Résumé : Dans cet exposé, on introduit deux familles de polycubes : les pyramides et les espaliers. On calcule les séries génératrices ordinaire et de Dirichlet de ces objets à l'aide d'une version multi-indexée de la convolution de Dirichlet. On s'intéresse ensuite à une généralisation des pyramides et des espaliers en dimension d quelconque et on montre que le nombre de pyramides de volume fixé en dimension d+1 est un polynôme en d. On explique enfin comment appliquer les techniques mises en œuvre ici à d'autres familles de polycubes.
Dernière modification : Monday 27 May 2024 | Contact pour cette page : Cyril.Banderier at lipn.univ-paris13.fr |