Popular Assignments and Extensions

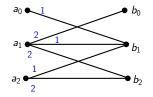
Kavitha Telikepalli

(Tata Institute of Fundamental Research, Mumbai)

Laboratoire d'Informatique de Paris-Nord (LIPN) Université Sorbonne Paris Nord May 21, 2024

The original model

Popular matching algorithms were first studied in the model of *one-sided* preferences.

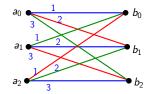


Vertices on the left are agents and those on the right are items.

- agents have preferences (ties are allowed) over their neighbors;
- items have no preferences.

This is also called a *house allocation* instance.

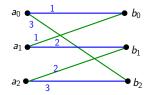
We say $M \succ N$, i.e., M is more popular than N, if



Let us hold elections between some pairs of matchings here.

Say, between the green matching and the blue matching.

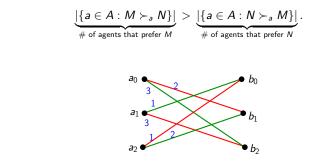
We say $M \succ N$, i.e., M is more popular than N, if



The green matching is more popular than the blue matching.

In the green vs blue election: green gets 2 votes and blue gets only 1.

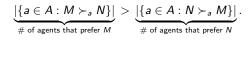
We say $M \succ N$, i.e., M is more popular than N, if

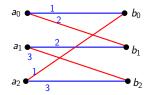


The red matching is more popular than the green matching.

▶ In the red vs green election: red gets 2 votes and green gets only 1.

We say $M \succ N$, i.e., M is more popular than N, if





The blue matching is more popular than the red matching.

In the blue vs red election: blue gets 2 votes and red gets only 1.

Popular matchings

So we have blue \succ red \succ green \succ blue.

For every matching here, there is a *more popular* matching.

So this instance has no popular matching.

The popular matching problem

• Given an instance $G = (A \cup B, E)$, does G admit a popular matching?

Is there a simple characterization of popular matchings?

- Such a characterization is known.
- This leads to an efficient algorithm for the popular matching problem. [Abraham, Irving, K, and Mehlhorn, 2007]

Structure of popular matchings for strict rankings

For every $a \in A$, let us add a dummy item d(a) as a's worst item.

Henceforth, only A-perfect matchings are interesting.

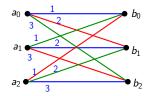
For any $a \in A$:

- let f(a) = a's top choice item;
- let s(a) = a's favorite item that is nobody's top item.

CLAIM. For any $a \in A$ and any popular matching M:

• M(a) is either f(a) or s(a).

Structure of popular matchings for strict rankings



• Here
$$f(a_0) = f(a_1) = f(a_2) = b_0$$
.

• And
$$s(a_0) = s(a_1) = s(a_2) = b_1$$

M is popular $\Rightarrow M(a) \in \{f(a) \cup s(a)\} = \{b_0, b_1\}$ for all $a \in A$.

- There is no such A-perfect matching.
- Hence there is no popular matching.

Structure of popular matchings for strict rankings

- 1. Suppose a is matched in M to an item worse than s(a).
 - Match a' = M(s(a)) to f(a') [note that $s(a) \neq f(a')$].
 - ▶ Match *a* to *s*(*a*).
 - ► Leave M(f(a')) unmatched.
- 2. Suppose a is matched to an item strictly sandwiched between f(a) and s(a).
 - Observe that M(a) = f(a') for some $a' \neq a$ [since $M(a) \notin \{f(a), s(a)\}$].
 - ▶ Match a' to M(a).
 - Match a to f(a).
 - Leave M(f(a)) unmatched.

In both cases, the resulting matching is more popular than M.

Structure of popular matchings with ties in rankings

Let $E_1 = \{ top edges in G \}$, i.e., $ab \in E_1 \iff b$ is a top item for a.

▶ Matching *M* is popular \Rightarrow *M* \cap *E*₁ is a maximum matching in the top subgraph *G*₁ = (*A* \cup *B*, *E*₁).

What are the other edges in a popular matching M?

Call an item b non-critical if:

 \blacktriangleright b is left unmatched in some maximum matching in G_1 .

For each $a \in A$:

let s(a) = {a's favorite non-critical items};

• let $f(a) = \{a' \text{ s top items}\}.$

M is popular \Rightarrow $M(a) \in f(a) \cup s(a)$ for all $a \in A$.

An efficient algorithm

The popular matching algorithm

- Let $E' = \{ab : a \in A \text{ and } b \in f(a) \cup s(a)\}.$
- Find a maximum matching M in the graph $G' = (A \cup B, E')$.
 - If M is not A-perfect then return "no popular matching".
 - Else return an A-perfect matching M^* in G' that maximizes $|M^* \cap E_1|$.

The algorithm finds a maximum matching M in the subgraph G' that has

- ▶ all edges ab s.t. $b \in f(a) \cup s(a)$.
 - *M* is *A*-perfect \Rightarrow *M*^{*} is popular.
 - *M* is not *A*-perfect \Rightarrow *G* has no popular matching.

An interesting example

The popular matching algorithm works when ties are allowed in preferences.

- However it does not work when preferences are partial orders.
- ▶ For partial order preferences, *indifference* is not necessarily transitive.

Consider the following instance on the complete bipartite graph with $A = \{a_1, a_2, a_3\}$ and $B = \{b_1, b_2, b_3\}$.

$$\begin{array}{ll} \mathbf{a}_1 & b_1 \succ b_3; \ b_2 \succ b_3. \\ \hline \mathbf{a}_2 & b_1 \succ b_3. \\ \hline \mathbf{a}_3 & b_2 \succ b_1; \ b_2 \succ b_3. \end{array}$$

In $M = \{a_1b_1, a_2b_2, a_3b_3\}$, we have $M(a) \in f(a) \cup s(a) \ \forall a \in A$.

- But $N \succ M$ where $N = \{a_1b_1, a_2b_3, a_3b_2\}$.
- \triangleright a_3 prefers N to M while a_1 and a_2 are indifferent between M and N.

Random popular matchings

Consider a "random" instance $G = (A \cup B, E)$.

- Every a picks its ranking independently and uniformly at random from the set of all permutations of B.
- ► Thus every a ∈ A has a complete and strict ranking.

If $|B| > (1.42 \cdot |A|) \Rightarrow$ popular matchings almost surely exist [Mahdian, 2006].

- In fact, there is a phase transition at 1.42.
- So |B| < (1.42 − δ) · |A| where δ > 0 is some constant ⇒ almost surely the instance has no popular matching.

Mixed matchings

A mixed matching is a probability distribution over matchings, i.e.,

 $\Pi = \{ (M_0, p_0), \ldots, (M_k, p_k) \},\$

where M_0, \ldots, M_k are matchings in G and $\sum_i p_i = 1$ and $p_i \ge 0 \ \forall i$.

A mixed matching is a lottery over matchings.

For any two matchings M and N:

let $\Delta(M, N) = \#$ of votes for M - # of votes for N.

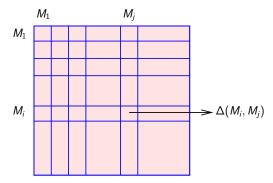
• Define $\Delta(\Pi, N) = \sum_i p_i \cdot \Delta(M_i, N)$.

DEFINITION. A mixed matching Π is popular if $\Delta(\Pi, N) \ge 0$ \forall matchings N.

Do popular mixed matching always exist?

▶ Yes [K, Mestre, and Nasre, 2011].

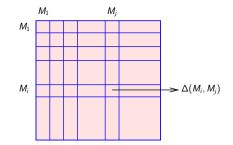
We model this as a 2-player game.



We need to show $\exists \Pi$ such that $\Delta(\Pi, N) \ge 0$ for all matchings N.

Consider the following game where the row player chooses a probability distribution $\langle p_1, \ldots, p_k \rangle$ over the rows.

The column player chooses a column N.



• Value of the game is $\Delta(\Pi, N) = \sum_{i} p_i \cdot \Delta(M_i, N)$.

Row player is the *max-player* and column player is the *min-player*.

CLAIM. $\max_{\Pi} \min_{N} \Delta(\Pi, N) \leq 0$.

• Observe that
$$\Delta(\Pi, \Pi) = \sum_i \sum_j p_i p_j \cdot \Delta(M_i, M_j) = 0.$$

(since $\Delta(M_i, M_j) = -\Delta(M_j, M_i) \forall i, j$)

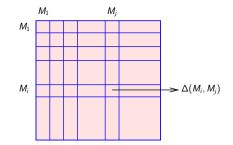
• Thus there exists a matching N such that $\Delta(\Pi, N) \leq 0$.

Hence for every Π there exists some N such that $\Delta(\Pi, N) \leq 0$.

So $\max_{\Pi} \min_{N} \Delta(\Pi, N) \leq 0$.

Consider the *dual* game where the column player chooses a probability distribution $\langle p'_1, \ldots, p'_k \rangle$ over the columns first.

The row player chooses a row N'.



• Value of the dual game is $\Delta(N', \Pi') = \sum_i p'_i \cdot \Delta(N', M_i)$.

Recall that the column player is the *min-player* and the row player is the *max-player*.

CLAIM. $\min_{\Pi'} \max_{N'} \Delta(N', \Pi') \geq 0.$

• Since
$$\Delta(\Pi', \Pi') = \sum_i \sum_j p'_i p'_j \cdot \Delta(M_i, M_j) = 0$$
:

• there exists a matching N' such that $\Delta(N', \Pi') \ge 0$.

Hence for any Π' there exists an N' such that $\Delta(N', \Pi') \ge 0$.

• So $\min_{\Pi'} \max_{N'} \Delta(N', \Pi') \ge 0$.

We know from von Neumann's minimax theorem that

$$\max_{\Pi} \min_{N} \Delta(\Pi, N) = \min_{\Pi'} \max_{N'} \Delta(N', \Pi').$$

• Thus
$$0 \ge$$
 the left side = the right side ≥ 0 .

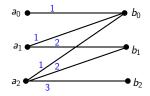
► Hence $\max_{\pi} \min_{N} \Delta(\Pi, N) = 0$, i.e., $\exists \Pi$ s.t. $\Delta(\Pi, N) \ge 0 \forall$ matchings N.

Thus popular mixed matchings always exist.

Such a mixed matching can be computed efficiently as a popular <u>fractional</u> matching.

When cardinality is more important than popularity

Suppose the most important attribute of a matching is its cardinality.



So it is only maximum matchings that are admissible solutions.

What we seek is a maximum matching M such that:

- **•** *no* maximum matching defeats *M* in their head-to-head election.
- ▶ a smaller matching may defeat *M*.

When cardinality is more important than popularity

The cardinality of the matching is important in many applications:

- assigning staff to hospitals in emergencies such as a pandemic;
- allocation problems for humanitarian organizations;
- assigning medical students to residencies.

We seek a maximum matching in these applications.

- Among maximum matchings, we want a "best" one.
- ▶ Thus we seek popularity *within* the set of maximum matchings.

Popular assignments

OUR PROBLEM. Find a popular maximum matching in G, if one exists.

By adding appropriate dummy agents and dummy items to G:

▶ we can assume wlog that *G* has a perfect matching, i.e., an assignment.

The popular assignment problem

• Given an instance $G = (A \cup B, E)$, does G admit a popular assignment?

This generalizes the popular matching problem.

Popular assignments

- Add |A| dummy items (one per agent as its last choice).
- Add |B| dummy agents that are adjacent to all the $|A \cup B|$ items.
 - All neighbors are tied for any dummy agent.

Then any matching $M \rightsquigarrow$ a perfect matching \tilde{M} .

• $\Delta(M, N) = \Delta(\tilde{M}, \tilde{N})$ for any pair of matchings M and N.

Thus the popular assignment problem generalizes the popular matching problem.

Popular assignments

For 2-sided preferences:

our algorithm in the red/blue graph

 \longrightarrow the popular maximum matching algorithm in the colorful graph.

For 1-sided preferences:

it is not clear how to generalize the popular matching algorithm to the popular assignment algorithm.

No combinatorial characterization of popular assignments is known.

The LP-method for popular assignments

Given an assignment M, define edge weights in G as follows. For any edge ab:

$$wt_M(ab) = \begin{cases} 1 & \text{if } a \text{ prefers } b \text{ to its partner;} \\ -1 & \text{if } a \text{ prefers its partner to } b; \\ 0 & \text{otherwise.} \end{cases}$$

OBSERVATION. For any assignment N:

$$\operatorname{wt}_M(N) = \sum_{e \in N} \operatorname{wt}_M(e) = \# \text{ of votes for } N - \# \text{ of votes for } M.$$

• *M* is popular $\iff wt_M(N) \le 0$ for all assignments *N* in *G*.

Since $wt_M(M) = 0$:

• *M* is popular \iff *M* is a max-weight assignment under wt_{*M*}.

The LP-method

LP for max-weight assignment:

$$\max \sum_{e \in E} \mathsf{wt}_M(e) \cdot x_e$$

$$\sum_{e\in\delta(v)}x_e=1\,\,\,orall v\in A\cup B\,\,\,\,$$
 and $\,\,\,x_e\,\geq\,0\,\,\,orall e\in E.$

M is popular \iff the optimal value of this LP is 0.

The dual LP:

$$\min\sum_{\mathbf{v}}\alpha_{\mathbf{v}}$$

 $\alpha_a + \alpha_b \geq \mathsf{wt}_M(ab) \quad \forall ab \in E$

M is popular \iff the optimal value of the dual LP is 0.

Dual certificate

CLAIM. *M* is popular $\iff \exists$ dual feasible solution $\vec{\alpha}$ such that $\sum_{\nu} \alpha_{\nu} = 0$ and

•
$$\alpha_a \in \{0, 1, 2, \dots, n-1\}$$
 for all $a \in A$;
• $\alpha_b \in \{0, -1, -2, \dots, -(n-1)\}$ for all $b \in B$.

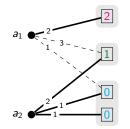
Such a solution $\vec{\alpha}$ to the dual LP is a *dual certificate* for *M*.

• Let
$$c: B \to \{0, 1, 2, \dots, n-1\}$$
.

For each
$$a \in A$$
: let $c^*(a) = \max\{c(b) : b \in Nbr(a)\}$.
highest color among a's neighbors

• We can define a subgraph $G_c = (A \cup B, E_c)$ of G as follows.

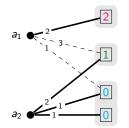
The subgraph G_c



Here $c^*(a_1) = 2$ and $c^*(a_2) = 1$.

- Each a keeps edges to its most preferred neighbors in color $c^*(a)$.
- Furthermore, a keeps edges to its most preferred neighbors in color c*(a) 1 if they are preferred to all neighbors in color c*(a).
- The bold edges are in E_c and the dashed edges are not.

The right function $c \iff$ there is a popular assignment



G has a popular assignment if and only if

∃c: B → {0, 1, 2, ..., n − 1} s.t. G_c admits a perfect matching M;
α_b = −c(b) for b ∈ B and α_a = c(M(a)) for a ∈ A is M's dual certificate.

PROBLEM: Find a right function $c: B \rightarrow \{0, 1, 2, \dots, n-1\}$, if there is one.

The popular assignment algorithm

Input: $G = (A \cup B, E)$ where |A| = |B| = n.

- 1. Initialize c(b) = 0 for every $b \in B$.
- 2. Compute a maximum matching M in the subgraph G_c .
- 3. If M is perfect then return M.
- 4. For every unmatched $b \in B$ do: c(b) = c(b) + 1.
- 5. If $c(b) \le n-1$ for all $b \in B$ then go back to Step 2; else return "no".

The above algorithm solves the popular assignment problem [K, Király, Matuschke, Schlotter, and Schmidt-Kraepelin, 2022].

Analysing the popular assignment algorithm

Eventually, either a perfect matching M in G_c is returned or c(b) = n for some $b \in B$.

▶ If *M* is returned: $\alpha_b = -c(b)$ for $b \in B$ and $\alpha_a = c(M(a))$ for $a \in A$ is <u>*M*'s dual certificate</u>.

Suppose c(b) = n for some $b \in B$.

Let $\vec{\beta}$ be a dual certificate for some popular assignment in *G*.

We show c(b) ≤ |β(b)| for all b ∈ B where c(b) is b's c-value at the end. This means:

$$n = c(b) \leq |\beta(b)| \leq n-1$$
, a contradiction.

• Our algorithm says "no" \Rightarrow there is indeed no popular assignment in G.

A popular matching algorithm

Input: $G = (A \cup B, E)$ where |A| = |B| = n.

- 1. Initialize c(b) = 0 for every $b \in B$.
- 2. Compute a maximum matching M in the subgraph G_c .
- 3. If M is perfect then return M.
- 4. For every unmatched $b \in B$ do: c(b) = c(b) + 1.
- 5. If $c(b) \le n-1$ for all $b \in B$ then go back to Step 2; else return "no".

REMARK. Suppose " $c(b) \le n - 1$ " in step 5 is replaced with " $c(b) \le 1$ ".

- Then the resulting algorithm solves the popular matching problem.
- This algorithm works for partial order preferences as well.

Popularity with forced edges

Given a set $\{e_1, \ldots, e_k\}$ in G:

▶ Is there a popular assignment in G that contains all these k edges?

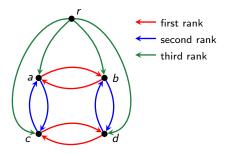
Our algorithm can be easily updated to solve the above problem.

- Suppose there is no such popular assignment.
- Find a popular assignment that contains as many of these k edges as possible.

This problem is NP-hard.

- ▶ Thus it is NP-hard to find a min-cost popular assignment when there is a function cost : $E \rightarrow \{0, 1\}$.
- This hardness holds even when all agents have strict rankings.

Liquid democracy



- There are n voters.
- Every voter considers its in-neighbors to be better informed than itself.
- It seeks to delegate its vote to an in-neighbor.
- It has preferences over its in-neighbors.
- Delegation cycles are forbidden.

E.g., a considers b as her best in-neighbor and c as her second best in-neighbor.

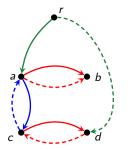
For convenience, a dummy vertex r has been added as the root.

 $\operatorname{ProbLem}$. Find an optimal arborescence as per vertex preferences.

Comparing two arborescences

A vertex prefers the arborescence where it has a more preferred in-neighbor.

Let us compare the solid arborescence A with the dashed arborescence A'.



- a prefers A' to A since it prefers c to r;
- b is indifferent between A and A';
- c prefers A' to A since it prefers d to a;
- d prefers A to A' since it prefers c to r;
- ▶ so A' gets 2 votes and A gets 1 vote, thus $A' \succ A$.

Arborescence A is popular if there is no arborescence A' such that $A' \succ A$.

A popular arborescence represents a stable way of delegating votes.

Popular arborescences

QUESTION. Does an instance $G = (V \cup \{r\}, E)$ have a popular arborescence? If so, find one.

• Our popular assignment algorithm can be extended to solve this problem.

Matroids [Whitney, 1935]

Combinatorial structures that generalize the notion of linear independence in matrices.

- Assignments are common bases in the intersection of two partition matroids.
- Arborescences are common bases in the intersection of a partition matroid with a *graphic* matroid.

The LP-method for popular arborescences

For any arborescence A and $v \in V$, let A(v) be the unique edge in $A \cap \delta(v)$.

(here $\delta(v)$ is the set of v's incoming edges)

Given an arborescence A, define edge weights in G as follows. For any $e \in \delta(v)$:

$$\mathsf{wt}_{A}(e) = \begin{cases} 1 & \text{if } v \text{ prefers } e \text{ to } A(v); \\ -1 & \text{if } a \text{ prefers } A(v) \text{ to } e; \\ 0 & \text{ otherwise.} \end{cases}$$

OBSERVATION. For any arborescence A':

$$\operatorname{wt}_{\mathcal{A}}(\mathcal{A}') = \sum_{e \in \mathcal{A}'} \operatorname{wt}_{\mathcal{A}}(e) = \# \text{ of votes for } \mathcal{A}' - \# \text{ of votes for } \mathcal{A}.$$

• A is popular \iff wt_A(A') \le 0 for all arborescences A' in G.

The LP-method for popular arborescences

Since $wt_A(A) = 0$:

• A is popular \iff A is a max-weight arborescence under wt_A.

LP for max-weight arborescence:

$$\max \sum_{e \in E} \mathsf{wt}_{A}(e) \cdot x_{e}$$

$$\begin{split} \sum_{e \in S} x_e &\leq \quad \mathsf{rank}(S) \ \ \forall S \subseteq E \\ \sum_{e \in \delta(v)} x_e &= \quad 1 \ \ \forall v \in V \quad \text{ and } \quad x_e \;\geq \; 0 \ \ \forall e \in E. \end{split}$$

For any $S \subseteq E$: rank(S) is the maximum size of an acyclic subset of S in G.

A is a popular arborescence \iff the optimal value of this LP is 0.

The dual LP

$$\begin{split} \min\left(\sum_{v\in V} \alpha_v + \sum_{S\subseteq V} \operatorname{rank}(S) \cdot y_S\right) \\ \sum_{S:e\in S} y_S + \alpha_v &\geq \operatorname{wt}_A(e) \quad \forall e\in \delta(v), \; \forall v\in V \\ y_S &\geq 0 \; \; \forall S\subseteq E. \end{split}$$

A is popular \iff the optimal value of the dual LP is 0.

- ▶ \exists an integral optimal solution $(\vec{y}, \vec{\alpha})$ s.t. $\{S : y_S > 0\}$ is a *chain*.
- A chain $C = \{C_0, C_1, \ldots, C_k\}$ has the form $C_0 \subset C_1 \subset \cdots \subset C_k$.

Moreover, we will have a chain $\emptyset \subset C_0 \subset \cdots \subset C_k = E$.

Dual certificates

Our chain C induces a coloring $c : E \to \{0, 1, 2, \dots, k\}$ where

We define $E_{\mathcal{C}} \subseteq E$: for any $v \in V$, edge $e \in \delta(v)$ is in $E_{\mathcal{C}}$ if:

• either $c(e) = c^*(v)$ and $e \succeq_v e'$ for all $e' \in \delta(v)$ with color $c^*(v)$

► or $c(e) = c^*(v) - 1$ and (i) $e \succeq_v e'$ for all $e' \in \delta(v)$ with color $c^*(v) - 1$ and (ii) $e \succ_v e'$ for all $e' \in \delta(v)$ with color $c^*(v)$.

Dual certificates

Arborescence A is popular $\iff \exists C = \{C_0, \ldots, C_k\}$ such that

$$\blacktriangleright \ \emptyset \subset C_0 \subset \cdots \subset C_k = E;$$

► $A \subseteq E_C$;

▶ span(
$$A \cap C_i$$
) = C_i for all i where
for any $S \subseteq E$: span(S) = { e : rank($S \cup {e}$) = rank(S).

The dual certificate $(\vec{y}, \vec{\alpha})$ for A will be:

- Let $y_S = 1 \forall S \in C$ and $y_S = 0$ for all other S.
- Let $\alpha_v = -(\# \text{ of sets in } C \text{ that } A(v) \text{ belongs to}).$

PROBLEM. Find an arborescence A and chain C if there exist such an A and C.

The popular arborescence algorithm

Input: $G = (V \cup \{r\}, E)$ where |V| = n.

- 1. Initialize k = 0 and $C_0 = E$.
- 2. Compute a branching $I \subseteq E_{\mathcal{C}}$ that lex-maximizes $(|I \cap C_0|, \dots, |I \cap C_k|)$.
- 3. If $|I \cap C_i| = \operatorname{rank}(C_i) \forall i$ then return I.
- 4. Let j be the minimum index such that $|I \cap C_j| < \operatorname{rank}(C_j)$.
- 5. Update $C_j = \operatorname{span}(I \cap C_j)$.
- 6. If j = k then
 - ▶ If $k \leq n-1$ then k = k+1, $C_k = E$, and $C = C \cup \{E\}$; go back to step 2.
 - Else return "no".

The above algorithm solves the popular arborescence problem [K, Makino, Schlotter, and Yokoi, 2024].

References

- 1. M. Mahdian. Random popular matchings. In EC 2006.
- 2. D. J. Abraham, R. W. Irving, T. Kavitha, and K. Mehlhorn. *Popular matchings*. SIAM Journal on Computing, 2007.
- T. Kavitha, J. Mestre, and M. Nasre. *Popular mixed matchings*. Theoretical Computer Science, 2011.
- 4. T. Kavitha, T. Király, J. Matuschke, I. Schlotter, U. Schmidt-Kraepelin. The popular assignment problem: when cardinality is more important than popularity. In SODA 2022.
- 5. T. Kavitha, K. Makino, I. Schlotter, Y. Yokoi. Arborescences, colorful forests, and popularity. In SODA 2024.

Thank you! Any questions?