Journée-séminaire de combinatoire

(équipe CALIN du LIPN, université Paris-Nord, Villetaneuse)

Le 14 novembre 2013 à 10h00 en B107, Omid Amini nous parlera de : Coloriage des graphes sur les surfaces

Résumé : Je commencerai par introduire le concept de S-coloriage de graphe : étant donné un sous-ensemble S(v) de voisins de v pour tout sommet v d'un graphe G, c'est un coloriage propre des sommets de G tel que, en outre, les sommets qui appartiennent ensemble à un même S(v) pour un sommet v reçoivent des couleurs différentes. Ceci généralise à la fois le concept de coloriage du carré de graphe et le coloriage cyclique des graphes plongés.
Je présenterai un résultat structurel fort pour les graphes plongés dans une surface fixe, qui permet par exemple de démontrer que la taille maximum d'une clique dans le carré d'un tel graphe de degré maximum D est au plus 3D / 2 plus une constante.
En utilisant ce résultat de structure, le S-coloriage d'un graphe plongé peut se réduire au coloriage d'arêtes d'un multigraphe. Je donnerai ensuite un aperçu général du travail de Jeff Kahn sur arête-coloriage d'un multigraphe H, basé sur l'utilisation des distributions hardcores sur les couplages, définies par des points à l’intérieur du polytope des couplages de H.
En combinant ces résultats, on peut établir un résultat général sur le S-coloriage des graphes plongés, impliquant notamment les versions asymptotiques des conjectures de Wegner et de Borodin sur le coloriage du carré et le coloriage cyclique des graphes planaires. Mon exposé est basé sur un travail en commun avec L. Esperet et J. van den Heuvel.


Dernière modification : Monday 27 May 2024 Valid HTML 4.01! Valid CSS! Contact pour cette page : Cyril.Banderier at lipn.univ-paris13.fr