Pseudorandom Objects
and Generators

Journees ALEA 2012
Lecture 2: Pseudorandomness in Algorithms and Complexity

David Xiao
i LIAFA
0 CNRS, Université Paris 7

Example: Polynomial
Identity Testing

@® Given multi-variate polynomial p € Z[x; ... xn], decide if p # O
@ Ex. p = (3x1 - 4X2)" (45x:°%X2 - 4x1X3% - X1X3)? + (4X12°X2 - X23X3)°
@ Brute force takes exponential time in degree
® Randomized algorithm:
@ Let d = degree(p)
@ Pick z, ... zn each randomly from [q] = {1, ..., 100d}
® Output 1 if p(zy, .. , zZm) # O
® Output O if p(zy, .., zZm) = O
® Clearly algorithm outputs O if p = O

® Theorem [Schwartz-Zippel79]:
if p # 0 then Pr;[p(z: ... zm) = 0] £ d/100d = 1/100

® We dont know how to derandomize!

Eliminating or
Reducing Randomness

@® Using randomness in algorithm

® How To oiriein=neadamness?

® How to save on randomness?

ask the phsiciss
(or the philosophers)

® How to purify non-uniform randomness?

® Does randomness fundamentally accelerate
computation?

® Pseudorandomness: use little or no randomness
but behaves indistinguishable from random

Pseudorandomness in
Algorithms

Randomness

® U, = uniform distribution over {0, 1}"

@® Each string has same probability mass =
1/2"

@ Can approximate other distributions: e.qg.
uniform over Fq, Gauss(0, 1), etc.

Using Randomness:
Algorithms

® Problem: deciding language L : {0,1}* -> {0, 1}
® Randomized algorithm A deciding L:
@® Take input x, random bits r drawn from U,
@ Perform some precise deterministic operations (depending on x, r)
® Pr[AM;T)=LKX]2 2/3 for all x
@ Efficiency: perform at most n¢ operations where n = |x| (“polynomial time")
@ Also measure number of bits used, i.e. [r| = m

x—)

— Qorl

® Can reduce error by taking majority
of running algorithm with independent
randomness

® Analyze using uniform randomness

r random — !

-

~N

Randomness in
Algorithms

@ Treat random bits as expensive resource
@ Example: error reduction
@® For all inputs x, Pr[A(x; Un) errs] < 1/3

@® Chernoff-Hoeffding: majority of k independent
repetitions of A has error 2-7K)

® If each execution costs m random bits, k
executions cost km random bits

® Can we do better?

Expander graphs

Spectral expander: G is (N, D, A)-
® Recall from yesterday expander if:

® G is D-regular, |V| =N
® Let M = adjacency matrix of G
o M = 1/D if (i, J) € G, O else

® Eigenvalues of M in [-1, 1]

® Max eigenvalue =1

®)\ > all other eigenvalues of M in
absolute value

e
e ——

® Expander mixing lemma: For all S, T € G:
| - ISl ITI ©/NI < AD (ISl ITI)

° = edges between S and T in G

® |S| |TI D/N = expected # edges in

random D-regular graph
. J

Using Expander Graph

® Theorem [Cohen-Wigderson'89]: can efficiently
reduce error of A to 1/n® without any additional randomness

® Suppose we have (2™, D = poly(n), A = 1/(12n°)) expander graph
® Each vertex corresponds to string in {0, 1}™
® New algorithm:

® Use m random bits to pick vertex r

® In expander, calculate neighbors {ri ... ro} = N(r) -

® Output majority of A(x; r1) ... A(x; rp)
® Claim: new algorithm has error 1/n°

Exponentially small

Use O(1) constant expander graph

Take random walk, let r; ... r« be
visited vertices

Output majority of A(x; ri) ... A(x; r)
Costs m + O(k)

From Expander Chernoff Bound:
Pr[Maj(A(x; r1) .. A(x; r)) errs] ¢ 2--M k&
(Good expander => w.h.p. fraction of bad steps in walk < |B|/n = 1/3)

Imperfect
Randomness

® Analyze algorithms assuming uniform random bits
® Natural sources unlikely to be uniform:
® Current fime?
® Mouse gestures?
® Quantum phenomena?
® All have dependencies, noise, efc.
® How to purify?
® Ad hoc: linear feedback shift registers

@ Better: randomness extractors

Useful random sources

® What kinds of random sources are useful?
® Must have sufficient entropy

® Use min-entropy
Heo(X) = mink log (1/Pr[X = x])

® Ho(X)2k <= wvx Pr[X=x]< 2%

@® Build deterministic extractor?
f:40,1}" => {0,1}, s.t. for all X over {0,1}" with Hs(X) 2 n-1,
f(X) = uniform bit

® f cannot exist: [F}(0) or [f}(1)] must be larger than 2"
For X uniform over larger preimage, f(X) constant

{0,1}" OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO(Q

0,137

Randomness
Extractors

Allow for (small) collection of functions
k-extractor: family f, : {0,1}" -> {0,1}™, vy € {0,1}¢
@ For all X with Ho(X) 2 k, fua(X) = Un,
For fixed k and n, want minimal d and maximal m

X
IX| > 2

-

® Where does seed
come from?

® When d = O(log n),
can eliminate by
enumeration

o
\ 10,1
QOO0 O0OOO0OOOOLOOLOLOLOLOLOOLOLOO
o
fua(X
ud(X) .

&

Random function w.h.p. is
optimal extractor (up to
additive factors)
[Radhakrishnan-
TaShma'97]

d = log(n - k) + O(1)
m=Kk+d-0()

~

Building Extractors

® Example of explicit k-extractor (for k = 0.99n, d = O(log n))
[Zuc'06]:

® Fix (2™, D, A\) expander

® n=m+mlogD

® Each w € {0,1}" determines random walk of length m+1 in
expander

® fi:{01}"->{0,1}™ i € {l .. m+l} given by
filw) = i'th vertex visited in walk w

® (Still useful despite large k)

® Ofther constructions based on error-correcting codes, etc.

@® Can build explicit optimal extractors (up to multiplicative
factors) [Lu-Reingold-Vadhan-Wigderson'03, Guruswami-
Umans-Vadhan'06]

Is Randomness
Powerful?

@® So far: possible to save on randomness

® Question: possible fo eliminate randomness?

® Natural strategy: take majority of A(x; r) for all r
@ Exponential time

® Enumerate over poly-size set of random bits that
are indistinguishable for efficient algorithms

Pseudorandom
Generators

® Pseudorandom generator:
G : {0, 1}0Ueam _5 {0, 1}™ computable in time
poly(m)
For all efficient algorithms D,
pr[D(G(UO(log m))) = 1] = Pr[D(Unm) = 1]

@® Derandomization: run algorithm with G(s) for all
s € {0,1}00ea M output majority

Simple(?) Case: Fooling
Linear Functions

® c-biased generator:
G : {0, 1}PUesm _5 {0, 1}™ computable in time poly(m)
For all non-zero linear functions f : {0,1}™ -> {0,1},
| Prif(G(Uogogm)) =11 - 1/2 | < €

® More or less equivalent to linear codes
® From yesterday we know explicit constructions

@® For more general classes of functions, only know
conditional constructions

@® Assume existence of hard functions

Hardness vs.
Randomness

Suppose f : {0,1}" -> {0, 1} hard to compute on average:
For all efficient algorithms C,
Prsc.ui[f(s) = C(s)] = 1/2

g stretching 1 bit: g(s) = (s, f(s))

® Proposition: g(U:) indistinguishable by any efficient—
algorithm from U,

Problems: stretches only 1 bit, g hard-to-compute

Nisan-Wigderson
Generator

® Theorem [NW’88]: given f : {0,1}" -> {0,1}
sufficiently hard but computable in exponential
time, can build PRG G : {O,1}< g™ _5 {0O,1}™

{O, l}K log m

-
® Efficiency: f computable

in 2 = poly(m) time

® Pseudorandomness:
similar to analysis of g,
use almost-
independence of bits

_

~

()

J

-

_

Combinatorial design:

® S;..SmC{l..Klogm}

® |Si|l=1=.Klogm

® Subsets are “almost disjoint”:
ISi n Sl < log m

® Efficiently constructible

oy LIIITTIITI I T T TP I I TIII T I T I I I TITITTIT]

G(x)i = f(xlsi)

More about PRGS

® PRGS useful in cryptography [Blum-Micali’82]
® Unconditional PRGs against weaker classes of algorithms:
@® Space-bounded algorithms [Nisan'90]
Constant-depth circuits [Ajtai-Wigderson'85, Braverman'09]

o
® Linear functions [Naor-Naor'90]
@® efc..

Fin

