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Abstract. A number of recent works have been focusing on analysing
the phase transition of the NP-complete ILP covering test, which have
been fruitful in linking this phenomenon to plateaus during heuristic
search. However, it is only a facet of the ILP complexity as it is very de-
pendent of the search strategy. Its inherent difficulty has to be studied as
a whole to design efficient learners. ILP is arguably harder than attribute-
value learning, which has been formalised by Gottlob et al. who showed
that the simple bounded ILP consistency problem is Σ2−complete. Some
authors have predicted that a phase transition could be exhibited further
up the polynomial hierarchy and we show this is the case in this problem
space, where the number of positive and negative examples are order pa-
rameters. Those order parameters are the same as for the k-term DNF
consistency problem studied in the context of attribute-value learning.
We show that the learning cost exhibits the easy-hard-easy pattern with
a lgg-based learner.

1 Introduction

The phase transition framework, which has been strongly developped in many
combinatorics domains, like in SAT or CSP domains, since [1], has changed the
way search algorithms are empirically evaluated. This lead to new designs of
search algorithms, from incomplete to complete solvers and from deterministic
to randomised solvers [2].

Symbolic learning, which has been cast more than 20 years ago as search
into a state space [3] has known few developments of the phase transition (PT)
framework. As far as we know, the only work that studied the PT of learning
has been done by [4] who showed that the number of positive and negative
examples where order parameters of the k-term DNF consistency problem, which
is NP-complete. Indeed, if one keeps one parameter constant and varies the
other, one wanders from an under-constraint region, named the “yes” region,
associated with a small value, where there is almost surely a solution, to an
over-constraint region, named the “no” region, as the parameter value increases,
where almost surely no generalisation of the positive examples is correct. A
related work studied the PT of the subsumption test which is a key NP-complete
sub-problem of learning. Although, this study has been fruitful in linking this
phenomenon to plateaus during heuristic search [5], it is only a facet of the ILP



complexity as it is very dependent of the search strategy and does not study the
complexity of learning in the PT framework.

ILP is arguably harder than attribute-value learning, like k-term DNF learn-
ing, which has been formalised by Gottlob et al. [6] who showed that the simple
bounded ILP consistency problem is Σ2-complete. This is one class higher in the
polynomial hierarchy than NP-complete (or Σ1-complete) problems. Some au-
thors, e.g. [7], have predicted that a phase transition could be exhibited further
up the polynomial hierarchy and therefore that this framework could be useful
to other PSPACE-complete problems.

We show this holds for the bounded ILP consistency problem, where the
number of positive and negative examples are order parameters of the phase
transition. We show that the median learning cost exhibits the easy-hard-easy
pattern with a simple lgg-based learner.

We present, in the next section, the necessary background on the bounded
ILP consistency problem and the model RLPG which is a generator proposed to
study this problem, first described in [5]. The section 3 will present the complete
learner used to answer the ILP consistency problem. Section 4 will exhibit the
phase transition, beyond NP, of the ILP consistency problem with respect to the
two order parameters which are the number of positive and negative examples.
We show that the solver used allow to exhibit the easy-hard-easy pattern of
median search cost. Finally, we will conclude and draw some perspective and
benefits of these results for relational learning.

2 Background

In this article, we study what has been termed the bounded ILP consistency
problem for function-free Horn clauses by [6]. Given a set of positive examples
E+ and a set of negative examples E− of function-free ground Horn clauses
and an integer k polynomial in |E+ ∪E−|, does there exist a function-free Horn
clause h with no more than k literals such that h θ-subsumes each element in
E+ and h does not θ-subsume any element in E−.

[5] proposed a random generator for this problem, named model RLPG (Re-
lational Learning Problem Generator). A learning problem instance in this model
is denoted RLPG(k, n, α, N, Pos, Neg). The parameters k, n, α, N are related
to the definition of the hypothesis and example spaces. Pos and Neg are the
number of positive and negative examples respectively. The first four parame-
ters are defined in order to ensure that a subsumption test between a hypothesis
and an example during search encode a valid CSP problem, following models for
random CSP. This requirement is imposed as the model RLPG was proposed to
study the impact of the phase transition of the subsumption test on heuristic
search. We briefly recall their meaning and focus on the last two parameters.

k ≥ 2 denotes the arity of each predicate present in the learning language,
n ≥ 2 the number of variables in the hypothesis space, nα the domain size for all
variables, and finally N the number of literals in the examples built on a given
predicate symbol. Given k and n, the size of the bottom clause of the hypothesis



space Lh is (n

k
). It encodes the largest constraint network of the underlying

CSP model. Each constraint between variables is encoded by a literal built on
a unique predicate symbol. Lh is then defined as the power set of the bottom
clause, which is isomorphic to a boolean lattice. Its size is 2(n

k
).

Learning examples are randomly drawn, independently and identically dis-
tributed, given k, n, α and N . Their size is N(n

k
). Each example defines N literals

for each predicate symbol. The N tuples of constants used to define those liter-
als are drawn uniformly and without replacement from the possible set of (n

α

k
)

tuples.

3 Exhibiting the easy-hard-easy pattern with a complete

solver

Besides the phase transition behaviour of decision problems, a strong motivation
of its study is that it is conjectured that the hardest problem instances occur
in the phase transition (see e.g. [1, 8, 7]). The under-constraint problems from
the “yes” region appear to be easily solvable, as there are a lot of solutions.
This is the same for over-constraint problems from the “no” region as it is
easy to prove that they are insoluble. These findings have been corroborated on
several problems, with different types of algorithms, and it is considered that
the problem instances appearing in the phase transition are inherently hard,
independently of the algorithms used. In the “yes” and “no” regions, the easy
ones, the complexity appears to be very dependent of the algorithm. There are,
in these regions, some problems exceptionally hard, whose complexity dominates
the complexity of instance problems in the phase transition region for certain
types of algorithm [8].

In other words, exhibiting the easy-hard-easy pattern require a “good” al-
gorithm. We propose to use a depth-first lgg-based algorithm to solve the ILP
consistency problem, DF-BDD (Depth-First Bottom-up Data-Driven), which is
similar to the approach of [4] for the k-term DNF consistency problem. Its Prolog
code is given below:

1 df_bdd(Sol,[],_,Sol).

2 df_bdd(Hypo,[Pos|L_Pos],L_Neg,Sol) :-

3 lgg(Hypo,Pos,LGG), % non-deterministic computation of a LGG

4 % consistency check

5 correctness(LGG,L_Neg),

6 df_bdd(LGG,L_Pos,L_Neg,Sol).

The computation of lggs (line 3) is done with depth-first search into possible
subsets of the hypothesis. It outputs the largest subsets that subsume the ex-
ample. The implementation is rather naive, which may blur the easy-hard-easy
pattern, as we will see. Once a lgg has been computed, we test, in a depth-first
way, if it is correct with respect to all negative examples (line 5).



4 Numbers of positive and negative examples as order

parameters

In this section, we study the effect of the number of positive and negative ex-
amples on the solubility probability and the solving cost of the ILP bounded
consistency problem. If we refer to section 2, RLPG is parametrised with 6 pa-
rameters but we only study the last two, Pos and Neg, as the effect of the other
parameters have been already studied in [5] for constant number of positive and
negative examples. Here, we focus on few settings for these parameters, with
k = 2, n = 5 and n = 6, to study different problem sizes, α = 1.4 and N = 10.
The choice of these parameters ensures that we do not generate trivially insol-
uble problems [7], but also various experiments, not shown here, indicated that
there were representative of the phase transition behaviour of the ILP consis-
tency problem. In all experiments below, statistics were computed from a sample
of 500 learning problems.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15

P
sa

t

Pos = Neg

n = 5
n = 6

Fig. 1. Probability of statisfiability according to the number of learning examples (Pos
= Neg), with n = 5 and n = 6

We start by varying both Pos and Neg. Figure 1 shows the solubility prob-
ability of the ILP consystency problem when Pos = Neg are varied from 1 to
25, for n = 5 and n = 6. As we can see, when the number of examples is small,
there is almost surely a consistent hypothesis, and when the number is large it
is almost surely impossible to find a consistent hypothesis. The cross-over point,
where the probability of solubility is about 0.5, is around 4 for n = 5 and 5 with
n = 6. It is not surprising that it increases with bigger problems. For n = 5,
the hypothesis space size is 210 and 215 for n = 6. We could not conduct exper-
iments for larger values of n as the hypothesis space grows too fast in RLPG.
For instance, n = 7 sets a hypothesis space of size 221, which cannot be handled
by our complete solver. In the future, it would be interesting to modify RLPG



to specify the size of the bottom clause and then draw the number of variables
accordingly.

Figure 2 and 3 show the associated cost (the median cost along with the 25th
and 75th percentiles) to solve the problem instances, with n = 6. We measured
the cost by recording the time in milliseconds, as well as the number of backtracks
of the subsumption procedure, needed to solve a learning problem. The latter
seems relevant, as the subsumption test is used to compute the lggs.
We can see that a complexity peak is associated with instances in the phase
transition region, and that the search cost follows the easy-hard-easy pattern.
The complexity in the “no” region slowly decreases as the number of examples
increases, where we could have expected a sharper decrease, but it may be related
to our implementation.
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Fig. 2. Cost in resolution time (ms.) ac-
cording to the number of learning examples
(Pos = Neg), for n = 6
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Fig. 3. Cost in number of bactracks of the
subsumption test according to the number
of learning examples (Pos = Neg), for n = 6

We study now the phase transition along the number of positive examples,
for constant values of Neg, but omit cost plots. The results are almost symmetric
when Pos is constant and Neg varies, and is not shown here. Figures 4 and 5
show the phase transition when Pos varies from 1 to 25, for n = 5 and n =
6 respectively. The transition becomes sharper as Pos increases, which is not
surprising as the subset of complete hypotheses shrinks with Pos.

5 Conclusion

It is conjectured that the phase transition of decision problem can be exhibited
further up the polynomial hierarchy and therefore that this framework could be
useful to other PSPACE-complete problems. We have shown that this holds with
the bounded ILP cosistency problem, a Σ2-complete problem, which exhibits
a phase transition in its solubility, with the number of positive and negative
examples as order parameters. The search cost as given by a depth-first lgg-
based solver exhibits the easy-hard-easy pattern. This is the first work that
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Fig. 4. Probability of statisfiability accord-
ing to the number of positive examples with
n = 5, for Neg = 1, 2, 3, 4
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Fig. 5. Probability of statisfiability accord-
ing to the number of positive examples with
n = 6, for Neg = 1, 2, 3, 4

study the phase transition of learning in ILP and we hope that it will stimulate
algorithmic developments, in the line of what has been done in combinatorics.
It points out interesting follow-ups: the model RLPG has been used to generate
random problems and we plan to study the impact of its other parameters on
the generation of hard instances; we plan to generate hard problems to study
the different solvers proposed in ILP.
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