
Pseudorandom Objects
and Generators

David Xiao
LIAFA

CNRS, Université Paris 7

Journées ALEA 2012
Lecture 2: Pseudorandomness in Algorithms and Complexity

Example: Polynomial
Identity Testing

• Given multi-variate polynomial p ∈ Z[x1 ... xm], decide if p ≠ 0

• Ex. p = (3x1 - 4x2)7 (45x13x2 - 4x1x32 - x1x3)2 + (4x12x2 - x23x3)5

• Brute force takes exponential time in degree

• Randomized algorithm:

• Let d = degree(p)

• Pick z1 ... zm each randomly from [q] = {1, ..., 100d}

• Output 1 if p(z1, ... , zm) ≠ 0

• Output 0 if p(z1, ... , zm) = 0

• Clearly algorithm outputs 0 if p ≡ 0

• Theorem [Schwartz-Zippel’79]:
if p ≠ 0 then Prz[p(z1 ... zm) = 0] ≤ d/100d = 1/100

• We don’t know how to derandomize!

Eliminating or
Reducing Randomness
• Using randomness in algorithms raises questions:

• How to obtain randomness?

• How to save on randomness?

• How to purify non-uniform randomness?

• Does randomness fundamentally accelerate
computation?

• Pseudorandomness: use little or no randomness
but behaves indistinguishable from random

ask the physicists
(or the philosophers)

Pseudorandomness in
Algorithms

Randomness

• Un = uniform distribution over {0, 1}n

• Each string has same probability mass =
1/2n

• Can approximate other distributions: e.g.
uniform over Fq, Gauss(0, 1), etc.

Using Randomness:
Algorithms

• Problem: deciding language L : {0,1}* -> {0, 1}
• Deterministic algorithm A deciding L:

• Take input x
• Perform some precise deterministic operations (depending on x)
• Satisfies A(x) = L(x) for all x

• Efficiency: perform at most nc operations where n = |x| (“polynomial time”)

• Randomized algorithm A deciding L:
• Take input x, random bits r drawn from Um

• Perform some precise deterministic operations (depending on x, r)
• Prr[A(x; r) = L(x)] ≥ 2/3 for all x

• Efficiency: perform at most nc operations where n = |x| (“polynomial time”)
• Also measure number of bits used, i.e. |r| = m

x

A

0 or 1
r random • Can reduce error by taking majority

of running algorithm with independent
randomness

• Analyze using uniform randomness

Randomness in
Algorithms

• Treat random bits as expensive resource

• Example: error reduction

• For all inputs x, Pr[A(x; Um) errs] ≤ 1/3

• Chernoff-Hoeffding: majority of k independent
repetitions of A has error 2-Ω(k)

• If each execution costs m random bits, k
executions cost km random bits

• Can we do better?

Expander graphs
• Recall from yesterday

• Expander mixing lemma: For all S, T ⊆ G:
| |E(S, T)| - |S| |T| D/N| ≤ λD √(|S| |T|)

• E(S, T) = edges between S and T in G

• |S| |T| D/N = expected # edges in
random D-regular graph

S

T

Spectral expander: G is (N, D, λ)-
expander if:
• G is D-regular, |V| = N
• Let M = adjacency matrix of G

• Mij = 1/D if (i, j) ∈ G, 0 else

• Eigenvalues of M in [-1, 1]
• Max eigenvalue = 1

• λ ≥ all other eigenvalues of M in
absolute value

• Theorem [Cohen-Wigderson’89]: can efficiently
reduce error of A to 1/nc without any additional randomness
• Suppose we have (2m, D = poly(n), λ = 1/(12nc)) expander graph
• Each vertex corresponds to string in {0, 1}m

• New algorithm:
• Use m random bits to pick vertex r
• In expander, calculate neighbors {r1 ... rD} = N(r)
• Output majority of A(x; r1) ... A(x; rD)

• Claim: new algorithm has error 1/nc

{0, 1}m

Using Expander Graphs

Proof...

Exponentially small
error

• Use O(1) constant expander graph

• Take random walk, let r1 ... rk be
visited vertices

• Output majority of A(x; r1) ... A(x; rk)

• Costs m + O(k)

• From Expander Chernoff Bound:
Pr[Maj(A(x; r1) ... A(x; rk)) errs] ≤ 2-(1-λ) k

(Good expander => w.h.p. fraction of bad steps in walk ≤ |B|/n = 1/3)

{0, 1}m

B

Imperfect
Randomness

• Analyze algorithms assuming uniform random bits

• Natural sources unlikely to be uniform:

• Current time?

• Mouse gestures?

• Quantum phenomena?

• All have dependencies, noise, etc.

• How to purify?

• Ad hoc: linear feedback shift registers

• Better: randomness extractors

Useful random sources

• What kinds of random sources are useful?

• Must have sufficient entropy

• Use min-entropy
H∞(X) = minx log (1/Pr[X = x])

• H∞(X) ≥ k <=> ∀x, Pr[X = x] ≤ 2-k

• Build deterministic extractor?
f : {0,1}n -> {0,1}, s.t. for all X over {0,1}n with H∞(X) ≥ n-1,
f(X) = uniform bit

• f cannot exist: |f-1(0)| or |f-1(1)| must be larger than 2n-1.
For X uniform over larger preimage, f(X) constant

Randomness
Extractors

• Allow for (small) collection of functions
• k-extractor: family fy : {0,1}n -> {0,1}m, y ∈ {0,1}d

• For all X with H∞(X) ≥ k, fUd(X) ≈ Um

• For fixed k and n, want minimal d and maximal m

X
|X| ≥ 2k

fUd(X)

{0,1}n

{0,1}m

{0,1}d

• Where does seed
come from?

• When d = O(log n),
can eliminate by
enumeration

• Random function w.h.p. is
optimal extractor (up to
additive factors)
[Radhakrishnan-
TaShma’97]

• d = log(n - k) + O(1)

• m = k + d - O(1)

Building Extractors
• Example of explicit k-extractor (for k = 0.99n, d = O(log n))

[Zuc’06]:

• Fix (2m, D, λ) expander
• n = m + m log D

• Each w ∈ {0,1}n determines random walk of length m+1 in
expander

• fi : {0,1}n -> {0,1}m, i ∈ {1 ... m+1} given by
fi(w) = i’th vertex visited in walk w

• (Still useful despite large k)

• Other constructions based on error-correcting codes, etc.

• Can build explicit optimal extractors (up to multiplicative
factors) [Lu-Reingold-Vadhan-Wigderson’03, Guruswami-
Umans-Vadhan’06]

Is Randomness
Powerful?

• So far: possible to save on randomness

• Question: possible to eliminate randomness?

• Natural strategy: take majority of A(x; r) for all r

• Exponential time

• Enumerate over poly-size set of random bits that
are indistinguishable for efficient algorithms

Pseudorandom
Generators

• Pseudorandom generator:
G : {0, 1}O(log m) -> {0, 1}m computable in time
poly(m)
For all efficient algorithms D,
Pr[D(G(UO(log m))) = 1] ≈ Pr[D(Um) = 1]

• Derandomization: run algorithm with G(s) for all
s ∈ {0,1}O(log m), output majority

Simple(?) Case: Fooling
Linear Functions

• ε-biased generator:
G : {0, 1}O(log m) -> {0, 1}m computable in time poly(m)
For all non-zero linear functions f : {0,1}m -> {0,1},
| Pr[f(G(UO(log m))) = 1] - 1/2 | ≤ ε

• More or less equivalent to linear codes

• From yesterday we know explicit constructions

• For more general classes of functions, only know
conditional constructions

• Assume existence of hard functions

Hardness vs.
Randomness

• Suppose f : {0,1}t -> {0, 1} hard to compute on average:
For all efficient algorithms C,
Prs<-Ut[f(s) = C(s)] ≈ 1/2

• g stretching 1 bit: g(s) = (s, f(s))

• Proposition: g(Ut) indistinguishable by any efficient
algorithm from Ut+1

• Problems: stretches only 1 bit, g hard-to-compute
Proof...

• Theorem [NW’88]: given f : {0,1}t -> {0,1}
sufficiently hard but computable in exponential
time, can build PRG G : {0,1}K log m -> {0,1}m

Nisan-Wigderson
Generator

G(x)i = f(x|Si)

{0,1}K log m

{0,1}m

• Efficiency: f computable
in 2t = poly(m) time

• Pseudorandomness:
similar to analysis of g,
use almost-
independence of bits

Combinatorial design:
• S1 ... Sm ⊆ {1 ... K log m}
• |Si| = t = √K log m
• Subsets are “almost disjoint”:

|Si ∩ Sj| ≤ log m
• Efficiently constructible

More about PRG’s

• PRG’s useful in cryptography [Blum-Micali’82]

• Unconditional PRG’s against weaker classes of algorithms:

• Space-bounded algorithms [Nisan’90]

• Constant-depth circuits [Ajtai-Wigderson’85, Braverman’09]

• Linear functions [Naor-Naor’90]

• etc...

Fin

