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Cellular automata
Statement of the problem

Definition of cellular automata

Definition given by S. Ulam and J. von Neumann (50s)

Let A be a finite alphabet, a cellular automaton is a function
F : AZ → AZ characterized by

a finite neighborhood V ⊂ Z,

a local function f : AV → A such that

F (x)k = f ((xk+v )v∈V ).
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Cellular automata
Statement of the problem

Example of CA

Example: A = {0, 1},V = (−1, 0, 1), f (x , y , z) = maj(x , y , z)

where maj(x , y , z) =

{
0 if x + y + z ≤ 1
1 if x + y + z ≥ 2

F (x) = · · · · · ? · · · · · · ·
x = · · · 0 1 0 1 1 0 1 · · ·
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The density classification problem
A solution in two dimensions: Toom’s rule

Examples of solutions on infinite trees

Cellular automata
Statement of the problem

Example of CA

Example: A = {0, 1},V = (−1, 0, 1), f (x , y , z) = maj(x , y , z)

where maj(x , y , z) =

{
0 if x + y + z ≤ 1
1 if x + y + z ≥ 2

F (x) = · · · · · ? · · · · · · ·
x = · · · 0 1 0 1 1 0 1 · · ·

Irène Marcovici Classification de la densité sur des graphes infinis
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Motivations

CA are natural examples of discrete dynamical systems:

CA ⇔ continuous functions commuting with the shift
(Hedlund, 1969)

a very simple description generating complex behaviors,
question of the classification of cellular automata (Wolfram
and then Kůrka, 1997)

They are also a model of parallel computing.

And they are used to modelize various physical and biological
processes.
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Cellular automata
Statement of the problem

Presentation of the problem

We fix A = {0, 1}. Let p ∈ [0, 1].
Choice of the initial configuration: for each cell, we choose
independently to write a 1 with probability p and a 0 with
probability 1− p (distribution µp on AZ).

Challenge

Find a CA such that when iterating it, the configuration converges
weakly to 0Z if p < 1/2 and to 1Z if p > 1/2 (synchronization of
all the cells in the majority state).

Equivalently, we search a CA F such that if the initial
configuration x is chosen according to µp, then for any k ∈ Z, the
probability that F n(x)k = 1 tends to 0 if p < 1/2 and to 1 if
p > 1/2. Such a CA is said to classify the density.
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Statement of the problem

Some examples

The majority CA of neighborhood V = (−1, 0, 1) does not classify
the density: if p ∈ (0, 1), there are two consecutive 0 or two
consecutive 1 that stay fixed forever.

Let F be the GKL (Gács-Kurdyumov-Levin) CA of neighborhood
V = (−3,−2,−1, 0, 1, 2, 3) defined by

F (x)n = maj(xn, xn+1, xn+3) if xn = 1,

F (x)n = maj(xn, xn−1, xn−3) if xn = 0.

0Z and 1Z are fixed points of F but also (110)Z for example.

It is an open problem to know if GKL classifies the density.
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The density classification problem
A solution in two dimensions: Toom’s rule

Examples of solutions on infinite trees

Cellular automata
Statement of the problem

Some examples

The majority CA of neighborhood V = (−1, 0, 1) does not classify
the density: if p ∈ (0, 1), there are two consecutive 0 or two
consecutive 1 that stay fixed forever.
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Numerical results
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Cellular automata
Statement of the problem

If we release some of the constraints, the problem becomes much
easier.

Example of solution using two tapes (i.e. 4 states):

on a first tape compute the traffic CA

1 0 1 1 1 0 0 0
111 110 101 100 011 010 001 000

on a second tape write a 0 (resp. 1) if the cells x and x + 1
are in state 0 (resp. 1) on the first tape, otherwise do not
change the state.

The second tape of this CA converges to the right answer.
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The density classification problem
A solution in two dimensions: Toom’s rule

Examples of solutions on infinite trees

Cellular automata
Statement of the problem

If we release some of the constraints, the problem becomes much
easier.

Example of solution using two tapes (i.e. 4 states):

on a first tape compute the traffic CA

1 0 1 1 1 0 0 0
111 110 101 100 011 010 001 000

on a second tape write a 0 (resp. 1) if the cells x and x + 1
are in state 0 (resp. 1) on the first tape, otherwise do not
change the state.

The second tape of this CA converges to the right answer.

Irène Marcovici Classification de la densité sur des graphes infinis
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The majority-traffic PCA

Let us define the Maj-traf PCA by V = (−1, 0, 1) and

f (x , y , z) = α δmaj(x ,y ,z) + (1− α) δtraf(x ,y ,z),

where traf (x , y , z) is defined by

1 0 1 1 1 0 0 0
111 110 101 100 011 010 001 000

Ex : ... 0 0 1 0 0 1 0 1 0 0 ...
T M T M M T M T
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It is an open problem to know if this PCA classifies the density.
It is an open problem to know if there exists a PCA that classifies
the density on Z.
The initial problem is in fact easier on Z2...
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Toom’s rule
Sketch of the proof

Definition of Toom’s rule

The alphabet is still A = {0, 1}, the set of cells is now Z2.

Definition of the CA

We denote by T the CA of neighborhood V = {(0, 0), (0, 1), (1, 0)}
(north-east-center) defined by the majority rule, that is,

(T (x))i ,j = maj(xi ,j , xi ,j+1, xi+1,j).

This CA is known as Toom’s rule.

Irène Marcovici Classification de la densité sur des graphes infinis
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Main result

Proposition

Toom’s rule classifies the density.
That is, the sequence (µpT n)n≥0 converges to δ

0Z2 if p < 1/2 and
to δ

1Z2 if p > 1/2.
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The density classification problem
A solution in two dimensions: Toom’s rule

Examples of solutions on infinite trees

Toom’s rule
Sketch of the proof

The proof in pictures

Irène Marcovici Classification de la densité sur des graphes infinis
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The density classification problem
A solution in two dimensions: Toom’s rule

Examples of solutions on infinite trees

Toom’s rule
Sketch of the proof

The proof in pictures

Irène Marcovici Classification de la densité sur des graphes infinis
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Steps of the proof

Add NW-SE diagonals to the grid, and consider the triangular
lattice obtained.

If p > 1/2, there exists a.s. no infinite 0-cluster (classical
result of percolation theory)
Two different 0-clusters cannot merge
Any finite 0-cluster disappears in finite time and always stays
in its enveloping rectangle
A given point belongs a.s. to the enveloping rectangle of an
at most finite number of 0-clusters (by the exponential decay
of the size of 0-clusters)
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Continuous time version

On Z2, one can slightly modify Toom’s rule in order to make the
corresponding continuous time process classify the density.

Irène Marcovici Classification de la densité sur des graphes infinis
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A solution on T3

Let T3 be the group 〈a, b, c | a2 = b2 = c2 = 1〉.
The Cayley graph of T3 is the infinite 3-regular tree.

Proposition

The CA F : AT3 → AT3 defined by:

F (x)g = maj(xgab, xgac , xgacbc)

for any x ∈ AT3 , g ∈ T3, classifies the density.
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A solution on T3

1

a

b c

ac ab

acbc

ba

bc
bcbc
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A solution on T4

a

ab

ab−1

1

b ba

bab

bab−1

Irène Marcovici Classification de la densité sur des graphes infinis
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Conclusion

On Zd , d ≥ 2, and on Tn, n ≥ 3, there are CA (or Probabilistic
CA, or Interacting Particle Systems) that classifies the density.
In the examples we have found, the neighborhoods are
asymetric. Are there symetric rules that classify the density ?

On Z, the problem is still open.
Link with the positive rate “conjecture”.
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The density classification problem
A solution in two dimensions: Toom’s rule

Examples of solutions on infinite trees

Some references
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