Popular Matchings and Optimality

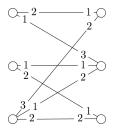
Kavitha Telikepalli

(Tata Institute of Fundamental Research, Mumbai)

Laboratoire d'Informatique de Paris-Nord (LIPN) Université Sorbonne Paris Nord

The input

A bipartite graph where every vertex has a strict ranking of its neighbors.



We seek a matching that pairs vertices optimally.

How do we formalize an optimal matching M?

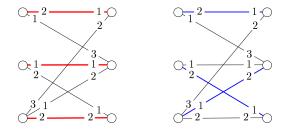
Every agent a should be matched in M to the best possible job b such that

b is willing to be matched to a.

Stability

The following property should hold true for any agent/job v:

• no neighbor ranked better than M(v) is willing to be matched to v.



The red matching satisfies this property; not the blue matching.

- The edge between the two middle vertices blocks the blue matching.
- A matching with no blocking edge is a stable matching.

Stable matchings

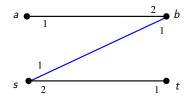
Stability is a very natural notion of optimality in matchings under preferences.

The Gale-Shapley algorithm: agents propose and jobs dispose — this is a very simple and clean algorithm.

Stable matchings

Stability is a very natural notion of optimality in matchings under preferences.

The Gale-Shapley algorithm: agents propose and jobs dispose — this is a very simple and clean algorithm.



As we saw, the above instance has a stable matching $\{sb\}$ of size 1.

So the size of a stable matching might be only half the size of a maximum matching.

Beyond stability

Every vertex v has a ranking over all the possible matchings in G:

- $M \succ_v N$ if M(v) is better than N(v) in v's ranking;
- ▶ $M \prec_{v} N$ if M(v) is worse than N(v) in v's ranking;
- $\blacktriangleright M \sim_v N \text{ if } M(v) = N(v).$

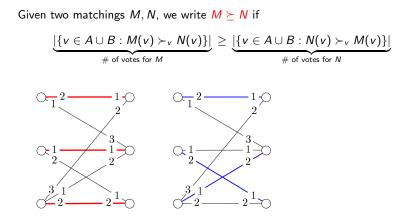
Beyond stability

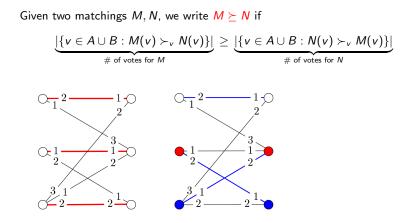
Every vertex v has a ranking over all the possible matchings in G:

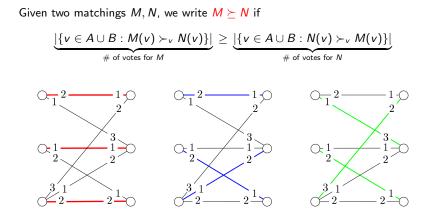
- $M \succ_v N$ if M(v) is better than N(v) in v's ranking;
- ▶ $M \prec_v N$ if M(v) is worse than N(v) in v's ranking;
- $\blacktriangleright M \sim_v N \text{ if } M(v) = N(v).$

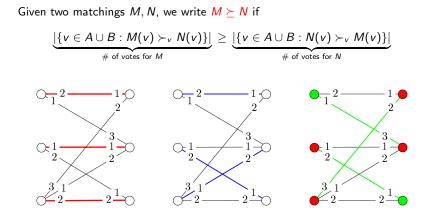
Comparing a pair of matchings:

- hold a head-to-head election between these two matchings.
- vertices are voters in this election.
- count the number of votes won by each matching.
- the matching with smaller number of votes loses this election.

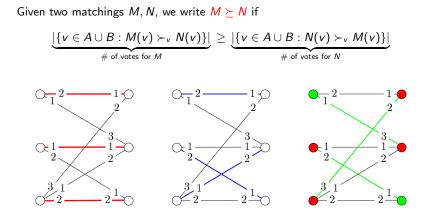








and $M \succ N$ if the inequality is strict (*M* defeats *N*).



and $M \succ N$ if the inequality is strict (*M* defeats *N*).

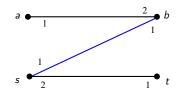
A matching M that does not lose any election is a popular matching.

Max-size popular matching

Every stable matching is popular [Gardenfors, 1975].

Every stable matching is a min-size popular matching.

Our goal now is to find the matching $\{ab, st\}$ in the instance below.



We know that running the Gale-Shapley algorithm finds $\{sb\}$.

In order to find $\{ab, st\}$, a should get a <u>second chance</u> to propose to b.

However b will again reject a.

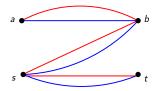
A new instance G'

IDEA. *b* should prefer *a*'s second proposal to *s*'s first proposal.

A new graph G' where every edge uv in G is replaced by uv and uv in G':

that is, by two parallel edges: one red and the other blue.

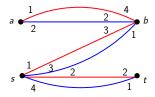
The corresponding graph G' is:



- Red edges correspond to *first-time* proposals.
- Blue edges correspond to second-time proposals.

A new instance G'

The graph G' with preferences is:



- Every agent prefers any red edge to any blue edge.
- Every job prefers any blue edge to any red edge.

Stable matchings in G'

Our algorithm in $G = (A \cup B, E)$

- Construct the red/blue graph $G' = (A \cup B, E')$.
- Run Gale-Shapley algorithm in G' to compute M'.
- ▶ Return the corresponding matching *M* in *G*.

Stable matchings in G'

Our algorithm in $G = (A \cup B, E)$

- Construct the red/blue graph $G' = (A \cup B, E')$.
- Run Gale-Shapley algorithm in G' to compute M'.
- Return the corresponding matching M in G.

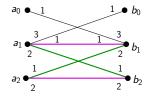
CLAIM. M is popular matching in G.

Furthermore, *M* is more popular than any larger matching.

Thus M is a max-size popular matching in G.

Popular maximum matchings

Max-size popular matchings



There are two max-size popular matchings here: purple and green.

- Only the green matching occurs as a stable matching in the red/blue graph G'.
- Hence not every max-size popular matching occurs as a stable matching in the red/blue graph G'.

Any stable matching in the red/blue graph G' has an interesting property:

▶ *M* is a popular matching that is more popular than all larger matchings.

 $\mathrm{D}\mathrm{EF}.$ Call a popular matching that defeats all larger matchings $\underline{dominant}.$

Any stable matching in the red/blue graph G' has an interesting property:

M is a popular matching that is more popular than all larger matchings.

 $\mathrm{DEF}.$ Call a popular matching that defeats all larger matchings dominant.

Dominant matchings in $G \equiv$ Stable matchings in the red/blue graph G'. [Cseh and K, 2018]

• Given $e \in E$: is there a popular matching in $G = (A \cup B, E)$ with e?

Popularity with a forced edge

Forced edge e

- 1. Check if there is a stable matching in G with edge e.
- 2. Check if there is a dominant matching in G with edge e.
- 3. If the answer in steps 1 and 2 is no then return "no".

Popularity with a forced edge

Forced edge *e*

- 1. Check if there is a stable matching in G with edge e.
- 2. Check if there is a dominant matching in G with edge e.
- 3. If the answer in steps 1 and 2 is no then return "no".
- Any popular matching decomposes into a stable part and a dominant part.
- This leads to the correctness of the above algorithm.

Popularity with a forced pair of edges

Given a pair of edges e_1, e_2 in G:

ls there a popular matching in G with both e_1 and e_2 ?

There are polynomial time algorithms to determine if there is a stable matching with a given set $\{e_1, \ldots, e_k\}$ of edges [Gusfield and Irving, 1989].

• there need not be a stable / dominant matching with both e_1 and e_2 .

Popularity with a forced pair of edges

Given a pair of edges e_1, e_2 in G:

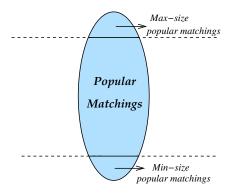
ls there a popular matching in G with both e_1 and e_2 ?

There are polynomial time algorithms to determine if there is a stable matching with a given set $\{e_1, \ldots, e_k\}$ of edges [Gusfield and Irving, 1989].

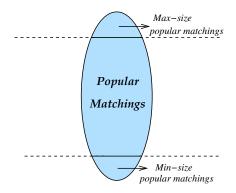
• there need not be a stable / dominant matching with both e_1 and e_2 .

THEOREM. The above problem is NP-hard [Faenza, K, Powers, Zhang, 2019].

Finding a max-size (similarly, min-size) popular matching in G is easy.

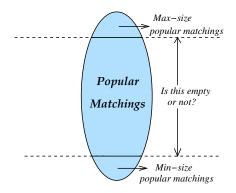


Finding a max-size (similarly, min-size) popular matching in G is easy.



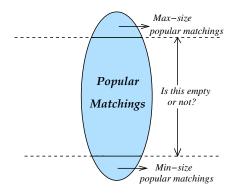
Is there any popular matching in G that is not max-size or min-size?

Finding a max-size (similarly, min-size) popular matching in G is easy.



Is there any popular matching in G that is not max-size or min-size?

Finding a max-size (similarly, min-size) popular matching in G is easy.



Surprisingly, this is an NP-hard problem.

Min-cost popular matchings

Suppose there is a function cost : $E \rightarrow \{0, 1\}$.

It is NP-hard to find a min-cost popular matching.

Finding a min-cost stable matching in G is easy.

- Efficient combinatorial [Irving, Leather, and Gusfield, 1987] and LP-based [Vande Vate, 1987; Rothblum, 1992] algorithms.
- The stable matching polytope has a linear-size description.

A relaxation of the min-cost popular matching problem:

the min-cost popular mixed matching problem.

Mixed matchings

A mixed matching is a probability distribution over matchings, i.e.,

 $\Pi = \{ (M_0, p_0), \ldots, (M_k, p_k) \},\$

where M_0, \ldots, M_k are matchings in G and $\sum_i p_i = 1$ and $p_i \ge 0 \ \forall i$.

A mixed matching is a lottery over matchings.

Mixed matchings

A mixed matching is a probability distribution over matchings, i.e.,

 $\Pi = \{ (M_0, p_0), \ldots, (M_k, p_k) \},\$

where M_0, \ldots, M_k are matchings in G and $\sum_i p_i = 1$ and $p_i \ge 0 \ \forall i$.

A mixed matching is a lottery over matchings.

For any two matchings *M* and *N*:

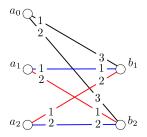
let $\Delta(N, M) = \#$ of votes for N - # of votes for M.

• Define $\Delta(N, \Pi) = \sum_i p_i \cdot \Delta(N, M_i)$.

DEFINITION. Call a mixed matching Π popular if $\Delta(N, \Pi) \leq 0 \forall$ matchings N.

An interesting example

This instance has only one popular matching $S = \{a_1b_1, a_2b_2\}$.



 $M = \{a_1 b_2, a_2 b_1\}$ is unpopular; it is defeated by $N = \{a_0 b_2, a_1 b_1\}$.

- However the mixed matching $\Pi = \{(S, \frac{1}{2}), (M, \frac{1}{2})\}$ is popular:
 - observe that $\Delta(N,\Pi) = \frac{1}{2} \cdot \Delta(N,S) + \frac{1}{2} \cdot \Delta(N,M) = \frac{1}{2} \frac{1}{2} = 0.$

Thus a popular mixed matching need not be a probability distribution over popular matchings.

Finding a min-cost popular mixed matching

In bipartite graphs: a mixed matching \equiv a fractional matching [Birkhoff-von Neumann theorem].

A fractional matching is a point \vec{x} in the matching polytope \mathcal{M}_G , i.e., $\vec{x} \in \mathbb{R}^m_{\geq 0}$ and $\sum_{e \in \delta(u)} x_e \leq 1$ for all $u \in A \cup B$.

Let $\mathcal{F}_G = \{ \vec{x} \in \mathcal{M}_G : \Delta(N, \vec{x}) \leq 0 \text{ for all matchings } N \}$

where
$$\Delta(N, \vec{x}) = \sum_{u \in A \cup B} \underbrace{\left(\sum_{v \prec_u N(u)} x_{uv} - \sum_{v \succ_u N(u)} x_{uv}\right)}_{u' \text{s vote for } N(u) \text{ vs } \vec{x}_u}$$

• \mathcal{F}_G is the popular fractional matching polytope of G.

Towards a compact extended formulation for \mathcal{F}_{G}

For any $\vec{x} \in \mathcal{M}_{G}$ and $e = (a, b) \in E$:

• Let $wt_x(e) = (a's \text{ vote for } b \text{ versus } \vec{x}_a) + (b's \text{ vote for } a \text{ versus } \vec{x}_b)$.

So wt_x(e) =
$$\left(\sum_{b'\prec_a b} x_{ab'} - \sum_{b'\succ_a b} x_{ab'}\right) + \left(\sum_{a'\prec_b a} x_{a'b} - \sum_{a'\succ_b a} x_{a'b}\right)$$
.

Towards a compact extended formulation for \mathcal{F}_{G}

For any $\vec{x} \in \mathcal{M}_G$ and $e = (a, b) \in E$:

• Let $wt_x(e) = (a's \text{ vote for } b \text{ versus } \vec{x_a}) + (b's \text{ vote for } a \text{ versus } \vec{x_b})$.

So wt_x(e) =
$$\left(\sum_{b'\prec_a b} x_{ab'} - \sum_{b'\succ_a b} x_{ab'}\right) + \left(\sum_{a'\prec_b a} x_{a'b} - \sum_{a'\succ_b a} x_{a'b}\right)$$
.

Similarly, let $wt_x(uu) = (u$'s vote for itself versus \vec{x}_u) for any $u \in A \cup B$.

• So wt_x(uu) =
$$-\sum_{e \in \delta(u)} x_e$$
.

Thus $\Delta(N, \vec{x}) = wt_x(N)$ for any perfect matching N.

(note that N is augmented with self-loops to make it perfect)

• Hence \vec{x} is popular $\iff \operatorname{wt}_{x}(N) \leq 0$ for all perfect matchings N.

LP for max-weight perfect matching

$$\max\sum_{e} \operatorname{wt}_{x}(e) \cdot y_{e}$$

$$\sum_{e \in \delta(u) \cup \{uu\}} y_e = 1 \quad \forall u \in A \cup B$$
$$y_e \geq 0 \quad \forall e \in E \cup \{\text{self-loops}\}.$$

 \vec{x} is popular \iff opt = 0.

LP for max-weight perfect matching

$$\max\sum_{e} \operatorname{wt}_{x}(e) \cdot y_{e}$$

$$\sum_{e \in \delta(u) \cup \{uu\}} y_e = 1 \quad \forall u \in A \cup B$$
$$y_e \geq 0 \quad \forall e \in E \cup \{\text{self-loops}\}.$$

 \vec{x} is popular \iff opt = 0.

The above LP allows us to test if the fractional matching \vec{x} is popular or not.

But we want to describe the polytope of <u>all</u> popular fractional matchings.

So we also have to add the constraints $\sum_{e \in \delta(u) \cup \{uu\}} x_e = 1 \ \forall u \text{ and } x_e \ge 0 \ \forall e$.

The objective function becomes quadratic in variables x_e and y_e .

LP for max-weight perfect matching

Dual LP

$$\min \sum_{u} \alpha_{u}$$

$$\begin{array}{rcl} \alpha_{a} + \alpha_{b} & \geq & \operatorname{wt}_{x}(ab) & \forall \ ab \in E \\ \alpha_{u} & \geq & \operatorname{wt}_{x}(uu) & \forall \ u \in A \cup B. \end{array}$$

 \vec{x} is popular $\iff \exists$ dual feasible $\vec{\alpha}$ with $\sum_{u} \alpha_{u} = 0$.

LP for max-weight perfect matching

Dual LP

$$\min \sum_{u} \alpha_{u}$$

$$egin{array}{rcl} lpha_{a}+lpha_{b}&\geq& {
m wt}_{x}(ab) &orall \ ab\in E\ lpha_{u}&\geq& {
m wt}_{x}(uu) &orall \ u\in A\cup B. \end{array}$$

 \vec{x} is popular $\iff \exists$ dual feasible $\vec{\alpha}$ with $\sum_{u} \alpha_{u} = 0$.

Let us add the constraints $\sum_{e \in \delta(u) \cup \{uu\}} x_e = 1 \ \forall u$ and $x_e \ge 0 \ \forall e$ to this LP.

- So this will be an LP in variables x_e 's and α_u 's.
- The set of optimal solutions $(\vec{x}, \vec{\alpha})$ will be an extension of the polytope \mathcal{F}_G .

The popular fractional matching polytope \mathcal{F}_{G}

A compact extended formulation

$$\begin{array}{rcl} \alpha_{a} + \alpha_{b} & \geq & \operatorname{wt}_{x}(ab) & \forall \ ab \in E \\ \alpha_{u} & \geq & \operatorname{wt}_{x}(uu) & \forall \ u \in A \cup B \\ & \sum_{e \in \delta(u) \cup \{uu\}} x_{e} & = & 1 & \forall \ u \in A \cup B \\ & x_{e} & \geq & 0 & \forall \ e \in E \cup \{self\text{-loops}\} \\ & \sum_{u \in A \cup B} \alpha_{u} & = & 0. \end{array}$$

We can optimize over the above polytope (call it \mathcal{F}'_{G}) in polynomial time.

Thus we can find a min-cost popular mixed matching in polynomial time.

A drawback of generalizing to mixed matchings is that the solution has become more complex to describe and difficult to implement.

The polytope \mathcal{F}'_G

The LP whose set of optimal solutions is \mathcal{F}'_{G} has an unusual property:

It is self-dual.

So
$$x_{ab} > 0 \implies \alpha_a + \alpha_b = wt_x(ab)$$
.
(by complementary slackness)

Suppose G admits a perfect stable matching.

• Then every popular matching in G has a witness in $\{\pm 1\}^n$.

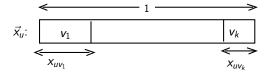
```
We show that \mathcal{F}'_{G} (and thus \mathcal{F}_{G}) is integral in this special case.
[Huang and K, 2021]
```

Our method is inspired by the proof of integrality of the formulation of the stable matching polytope [Teo and Sethuraman, 1998].

Integrality of \mathcal{F}_G in the special case

Let $\vec{x} \in \mathcal{F}_G$. Then $(\vec{x}, \vec{\alpha}) \in \mathcal{F}'_G$ for some $\vec{\alpha} \in [-1, 1]^n$.

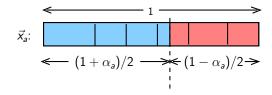
 $\vec{x}_u = (x_{uv_1}, \dots, x_{uv_k})$ is u's allocation in \vec{x} , for every $u \in A \cup B$.



So v_1, \ldots, v_k are the neighbors of u such that $x_{uv_i} > 0$ for $i = 1, \ldots, k$.

- For $a \in A$: arrange the entries of \vec{x}_a in decreasing order of a's preference.
- For $b \in B$: arrange the entries of \vec{x}_b in increasing order of *a*'s preference.

Reordering the array $\vec{x_a}$



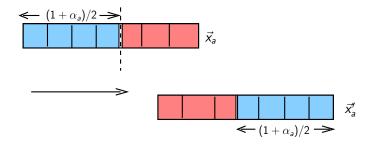
Call the initial $(1 + \alpha_a)/2$ fraction of \vec{x}_a the blue sub-array of \vec{x}_a .

Call the remaining $(1 - \alpha_a)/2$ fraction of \vec{x}_a the red sub-array of \vec{x}_a .

Swap the blue and red sub-arrays to form a reordered array \vec{x}'_a .

Reordering the array $\vec{x_a}$

Thus $\vec{x}_a \rightsquigarrow \vec{x}'_a$ by this swap.



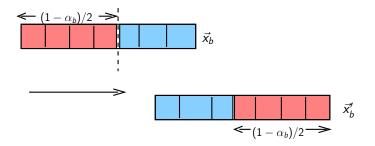
The order within the blue sub-array (similarly, the red sub-array) is preserved.

Reordering the array $\vec{x_b}$

We do an analogous transformation for $\vec{x}_b \rightsquigarrow \vec{x}'_b$ for any $b \in B$.

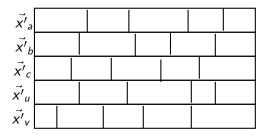
The initial $(1 - \alpha_b)/2$ fraction of \vec{x}_b will be the red sub-array of \vec{x}_b .

The latter $(1 + \alpha_b)/2$ fraction of \vec{x}_b will be the blue sub-array of \vec{x}_b .



Swap the red and blue sub-arrays to form a reordered array \vec{x}'_b .

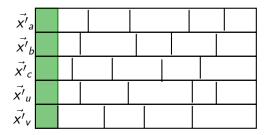
Form a table T whose rows are the reordered arrays.



Sweep a vertical line along the table T decomposing it into columns.

 M_i = pairing defined by the *i*th column.

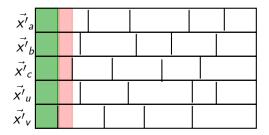
Form a table T whose rows are the reordered arrays.



Sweep a vertical line along the table T decomposing it into columns.

 M_1 = pairing defined by the first column.

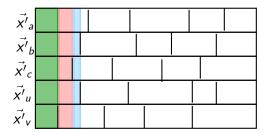
Form a table T whose rows are the reordered arrays.



Sweep a vertical line along the table T decomposing it into columns.

 M_2 = pairing defined by the second column.

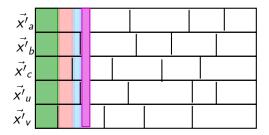
Form a table T whose rows are the reordered arrays.



Sweep a vertical line along the table T decomposing it into columns.

 M_3 = pairing defined by the third column.

Form a table T whose rows are the reordered arrays.



Sweep a vertical line along the table T decomposing it into columns.

 M_4 = pairing defined by the fourth column.

Popularity of M_i

Thus $\vec{x} = \sum_{i} p_i \cdot M_i$, where p_i is the width of M_i 's column.

▶ Self-duality of our LP \Rightarrow each M_i is a matching in G.

We show a dual certificate $\vec{\alpha_i} \in \{\pm 1\}^n$ for each M_i .

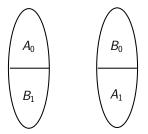
Hence each M_i is a popular matching.

Thus we have $(\vec{x}, \vec{\alpha}) = \sum_{i} p_i \cdot (M_i, \vec{\alpha}_i)$ where $\sum_{i} p_i = 1$ and $p_i \ge 0 \forall i$.

- Hence \mathcal{F}'_G (and thus \mathcal{F}_G) is integral.
- ▶ This is for the special case when *G* admits a perfect stable matching.

Half-integrality of \mathcal{F}_G in the general case

Corresponding to $G = (A \cup B, E)$, let us build the following graph H:



H is made up of 2 copies of *G* along with the "self-loop" edges $u_0u_1 \forall u$.

- H admits a perfect stable matching.
- ▶ So \mathcal{F}_H is integral.

Half-integrality of \mathcal{P}_{G} in the general case

We can define simple maps $f : \mathcal{F}_G \to \mathcal{F}_H$ and $h : \mathcal{F}_H \to \mathcal{F}_G$ such that $h \circ f(\vec{x}) = \vec{x}$ for any $\vec{x} \in \mathcal{P}_G$.

Integrality of $\mathcal{F}_H \implies f(\vec{x}) = \{(M_i, p_i) : i = 1, ..., k\}$ for popular matchings $M_1, ..., M_k$ in H.

• So
$$\vec{x} = \{(h(M_i), p_i) : i = 1, ..., k\}.$$

Each $h(M_i)$ will be a popular half-integral matching in G.

- Thus the popular fractional matching polytope \mathcal{F}_G is half-integral.
- Hence there is always a min-cost popular mixed matching $\Pi = \{(M_0, \frac{1}{2}), (M_1, \frac{1}{2})\}.$
- To implement the lottery given by Π , we need just one random bit.

The popular matching polytope

Let \mathcal{P}_G be the popular matching polytope of G.

• The extension complexity of
$$\mathcal{P}_G$$
 is $2^{\Omega\left(\frac{m}{\log m}\right)}$, where $|E| = m$.
[Faenza and K, 2022]

Can we relax popular to "approximately popular" for the sake of tractability?

• *M* is popular \implies no matching wins more votes than *M*.

DEFINITION. Call a matching M quasi-popular if no matching wins more than twice as many votes as M.

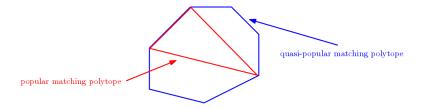
- Can a min-cost quasi-popular matching be efficiently computed?
- ▶ No, we show it is NP-hard to compute a min-cost quasi-popular matching.

The min-cost popular / quasi-popular matching problems are NP-hard to approximate up to any factor.

A BICRITERIA APPROXIMATION. Can we efficiently find a quasi-popular matching of cost at most that of a min-cost popular matching? The min-cost popular / quasi-popular matching problems are NP-hard to approximate up to any factor.

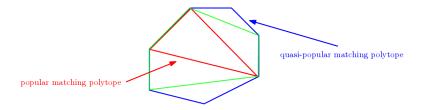
- A BICRITERIA APPROXIMATION. Can we efficiently find a quasi-popular matching of cost at most that of a min-cost popular matching?
- Interestingly, the answer is yes.

Our technique



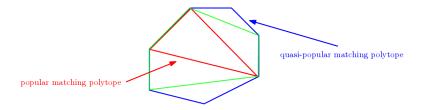
• The polytopes \mathcal{P}_G and \mathcal{Q}_G have near-exponential extension complexity.

Our technique



- The polytopes \mathcal{P}_G and \mathcal{Q}_G have near-exponential extension complexity.
- We show an integral polytope C sandwiched between \mathcal{P}_G and \mathcal{Q}_G such that C has a compact extended formulation.

Our technique



- The polytopes \mathcal{P}_G and \mathcal{Q}_G have near-exponential extension complexity.
- We show an integral polytope C sandwiched between \mathcal{P}_G and \mathcal{Q}_G such that C has a compact extended formulation.
- ▶ Optimizing over C leads to the efficient bicriteria algorithm.

The popular matching polytope in a special case

Special case:

• G has a perfect stable matching $\implies \mathcal{F}_G$ is integral.

From general case to special case:

- Assume for simplicity that |A| = |B|.
- Our idea: augment G with some new edges so that the resulting graph G* has a perfect stable matching.

The popular matching polytope in a special case

Special case:

• G has a perfect stable matching $\implies \mathcal{F}_G$ is integral.

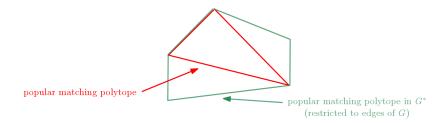
From general case to special case:

- Assume for simplicity that |A| = |B|.
- Our idea: augment G with some new edges so that the resulting graph G* has a perfect stable matching.
- Pair up unstable vertices appropriately; add a new edge between each pair.

So the popular matching polytope of G^* has a compact extended formulation.

The sandwiched integral polytope

Every popular matching in G can be extended to a perfect popular matching in G^* using these new edges.

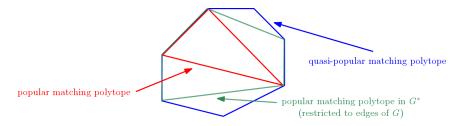


.

The sandwiched integral polytope

Every popular matching in G can be extended to a perfect popular matching in G^* using these new edges.

Every popular matching in G^* , when restricted to edges of G, is quasi-popular in G.

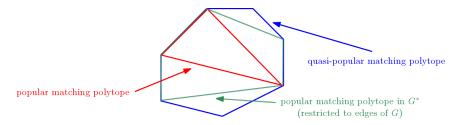


.

The sandwiched integral polytope

Every popular matching in G can be extended to a perfect popular matching in G^* using these new edges.

Every popular matching in G^* , when restricted to edges of G, is quasi-popular in G.



 G^* has a perfect stable matching, so \mathcal{F}_{G^*} = popular matching polytope of G^* .

The compact extended formulation of \mathcal{F}_{G^*} is an extension of an integral polytope \mathcal{C} where: $\mathcal{P}_G \subseteq \mathcal{C} \subseteq \mathcal{Q}_G$.

Another relaxation of popularity

Suppose N is a "very unpopular" matching.

- Let us not give *N* the power to block other matchings.
- ► That is, we waive the constraint ∆(N, x) ≤ 0 in the popular matching polytope formulation.

How do we define "very unpopular" matchings?

Another relaxation of popularity

Suppose N is a "very unpopular" matching.

• Let us not give *N* the power to block other matchings.

► That is, we waive the constraint $\Delta(N, \vec{x}) \leq 0$ in the popular matching polytope formulation.

How do we define "very unpopular" matchings?

Call a matching S supporting if \exists a popular mixed matching Π whose support contains S.

So \exists popular $\Pi = \{(M_0, p_0), \dots, (M_k, p_k)\}$ such that $S = M_i$ for some *i*.

A matching that is not supporting will be considered "very unpopular".

Call a matching *M* fairly popular if $\Delta(S, M) \leq 0 \forall$ supporting matchings *S*.

Fairly popular matchings

Can a min-cost fairly popular matching be computed in polynomial time?

Interestingly, the answer is "yes".

The following statements are equivalent.

- S is a supporting matching.
- No popular mixed matching defeats S.
- ► S matches all stable vertices and $S \subseteq E_p$ where E_p is the set of popular fractional edges in G.

The set E_p is the set of popular edges in the graph H (this is two copies of G).

Fairly popular matchings

This characterization of supporting matchings allows us to show:

- ► M is fairly popular ⇔ M can be realized as a stable matching in a certain colorful multigraph.
- Thus the min-cost stable matching algorithm in this multigraph finds a min-cost fairly popular matching in G in polynomial time.

Fairly popular matchings

This characterization of supporting matchings allows us to show:

- ► M is fairly popular ⇔ M can be realized as a stable matching in a certain colorful multigraph.
- Thus the min-cost stable matching algorithm in this multigraph finds a min-cost fairly popular matching in G in polynomial time.

Thus it is easy to decide if a given matching is undefeated by all popular \underline{mixed} matchings.

- What is the complexity of deciding if a given matching is undefeated by all popular matchings?
- ► This is a coNP-hard problem.

References

1. Á. Cseh and T. Kavitha.

Popular edges and dominant matchings. Math. Programming, 2018.

- 2. Y. Faenza, T. Kavitha, V. Powers, and X. Zhang.
 - Popular matchings and limits to tractability. In SODA 2019.
- 3. C.-C. Huang and T. Kavitha.

Popularity, mixed matchings, and self-duality. Math. of Operations Research, 2021.

4. Y. Faenza and T. Kavitha.

Quasi-popularity, optimality, and extended formulations. Math. of Operations Research, 2022.

5. T. Kavitha.

Fairly popular matchings and optimality. In STACS 2022.

Thank you! Any questions?