$

2. $G(z_1, \ldots, z_{n-1})$ is solution of $dS = M_{n-1}^{t_{n-1,n}}S$, where
$$M_{n-1}^{t_{n-1,n}}(z) \sim \sum_{1 \leq i < j \leq n-1} \varphi^{(\varsigma,z)}_{t_{n-1,n}}(t_{i,j}) d \log(z_i - z_j),$$
$$\varphi^{(\varsigma,z)}_{t_{n-1,n}}(t_{i,j}) = e^{\text{ad}^- \sum_{1 \leq k < n} \log(z_k - z_{n-1})t_{k,n}} t_{i,j} \mod J_{R_n}.$$

Moreover, $M_{n-1}^{t_{n-1,n}}$ exactly coincides with M_{n-1} in the intersection of affine planes $\bigcap_{1 \leq i < n-1} (P_{i,n-1})$.

Conversely, if f satisfies $\partial_n f = N_{n-1} f$ and $G(z_1, \ldots, z_{n-1})$ satisfies $dS = M_{n-1}^{t_{n-1,n}}S$ then $f(z)G(z_1, \ldots, z_{n-1})$ satisfies $dF = M_nF$.
Solutions of KZ_n $(n \geq 4)$ with asymptotic conditions

Let $F_{*} : (\mathbb{C} \langle \mathcal{T}_n \rangle, \sqcup, 1_{\mathcal{T}_n^{*}}) \to (\mathcal{H}(\mathcal{V}), *, 1_{\mathcal{H}(\mathcal{V})})$ be the character defined by $F_{1_{\mathcal{T}_n^{*}}} = 1_{\mathcal{H}(\mathcal{V})}$, $\forall t_{i,j} \in \mathcal{T}_n$, $F_{t_{i,j}}(z) = \log(z_i - z_j)$, $\forall t_{i,j} w \in \text{Lyn} \mathcal{T}_n \setminus \mathcal{T}_n$,

$$F_{t_{i,j} w}(z) = \int_0^z \omega_{i,j}(s) F_w(s), \text{ where } \omega_{i,j}(z) = d \log(z_i - z_j).$$

Corollary ($\omega_{i,j}(z) = d \log(z_i - z_j)$, $t_{i,j} \leftarrow t_{i,j}/2i\pi$)

1. $\{F_t\}_{t \in \mathcal{T}_n \cup \{1_{\mathcal{T}_n^{*}}\}}$ are C_0-linearly free.

2. The graph of F_{*}, F, is unique solution of $dF = M_n F$ and

$$F(z) = \prod_{l \in \text{Lyn} \mathcal{T}_n} e^{F_{s_l}(z) P_l} \sim_{z_i \sim z_{i-1}}^{1 \leq i \leq n} (z_{i-1} - z_i)^{t_{i-1,i}} G_i(z_1, \ldots, z_{i-1}, z_{i+1}, \ldots, z_n)$$

where $G_i(z_1, \ldots, z_{i-1}, z_{i+1}, \ldots, z_n)$ satisfies $dS = M_{n-1}^{t_{*}^{n}} S$ and, for $y_1 = z_1, \ldots, y_{i-1} = z_{i-1}, y_i = z_{i+1}, \ldots, y_{n-1} = z_n$, one has

$$M_{n-1}^{t_{*}^{n}}(y) = \sum_{1 \leq i < j \leq n-1} e^{ad - \sum_{1 \leq k \leq n-1} \log(y_k - y_{n-1}) t_{k,n}} t_{i,j} d \log(y_i - y_j) \mod \mathcal{J}_{R_n}$$

and $M_{n-1}^{t_{*}^{n}}$ exactly coincides with M_{n-1} in $\bigcap_{1 \leq k < n-1} (P_{i,n-1})$.

3. In $\text{Lie}_A \langle \mathcal{T}_n \rangle/[\text{Lie}_A \langle \mathcal{T}_n \rangle, \text{Lie}_A \langle \mathcal{T}_n \rangle]$, one has

$$F(z) = e^{\sum_{i=1}^{n-1} \log(z_n - z_i) t_{i,n}} \sum_{k \geq 0, l_1, \ldots, l_k \geq 0} F(t_1 \bar{T}_n^{l_1}) \circ \cdots \circ (t_k \bar{T}_n^{l_k})(z) \prod_{1 \leq j \leq k} \text{ad}_{-T_n}^{l_j} t_j.$$
KZ$_3$: Simplest non-trivial case (1/3)

One has $\mathcal{T}_3 = \{t_{1,2}, t_{1,3}, t_{2,3}\}$ and

$$\Omega_3(z) = \frac{1}{2i\pi} \left(t_{1,2} \frac{d(z_1 - z_2)}{z_1 - z_2} + t_{1,3} \frac{d(z_1 - z_3)}{z_1 - z_3} + t_{2,3} \frac{d(z_2 - z_3)}{z_2 - z_3} \right).$$

Solution of $dF(z) = \Omega_3(z) F(z)$ can be computed as limit of the sequence $\{F_l\}_{l \geq 0}$, in $\mathcal{H}(\mathbb{C}_*^3) \langle \langle \mathcal{T}_3 \rangle \rangle$, by convergent Picard’s iteration:

$$F_0(z) = 1_{\mathcal{H}(\mathcal{V})} \quad \text{and} \quad F_l(z) = \int_0^z \Omega_3(s) F_{l-1}(s).$$

Let us compute, by another way, a solution of $dF(z) = \Omega_3(z) F(z)$ as the limit of the sequence $\{V_l\}_{l \geq 0}$, in $\mathcal{H}(\mathbb{C}_*^3) \langle \langle \mathcal{T}_3 \rangle \rangle$, iteratively obtained by

$$V_0(z) = e^{(t_{1,2}/2i\pi) \log(z_1 - z_2)},$$

$$V_l(z) = \int_0^z e^{(t_{1,2}/2i\pi)(\log(z_1 - z_2) - \log(s_1 - s_2))} \tilde{\Omega}_2(s) V_{l-1}(s)$$

$$= V_0(z) \int_0^z e^{-(t_{1,2}/2i\pi) \log(s_1 - s_2)} \tilde{\Omega}_2(s) V_{l-1}(s),$$

with $\tilde{\Omega}_2(z) = \frac{1}{2i\pi} \left(t_{1,3} \frac{d(z_1 - z_3)}{z_1 - z_3} + t_{2,3} \frac{d(z_2 - z_3)}{z_2 - z_3} \right).$
Explicit solution is $F = V_0 G$, where $V_0(z) = (z_1 - z_2)^{t_{1,2}/2i\pi}$ and

$$G(z) = \sum_{t_{1,j_1} \cdots t_{m,j_m} \in \{t_{1,3}, t_{2,3}\} \atop m \geq 0} \int_0^z \omega_{i_1,j_1}(s_1) \varphi^{s_1}(t_{i_1,j_1}) \cdots \int_0^{s_{m-1}} \omega_{i_m,j_m}(s_m) \varphi^{s_m}(t_{i_m,j_m}),$$

where $\omega_{1,3}(z) = d \log(z_1 - z_3)$ and $\omega_{2,3}(z) = d \log(z_2 - z_3)$ and φ is the following automorphism of Lie algebra, $\mathcal{L}ie_{\mathcal{H}(\mathbb{C}_n^*)} \langle T_3 \rangle$,

$$\varphi^z = e^{\text{ad}-(t_{1,2}/2i\pi) \log(z_1 - z_2)} = \sum_{k \geq 0} \frac{\log^k(z_1 - z_2)}{(-2i\pi)^k k!} \text{ad}_{t_{1,2}}^k.$$

Since $t_{1,2} \prec t_{1,3} \prec t_{2,3}$ and, for $k \geq 0$ and $i = 1$ or 2, $t_{1,2}^k t_{i,3} \in \text{LynT}_3$ then

$$P_{t_{1,2}^k t_{i,3}} = \text{ad}_{t_{1,2}}^k t_{i,3} \quad \text{and} \quad S_{t_{1,2}^k t_{i,3}} = t_{1,2}^k t_{i,3}$$

and then

$$\varphi^z(t_{i,3}) = \sum_{k \geq 0} \frac{\log^k(z_1 - z_2)}{(-2i\pi)^k k!} P_{t_{1,2}^k t_{i,3}}, \quad \bar{\varphi}^z(t_{i,3}) = \sum_{k \geq 0} \frac{\log^k(z_1 - z_2)}{(-2i\pi)^k k!} S_{t_{1,2}^k t_{i,3}},$$

where $\bar{\varphi}$ (adjoint to φ) is the following automorphism of $(\mathcal{A}\langle T_3 \rangle, \varpi, 1_{T_3^*})$

$$\bar{\varphi}^z = e^{-(t_{1,2}/2i\pi) \log(z_1 - z_2)} = \sum_{k \geq 0} \frac{\log^k(z_1 - z_2)}{(-2i\pi)^k k!} t_{1,2}^k.$$
Belonging to $\mathcal{H}(\mathbb{C}^*_3 \langle \mathcal{T}_3 \rangle)$, G satisfies $dG(z) = \tilde{\Omega}_2(z)G(z)$, where

$$\tilde{\Omega}_2(z) = \frac{1}{2i\pi} \left(\varphi^z(t_{1,3}) \frac{d(z_1 - z_3)}{z_1 - z_3} + \varphi^z(t_{2,3}) \frac{d(z_2 - z_3)}{z_2 - z_3} \right).$$

In the affine plan $(P_{1,2}) : z_1 - z_2 = 1$, one has

$$\log(z_1 - z_2) = 0 \quad \text{and then} \quad \varphi \equiv \text{Id}.$$

Setting $x_0 = t_{1,3}/2i\pi$, $x_1 = -t_{2,3}/2i\pi$ and $z_1 = 1, z_2 = 0, z_3 = s$, one has

$$\tilde{\Omega}_2(z) = \frac{1}{2i\pi} \left(t_{1,3} \frac{d(z_1 - z_3)}{z_1 - z_3} + t_{2,3} \frac{d(z_2 - z_3)}{z_2 - z_3} \right) = x_1 \frac{ds}{1 - s} + x_0 \frac{ds}{s}.$$

KZ_3 admits then the noncommutative generating series of polylogarithms, L, as the actual solution satisfying the Drinfel'd asymptotic conditions.

Via L and the homographic substitution $g : z_3 \mapsto (z_3 - z_2)/(z_1 - z_2)$, mapping $\{z_2, z_1\}$ to $\{0, 1\}$, $L((z_3 - z_2)/(z_1 - z_2))$ is a particular solution of KZ_3, in $(P_{1,2})$. So is $L((z_3 - z_2)/(z_1 - z_2))(z_1 - z_2)^{(t_{1,2} + t_{1,3} + t_{2,3})/2i\pi}$.

To end with KZ_3, by braid relations, $[t_{1,2} + t_{2,3} + t_{1,3}, t] = 0$, for $t \in \mathcal{T}_3$, meaning that t commutes with $(z_1 - z_2)^{(t_{1,2} + t_{2,3} + t_{1,3})/2i\pi}$ and then $\mathcal{A} \langle \mathcal{T}_3 \rangle$ commutes with $(z_1 - z_2)^{(t_{1,2} + t_{1,3} + t_{2,3})/2i\pi}$.

Thus, KZ_3 also admits $(z_1 - z_2)^{(t_{1,2} + t_{1,3} + t_{2,3})/2i\pi} L((z_3 - z_2)/(z_1 - z_2))$ as a particular solution in $(P_{1,2})$.
Other example of non-trivial case: $KZ_4 (t_{i,j} \leftarrow t_{i,j}/2i\pi)$

For $n = 4$, one has $\mathcal{T}_4 = \{t_{1,2}, t_{1,3}, t_{1,4}, t_{2,3}, t_{2,4}, t_{3,4}\}$ and then $\mathcal{T}_3 = \{t_{1,2}, t_{1,3}, t_{2,3}\}$ and $\mathcal{T}_4 = \{t_{1,4}, t_{2,4}, t_{3,4}\}$. Then

$$\varphi^{(\varsigma,z)}_{T_4} = e^{\text{ad} - \sum_{t \in \mathcal{T}_4} \alpha(z)_{t} t},$$

and for any $t_{i,j} \in \mathcal{T}_3$,

$$\varphi^{(\varsigma,z)}_{t_{i,j}}(t_{i,j}) = \varphi^{(\varsigma,z)}_{T_4}(t_{i,j}) \mod J_{\mathcal{R}_n}.$$

If $z_4 \to z_3$ then

$$F(z) = V_0(z)G(z_1, z_2, z_3), \quad \text{where} \quad V_0(z) = e^{\sum_{1 \leq i \leq 4} t_{i,4} \log(z_i - z_4)}$$

and $G(z_1, z_2, z_3)$ satisfies $dS = M_{3}^{t_{i,j}}S$ with

$$M^{t_{i,j}}_{3}(z) = \varphi^{(z_0,z)}_{t_{i,j}}(t_{1,2}) d \log(z_1 - z_2)$$
$$+ \varphi^{(z_0,z)}_{t_{i,j}}(t_{1,3}) d \log(z_1 - z_3)$$
$$+ \varphi^{(z_0,z)}_{t_{i,j}}(t_{2,3}) d \log(z_2 - z_3).$$

Considering $(P_{1,4}) : z_1 - z_4 = 1, \quad (P_{2,4}) : z_2 - z_4 = 1, \quad (P_{3,4}) : z_3 - z_4 = 1$, in the intersection $(P_{1,3}) \cap (P_{2,3})$, one has $\log(z_1 - z_3) = \log(z_2 - z_3) = 0$ and $\varphi_{t_{i,j}} \equiv \text{Id}$ and then $M^{t_{i,j}}_{3}$ exactly coincides with M_3.
Bibliography

