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Introduction

Let

{
n
m

}
be the Stirling number of the second kind. Their

generating function is given by∑
n

m!

n!

{
n
m

}
zn = f (z)m,

f (z) := ez − 1.

In the sequel all asymptotics are meant for n→∞.
Let us first summarize the related litterature. The asymptotic
Gaussian approximation in the central region is proved in Harper
[7]. See also Bender [1], Sachkov [13] and Hwang [10].
In the non-central region, most of the previous papers use the
solution of

ρeρ

eρ − 1
=

n

m
. (1)

As shown in the next section, this actually corresponds to a Saddle
point.
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Let us mention

Hsu [8]:
For t = o(n1/2){

n + t
n

}
=

n2t

2tt!

[
1 +

f1(t)

n
+

f2(t)

n2
+ . . .

]
,

f1(t) =
1

3
t(2t + 1).
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Moser and Wyman [12]:
For t = o(

√
n),{

n
n − t

}
=

(
n

t

)
q−t

[
1 +

(t)2

12
q +

(t)2

288
q2 + . . .

]
,

q =
2

n − t
.

For n −m→∞, n→∞,{
n
m

}
=

n!(eρ − 1)m

2ρnm!(πmρH)1/2

[
1− 1

mρ

(
15C 2

3

16ρ2H
− 3C4

4ρH2

)
+ . . .

]
,

H =
eρ(eρ − 1− ρ)

2(eρ − 1)2
,

C3,C4 are functions of ρ.

Guy Louchard Asymptotics of the Stirling numbers of the second kind revisited: A saddle point approach



Introduction Central region Large deviation, m = n − nα, α > 1/2

Good [6]:

{
n + t
t

}
=

(t + n)!(eρ)− 1)t

t!ρt+n [2πt (1 + κ− (1 + κ)2e−ρ)]1/2
×

×
[

1 +
g1(κ)

t
+

g2(κ)

t2
+ . . .

]
,

κ :=
n

t
,

g1(κ) =
3λ4 − 5λ2

3

24
,

λi = κi (ρ)/σi ,

σ = κ2(ρ)1/2,

κ1 = κ, κ2 = (κ1 + 1)(ρ− κ1).
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Bender [1]:

{
n
m

}
∼ n!e−αm

m!ρn−1(1 + eα)σ
√

2πn
,

n

m
= (1 + eα) ln(1 + e−α),

ρ = ln(1 + e−α),

σ2 =
(m
n

)2 [
1− eα ln(1 + e−α)

]
.

It is easy to see that ρ here coincides with the solution of (1).
Bender’s expression is similar to Moser and Wyman’ result.
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Bleick and Wang [2]:
Let ρ1 be the solution of

ρ1e
ρ1

eρ1 − 1
=

n + 1

m
.

Then{
n
m

}
=

n!(eρ1 − 1)m

(2π(n + 1))1/2m!ρn1(1− G )1/2
×

×
[

1− A

24(n + 1)(1− G )3
+O(1/n2)

]
,

A := 2 + 18G − 20G 2(eρ1 + 1)

+ 3G 3(e2ρ1 + 4eρ1 + 1) + 2G 4(e2ρ1 − eρ1 + 1),

G =
ρ1

eρ1 − 1
.

The series is convergent for for m = o(n2/3).
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Temme [15]:

{
n
m

}
= eAmn−m

(
n

m

) ∞∑
k=0

(−1)k fk(t0)m−k ,

f0(t0) =

(
t0

(1 + t0)(ρ− t0)

(
n

m

))1/2

,

t0 =
n

m
− 1,

where A is a function of ρ, n,m.
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Tsylova [16]:
Let m = tn + o(n2/3).{

n
m

}
=

(γn)n√
2πδn(γn)m

exp
[
−(m − tn)2/(2δn)

]
(1 + o(1)),

γ(1− e−1/γ) = γ,

δ = e−1/γ(t − e−1/γ).

After some algebra, this coincides with Moser and Wyman’
result.

Guy Louchard Asymptotics of the Stirling numbers of the second kind revisited: A saddle point approach



Introduction Central region Large deviation, m = n − nα, α > 1/2

Chelluri, Richmond and Temme [3]:
They prove, with other techniques, that Moser and Wyman
expression is valid if n −m = Ω(n1/3) and that Hsu formula is
valid for y − x = o(n1/3)

Erdos and Szekeres: see Sachkov [13], p.164:
Let m < n/ ln n,{

n
m

}
=

mn

m!
exp

[( n

m
−m

)
e−n/m

]
(1 + o(1)).
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All these papers simply use ρ as the solution of (1). They don’t
compute the detailed dependence of ρ on α for our range, neither
the precise behaviour of functions of ρ they use. Moreover, most
results are related to the case α < 1/2.
We will use multiseries expansions: multiseries are in effect power
series (in which the powers may be non-integral but must tend to
infinity) and the variables are elements of a scale: details can be
found in Salvy and Shackell [14]. The scale is a set of variables of
increasing order. The series is computed in terms of the variable of
maximum order, the coefficients of which are given in terms of the
next-to-maximum order, etc. Actually we implicitly used multiseries
in our analysis of Stirling numbers of the first kind in [11].
Let us finally mention that Hsu [9] consider some generalized
Stirling numbers.
In Sec.2, we revisit the asymptotic expansion in the central region
and in Sec.3, we analyse the non-central region
j = n − nα, α > 1/2. We use Cauchy’s integral formula and the
saddle point method.
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Central region

Consider the random variable Jn, with probability distribution

P[Jn = m] = Zn(m),

Zn(m) :=

{
n
m

}
Bn

,

where Bn is the nth Bell number. The mean and variance of Jn are
given by

M := E(Jn) =
Bn+1

Bn
− 1,

σ2 := V(Jn) =
Bn+2

Bn
− Bn+1

Bn
− 1.

Guy Louchard Asymptotics of the Stirling numbers of the second kind revisited: A saddle point approach



Introduction Central region Large deviation, m = n − nα, α > 1/2

Let ζ be the solution of
ζeζ = n.

This immediately leads to

ζ = W (n),

where W is the Lambert function (we use the principal branch,
which is analytic at 0). We have the well-known asymptotic

ζ = ln(n)− ln ln(n) +
ln ln(n)

ln(n)
+O(1/ ln(n)2). (2)

To simplify our expressions in the sequel, let

F := eζ ,

G := eζ/2.

The multiseries’ scale is here {ζ,G}.
Guy Louchard Asymptotics of the Stirling numbers of the second kind revisited: A saddle point approach



Introduction Central region Large deviation, m = n − nα, α > 1/2

Our result can be summarized in the following local limit theorem

Theorem 2.1

Let x = (m −M)/σ. Then

Zn(m) =

{
n
m

}
Bn

= e−x
2/2 (1 + ζ)1/2

√
2πG

[
1 +

x(−6ζ + 2x2ζ + x2 − 3)

6G (1 + ζ)3/2
+O(1/G 2)

]
.

Proof. By Salvy and Shackell [14], we have

M = F + A1 +O(1/F ),

σ2 =
F

1 + ζ
+ A3 +O(1/F ),

Bn

n!
= exp(T1)H0, (3)

T1 = − ln(ζ)ζF + F − ζ/2− ln(ζ)− 1− ln(2π)/2, (4)
Guy Louchard Asymptotics of the Stirling numbers of the second kind revisited: A saddle point approach



Introduction Central region Large deviation, m = n − nα, α > 1/2

A1 = −2 + 3/ζ + 2/ζ2

2(1 + 1/ζ)2
,

A3 = −2 + 8/ζ + 11/ζ2 + 9/ζ3 + 2/ζ4

2(1 + 1/ζ)4
,

H0 =
1

(1 + 1/ζ)1/2

[
1 + A5/F +O(1/F 2)

]
,

A5 = −2 + 9/ζ + 16/ζ2 + 6/ζ3 + 2/ζ4

24(1 + 1/ζ)3
.
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This leads to (from now on, we only provide a few terms in our
expansions, but of course we use more terms in our computations),
using expansions in G ,

σ =
G

(1 + ζ)1/2
+

A3(1 + ζ)1/2

2G
+O(1/G 3),

σ ∼ G√
ζ
∼
√
n

ln(n)
.
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We now use the Saddle point technique (for a good introduction
to this method, see Flajolet and Sedgewick [4], ch.VIII ). Let ρ be
the saddle point and Ω the circle ρe iθ. By Cauchy’s theorem,

Zn(m) =
n!

m!Bn

1

2πi

∫
Ω

f (z)m

zn+1
dz

=
n!

m!Bnρn
1

2π

∫ π

−π
f (ρe iθ)me−niθdθ

=
n!

m!Bnρn
1

2π

∫ π

−π
em ln(f (ρe iθ))−niθdθ

=
n!

m!Bnρn
f (ρ)m

2π

∫ π

−π
exp

[
m

{
−1

2
κ2θ

2 − i

6
κ3θ

3 + . . .

}]
,

(5)

κi (ρ) =

(
∂

∂u

)i

ln(f (ρeu))|u=0 . (6)

See Good [5] for a neat description of this technique.
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Let us now turn to the Saddle point computation. ρ is the root (of
smallest module) of

mρf ′(ρ)− nf (ρ) = 0, i.e.

ρeρ

eρ − 1
=

n

m
,

which is, of course identical to (1). After some algebra, this gives

ρ =
n

m
+ W

(
− n

m
e−n/m

)
.
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In the central region, we choose

m = M +σx = F +
x

(1 + ζ)1/2
G +A1 +

xA3(1 + ζ)1/2

2G
+O(1/G 2).

This leads to

ln(m) = ζ +
x

(1 + ζ)1/2G
+O(1/G 2),

n

m
= ζ − ζx

(1 + ζ)1/2G
+
−A1ζ + ζx2/(1 + ζ)

G 2
+O(1/G 3),

ρ = ζ − ζx

(1 + ζ)1/2G
+
ζ(−A1 + x2/(1 + ζ)− 1)

G 2
+O(1/G 3),

ln(ρ) = ln(ζ)− x

(1 + ζ)1/2G
+O(1/G 2).
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Now we note that

eρ − 1 = ρeρ
m

n
,

ln (eρ − 1) = ρ+ ln(ρ) + ln(m)− ln(n), (7)

ln(n) = ζ + ln(ζ),

(8)
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so, by Stirling’s formula, with (4), the first part of (5) leads to

n!

m!Bnρn
f (ρ)m = exp [T2]H1H2,

T2 = m(ρ+ ln(ρ)− ζ − ln(ζ))

− (−m + ln(2π)/2 + ln(m)/2)− ζF ln(ρ)− T1,

H1 = 1/H0 = (1 + 1/ζ)1/2 − A5(1 + 1/ζ)1/2

G 2
+O(1/G 4),

H2 = 1

/[
1 +

1

12m
+

1

288m2
+O(1/m3)

]
= 1− 1

12G 2
+

x

12G 3(1 + ζ)1/2
+O(1/G 4).
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Note carefully that there is a cancellation of the term m ln(m) in
T2. Using all previous expansions, we obtain

exp(T2) = e−x
2/2+ln(ζ))H3, (9)

H3 = 1 +
x(−15ζ − 6ζ2 − 6A1 + x2 − 12A1ζ − 6A1ζ

2 + 2x2ζ − 9

6(1 + ζ)3/2G

+O(1/G 2).

We now turn to the integral in (5). We compute

κ2 = −ρe
ρ(−eρ + 1 + ρ)

(eρ − 1)2
= ζ − ζx

(1 + ζ)1/2G
+O(1/G 2),

and similar expressions for the next κi that we don’t detail here.
Note that κ3, κ5, . . . are useless for the precision we attain here.
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Now we use the classical trick of setting

m

[
−κ2θ

2/2! +
∞∑
l=3

κ`(iθ)`/`!

]
= −u2/2.

Computing θ as a series in u, this gives, by inversion,

θ =
1

G

∞∑
1

aiu
i ,

with, for instance

a1 =
1

ζ1/2
+
ζ1/2

2G 2
+O(1/G 3).
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Setting dθ = dθ
dudu, we integrate on [u = −∞..∞]: this extension

of the range can be justified as in Flajolet and Segewick [4],
Ch.VIII . Now, inserting the term ζ coming in (9) as e ln(ζ), this
gives

H4 =
ζ1/2

√
2πG

(
1 +

ζ

2G 2
+O(1/G 3)

)
.

Finally, combining all expansions,

Zn(m) =

{
n
m

}
Bn

= e−x
2/2H1H2H3H4 = R1, (10)

R1 = e−x
2/2 (1 + ζ)1/2

√
2πG

[
1 +

x(−6ζ + 2x2ζ + x2 − 3)

6G (1 + ζ)3/2
+O(1/G 2)

]
.

Note that the dominant term is equivalent to the dominant term of
1√
2πσ

, as expected. More terms in this expression can be obtained

if we compute M, σ2,Bn/n! with more precision. Also, using (2),
our result can be put into expansions depending on n, ln n, . . ..
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To check the quality of our asymptotic, we have chosen n = 3000.
This leads to

ζ = 6.184346264 . . . ,

G = 22.02488900 . . . ,

M = 484.1556441 . . . ,

σ = 8.156422315 . . . ,

Bn = 0.2574879583 . . . 106965,

Bnas = 0.2574880457 . . . 106965,

where Bnas is given by (3). Figure 1 shows Zn(m) and
1√
2πσ

exp
[
−
(
m−M
σ

)2
/

2
]
.
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0

0.01

0.02

0.03

0.04

460 470 480 490 500 510

mm

Figure 1: Zn(m) and 1√
2πσ

exp
[
−
(
m−M

σ

)2
/

2
]
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The fit seems quite good, but to have more precise information, we

show in Figure 2 the quotient Zn(m)
/

1√
2πσ

exp
[
−
(
m−M
σ

)2
/

2
]

.

The precision is between 0.05 and 0.10.
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0.95

1

1.05

1.1

460 470 480 490 500 510

Figure 2: Zn(m)
/

1√
2πσ

exp
[
−
(
m−M

σ

)2
/

2
]
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Figure 3 shows the quotient Zn(m) /R1 . The precision is now
between 0.004 and 0.01.

1

1.002

1.004

1.006

1.008

1.01

460 470 480 490 500 510

Figure 3: Zn(m) /R1
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Large deviation, m = n − nα, α > 1/2

We set

ε := nα−1,

1

ε
= n1−α � nα � n,

L := ln(n).

The multiseries’ scale is here {n1−α, nα, n}.
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Our result can be summarized in the following local limit theorem

Theorem 3.1

{
n
m

}
= eT1R,

T1 = nα(T11L + T10),

R =
1√

2πnα/2

[
R0 +

R1

n
+

R2

n2
+O(1/n3)

]
,

R0 = R00 +
R01

nα
+O(1/n2α),

R1 = R10 +
R11

nα
+O(1/n2α),

R2 = R20 +
R21

nα
+O(1/n2α),

where Ti ,j ,Ri ,j are power series in ε.

Guy Louchard Asymptotics of the Stirling numbers of the second kind revisited: A saddle point approach



Introduction Central region Large deviation, m = n − nα, α > 1/2

Proof. Using again the Lambert function, we derive successively
(again we only provide a few terms here, we use a dozen of terms
in our expansions)

m = n(1− ε),

n

m
=

1

1− ε
,

ρ = 2ε+
4

3
ε2 +

10

9
ε3 +O(ε4),

ln(m) = L− ε− 1

2
ε2 +O(ε3),

ln(ρ) = −L(1− α) + ln(2) +
2

3
ε+

1

3
ε2 +O(ε3).
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For the first part of Cauchy’s integral, we have, noting that
nε = nα, and using (7),

n!

m!ρn
f (ρ)m = exp(T )H2,

T = m(ρ+ ln(ρ)− L)− (−m + ln(m)/2) + (−n + nL + L/2)− n ln(ρ)

= T1 + T0,

T1 = nα(T11L + T10),

T11 = 2− α,

T10 = 1− ln(2)− 4

3
ε− 5

9
ε2 +O(ε3),

T0 =
1

2
ε+

1

4
ε2 +O(ε3),
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H1 = exp(T0) = 1 +
1

2
ε+

3

8
ε2 +O(ε3),

H2 =

[
1 +

1

12n
+

1

288n2
+O(1/n3)

]/[
1 +

1

12m
+

1

288m2
+O(1/m3)

]
= 1 +

ε

12(ε− 1)n
+

ε2

288(ε− 1)2n2
+O(ε3/n3).
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Note again that there are cancellations, in T1 of the terms m ln(m)
and ln(2π)/2.
Now we turn to the integral part. We obtain, for instance, using
(6),

κ2 = ε+
4

3
ε2 +

13

9
ε3 +O(ε4),

θ =
1√
n

∞∑
1

aiu
i ,

a1 =
1√
ε

[
1− 1

6
ε2 − 1

72
ε4 +O(ε6)

]
.
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Integrating, this gives

H3 =
1√

2πnα/2

[
H31 +

H32

nα
+O(1/n2α)

]
,

H31 = 1− 1

6
ε− 1

72
ε2 +O(ε3),

H32 = − 1

12
+

1

72
ε− 71

864
ε2 +O(ε3).
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Now we compute {
n
m

}
= eT1H1H2H3 = eT1R, (11)

with

R =
1√

2πnα/2

[
R0 +

R1

n
+

R2

n2
+O(1/n3)

]
,

R0 = R00 +
R01

nα
+O(1/n2α),

R1 = R10 +
R11

nα
+O(1/n2α),

R2 = R20 +
R21

nα
+O(1/n2α),
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R00 = 1 +
1

3
ε+O(ε2),

R01 = − 1

12
− 1

36
ε+O(ε2),

R10 = − 1

12
ε− 1

9
ε2 +O(ε3),

R11 =
1

144
ε+

1

108
ε2 +O(ε3),

R20 =
1

288
ε+

7

864
ε2 +O(ε3),

R21 = − 1

3456
ε− 7

10368
ε2 +O(ε3).

Given some desired precision, how many terms must we use in our
expansions? It depends on α. For instance, in T1, nαεk � 1 if
k < α/(1− α). Also εk in R00 is less than ε`/n in R10/n if
k − ` > 1/(1− α). Any number of terms can be computed by
almost automatic computer algebra. We use Maple in this paper.
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To check the quality of our asymptotic, we have chosen n = 100
and a range α ∈ [1/2, 9/10], i.e. a range m ∈ [37, 90]. We use 5 or
6 terms in our final expansions. Figure 4 shows the quotient{
n
m

}/
(eT1R) . The precision is at least 0.0066. Note that the

range [M − 3σ,M + 3σ], where the Gaussian approximation is
useful, is here m ∈ [21, 36].
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Figure 4:

{
n
m

}/
(eT1R)
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