Résumé : Le dual topologique de l'espace des séries en un nombre quelconque, éventuellement infini, de variables non commutatives avec un corps topologique séparé de coefficients, pour la topologie produit, n'est autre que l'espace des polynômes. Il en résulte de façon immédiate que les endomorphismes continus sur les séries sont exactement les matrices infinies mais finies en ligne. Les matrices triangulaires infinies, puisque formant une algèbre de Fréchet, disposent quant à elles d'un calcul intégral et différentiel, que nous développons dans un cadre assez général, et qui permet d'établir une correspondance exponentielle-logarithme de type Lie. Nous déployons ces outils sur l'algèbre de Weyl (à deux générateurs) réalisée fidèlement comme une algèbre d'opérateurs agissant continûment sur l'espace des séries formelles (en une variable). Puis nous démontrons que chaque endomorphisme d'un espace vectoriel de dimension infinie dénombrable peut s'obtenir explicitement sous la forme de la somme d'une famille sommable en des opérateurs plus élémentaires, les opérateur d'échelle (généralisation de l'algèbre de Weyl), précisant de la sorte le théorème de densité de Jacobson. Par dualité (topologique) un résultat similaire concernant les opérateurs continus sur un espace de combinaisons linéaires infinies tombent presque gratuitement. Par ailleurs nous développons la notion d'algèbre (réduite) large d'un monoïde à zéro (obtenue par complétion de l'algèbre réduite) qui nous permet de calculer de nouvelles formules d'inversion de Möbius ainsi que des séries de Hilbert.
- Le jury : Jacques Alev, Claude Carlet , Frédéric Chapoton, Patrick Dehornoy, Gérard Duchamp, Loïc Foissy, Dominique Manchon, Frédéric Patras, Laurent Rigal et Jean-Yves Thibon.
Dernière modification : Monday 27 May 2024 | Contact pour cette page : Cyril.Banderier at lipn.univ-paris13.fr |