Dynamique des vues ego-centrées de la topologie de l'internet : analyse et modélisation

Clémence Magnien Amélie Medem, Fabien Tarissan, Sergey Kirgizov

> Équipe *Complex Networks* LIP6 - CNRS - Université Pierre et Marie Curie

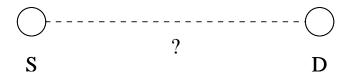
> > 8 mars 2012

Outline

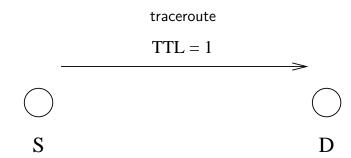
1 Définition et mesure

- 2 Analyse
- Modélisation

Topologie de l'Internet au niveau IP


- Routeurs : adresses IP
- Liens au niveau IP
- → Internet vu comme un graphe

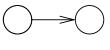
Pourquoi?


Étudier la structure

- Identifier des faiblesses
- Faire des simulations
- Preuves, approches formelles

Pas de carte officielle disponible \longrightarrow Besoin de mesurer traceroute

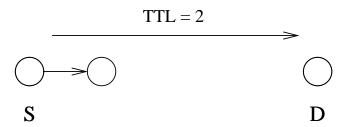
Pas de carte officielle disponible — Besoin de mesurer



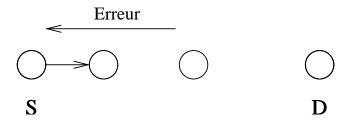
Pas de carte officielle disponible — Besoin de mesurer

Pas de carte officielle disponible — Besoin de mesurer

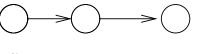
traceroute



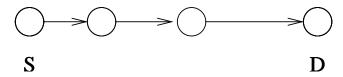
S



D


Pas de carte officielle disponible — Besoin de mesurer

Pas de carte officielle disponible — Besoin de mesurer



Pas de carte officielle disponible — Besoin de mesurer

Pas de carte officielle disponible — Besoin de mesurer

Pas de carte officielle disponible — Besoin de mesurer

traceroute

Plus d'informations

Multiplier

- Les destinations (∼ millions)
- Les sources (∼ quelques dizaines)

Coûteux!

Biais dans les propriétés observées

[Infocom 02, Infocom 03, STOC 05, ...]

- Mesure \longrightarrow échantillon \neq graphe réel
- Propriétés échantillon ≠ Propriétés réelles
- \longrightarrow Travaux théoriques et empiriques pour :
 - Évaluer le biais
 - Évaluer de façon sûre certaines propriétés

Pas de méthode parfaite

Dynamique globale de la topologie : difficultés

Coût

traceroute

- depuis plusieurs sources
- vers un grand nombre de destinations

→ Répétition, fréquence faible

Biais

Représentativité des données (partielles) obtenues ?

→ Représentativité de la dynamique ?

Un radar pour l'internet

Approche orthogonale : vue ego-centrée

Routes entre:

- un moniteur
- plusieurs destinations fixes

Avantages:

- objet bien défini
- ullet taille réduite \longrightarrow mesure rapide

→ fréquence élevée (radar)

Un radar pour l'internet

Approche orthogonale : vue ego-centrée

Routes entre:

- un moniteur
- plusieurs destinations fixes

Avantages:

- objet bien défini
- taille réduite → mesure rapide

→ fréquence élevée (radar)

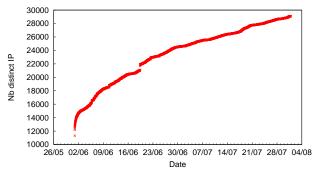
Outline

- 1 Définition et mesure
- 2 Analyse
- Modélisation

Intuitions sur la dynamique

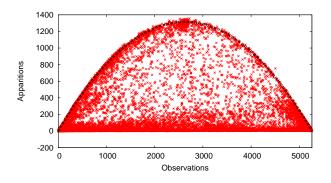
Dynamiques attendues

load-balancing

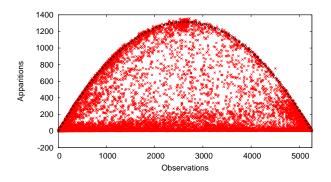

$$S = 0 \underbrace{C_{2}^{1} \underbrace{0 A_{1}^{1} \underbrace{0}_{0} C_{1}^{1}}_{0 B_{1} \underbrace{0}_{0} D_{1}^{1}} \underbrace{0}_{0} \underbrace{E^{2}}_{0}$$

- évolution de la topologie
- événements

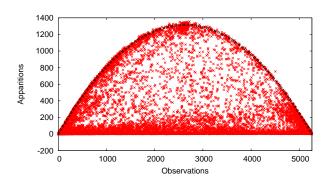
Vitesse de la dynamique


[Magnien et. al, 2009]

Nombre d'adresses IP distinctes vues depuis le début de la mesure

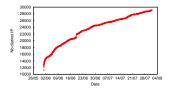


découverte en permanence de nouvelles addresses IP à une vitesse élevée



Parabole : *load-balancing*
$$p = 1/2 \longrightarrow x = n/2, y = 1/2 * 1/2 * n = n/4$$

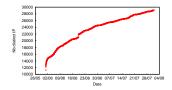
$$p$$
 quelconque : $x = np, y = p(1 - p)n$
 $\longrightarrow y = n * x/n * ((n - x)/n)$



Deux classes différentes

parabole : load-balancing

proche de l'axe des x : addresses stables


Impact des différents facteurs

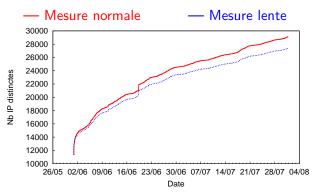
Évolution des adresses causée par

- le load-balancing
 - ullet plus de passes \longrightarrow plus d'IP
- des changements de routage
 - plus de temps → plus d'IP

Impact des différents facteurs

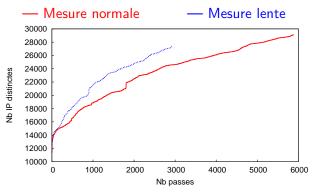
Évolution des adresses causée par

- le load-balancing
 - ullet plus de passes \longrightarrow plus d'IP
- des changements de routage
 - plus de temps → plus d'IP


Importance du temps et du nombre de passes : fréquence

Mesure normale et mesure lente

Deux mesures


- fréquences différentes
- même moniteur/destinations
- même moment
- Mesure radar normale
- ullet une passe sur deux : mesure lente

Mesure normale et mesure lente

Temps égal, plus de passes : plus d'IP \longrightarrow load-balancing

Mesure normale et mesure lente

Nombre de passes égal, plus de temps : plus d'IP \longrightarrow changements de routage

Outline

Définition et mesure

- 2 Analyse
- Modélisation

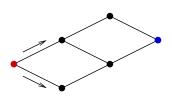
Modélisation – routage et load balancing

Route: plus court chemin

```
Parcours en largeur aléatoire
```

Tant que file non vide :

v = défiler(F)


Pour chaque voisin u de v:

Si u non marqué, alors

 $\mathsf{pere}[\mathsf{u}] \leftarrow \mathsf{v}$

marquer u

enfiler u

ordre aléatoire

Modélisation – dynamique de la topologie

Topologie = graphe aléatoire (Erdös-Rényi)

Paramètre : nombre d'arêtes à changer k

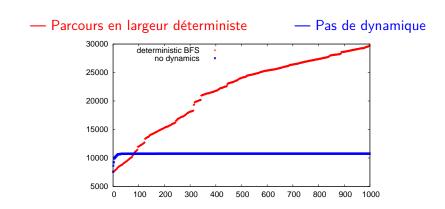
À chaque étape : k swap

- supprimer une arête
- ajouter une arête aléatoire

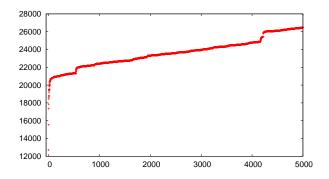
Modélisation – dynamique de la topologie

Topologie = graphe aléatoire (Erdös-Rényi)

Paramètre : nombre d'arêtes à changer k

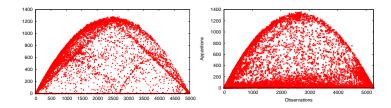

À chaque étape : k swap

- supprimer une arête
- ajouter une arête aléatoire

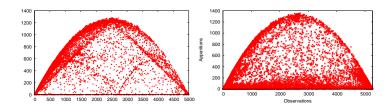

Au total

- Générer un graphe aléatoire
- Choisir une source et d destinations au hasard
- À chaque étape :
 - parcours en largeur aléatoire
 - k swaps

Principle – Illustration

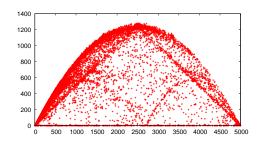


Premières observations


- n = 500,000
- m = 1,000,000
- 3000 destinations
- 5 swaps / passe

Premières observations

- n = 500,000
- m = 1,000,000
- 3000 destinations
- 5 swaps / passe

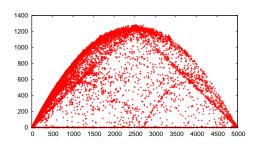

Premières observations

Comparaison

- parabole : identique
- concentration de points près de l'axe des x : sur l'axe des x

Autres caractéristiques

Triangle


Sommet présent pendant k passes avec p = 1/2:

•
$$x = k/2$$

•
$$y = k * 1/2 * (1 - 1/2) = k/4 = x/2$$

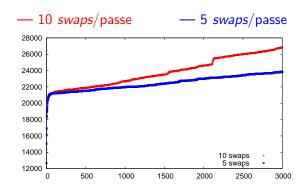
Présent mais moins visible dans les données réelles

Autres caractéristiques

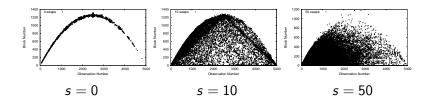
Petites paraboles

Changement majeur : unique chemin pendant $\sim n/2$ passes puis load-balancing :

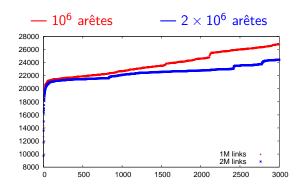
- parabole sur [0, n/2]
- parabole sur [n n/2, n]


Présentes dans certains cas dans les données réelles

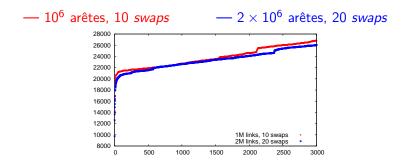
Résumé


Capture des comportements observés

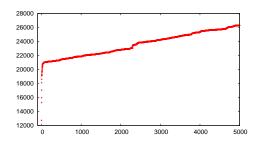
- Nombre de sommets découverts
 - Croissance initiale rapide
 - Longue croissance soutenue
- Observations vs apparitions


Influence des paramètres – nombre de swaps

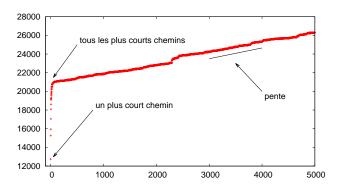
Plus de swaps — pente plus élevée



Influence des paramètres - densité


Plus d'arêtes — pente moins élevée

Invariants


Compromis entre nombre d'arêtes et nombre de swaps

Besoin de quantifier l'influence des paramètres

Besoin de moyenner

Prédictions théoriques ?

Conclusion

Conclusion

- Analyse de la dynamique des vues égo-centrées de l'internet
- Isolé les facteurs de la dynamique
- Modèle simple reproduisant les comportements observés

→ catactère explicatif

Suites

- ullet Quantifier l'influence des paramètres \longrightarrow moyenne
- Études formelles
- Retour sur le cas réel

- Reproduire d'autres propriétés
- Influence de la distribution des degrés