Topology of the arc complex

Pallavi Panda

Université Paris 13

Topology of the arc complex

Pallavi Panda

Université Paris 13

Marked surfaces

Setting: Let S be a finite-type, possibly non-orientable surface with finitely many marked points such that

- if $\partial S \neq \varnothing$, then there is at least one marked point on every boundary component;
- interior points can be marked.

Examples of marked surfaces

Convex polygon, \mathcal{P}_{n}

Once-punctured polygon, \mathcal{P}_{n}^{\times}

Orientable crown, $\mathcal{P}_{n}^{\ominus}$

Three-holed sphere

One-holed torus

Arcs

Definition

An arc on S is defined as $\alpha:[0,1] \hookrightarrow S$ such that $\alpha([0,1]) \cap S=\{\alpha(0), \alpha(1)\} \subset \mathcal{P}$.

Arcs

Definition

An arc on S is defined as $\alpha:[0,1] \hookrightarrow S$ such that $\alpha([0,1]) \cap S=\{\alpha(0), \alpha(1)\} \subset \mathcal{P}$.

- we consider isotopy classes of non-trivial arcs;
- 2 classes are disjoint if they have two disjoint representatives.

Arc complex

(S, \mathcal{P}) : a marked surface.
$\mathcal{A}(S)$: a flag, pure simplicial complex constructed in the following way:

- 0-simplices \longleftrightarrow isotopy classes of embedded arcs,
- For $k \geq 1, k$-simplices $\longleftrightarrow(k+1)$ pairwise disjoint and distinct classes.

Example: a convex polygon \mathcal{P}_{n}, for $n \geq 4$

(a) The arc complex of a hexagon

(b) Two-dimensional associahedron

The arc complex

Important properties:

The arc complex

Important properties:

- The arcs of top-dimensional simplices divide the surface into triangles and at most one once-punctured disk.

The arc complex

Important properties:

- The arcs of top-dimensional simplices divide the surface into triangles and at most one once-punctured disk.
- The arc complex is connected.

The arc complex

Important properties:

- The arcs of top-dimensional simplices divide the surface into triangles and at most one once-punctured disk.
- The arc complex is connected.
- For a "generic" surface, the arc complex is locally non-compact with infinite diameter.

"Generic" example: One-holed torus

The arc complex $\mathcal{A}\left(S_{1,1}\right)$

Example: orientable crown $\mathcal{P}_{n}^{\ominus}$, for $n \geq 1$

$\mathcal{A}\left(\mathcal{P}_{3}^{\ominus}\right)$

Example: non-orientable crown \mathcal{M}_{n}, for $n \geq 1$

$\mathcal{A}\left(\mathcal{M}_{1}\right)=\mathcal{A}_{C}\left(\mathcal{M}_{1}\right)$

$\mathcal{A}\left(\mathcal{M}_{3}\right)$

Example: Once-punctured polygon \mathcal{P}_{n}^{\times}, for $n \geq 2$

Crowned hyperbolic surfaces

Topology of the arc complex

Classical result: For $n \geq 4$, the arc complex $\mathcal{A}\left(\mathcal{P}_{n}\right)$ of a polygon is a PL-sphere of dimension $n-4$.

Theorem (Penner)

- The arc complex $\mathcal{A}\left(\Pi_{n}\right)$ of an ideal polygon $\Pi_{n}(n \geq 4)$ is a PL-sphere of dimension $n-4$.
- The arc complex $\mathcal{A}\left(\Pi_{n}^{\times}\right)$of an once-punctured ideal polygon Π_{n}^{\times} ($n \geq 2$) is a PL-sphere of dimension $n-2$.

Penner gave a list of surfaces for which the quotient arc complex is a sphere.

Topology of the arc complex: generic case

- Hatcher: for S orientable, $\mathcal{A}(S)$ is contractible. (Hatcher flow, combinatorics)

Topology of the arc complex: generic case

- Hatcher: for S orientable, $\mathcal{A}(S)$ is contractible. (Hatcher flow, combinatorics)
- Harer: for S orientable, $\widetilde{\mathcal{P} \mathcal{A}(S)} \simeq \stackrel{\mathbb{B}}{ }^{N(S)-1}$, where $N(S)$ is the dimension of the Teichmüller space of S. (analytic methods)

Topology of the arc complex: generic case

- Hatcher: for S orientable, $\mathcal{A}(S)$ is contractible. (Hatcher flow, combinatorics)

$$
\begin{aligned}
& \text { open dense } \\
& \text { subset of } A(s)
\end{aligned}
$$

- Harer: for S orientable, $\widetilde{\mathcal{P} \mathcal{A}(S)} \simeq \stackrel{\circ}{\mathbb{B}}^{N(S)-1}$, where $N(S)$ is the dimension of the Teichmüller space of S. (analytic methods)
- Bowditch-Epstein: for S orientable, cellular decomposition of the Teichmüller space using the arc complex and cut locus. (hyperbolic geometry)

Topology of the arc complex: generic case

- Hatcher: for S orientable, $\mathcal{A}(S)$ is contractible. (Hatcher flow, combinatorics) open dense
subset of $A(s)$
- Harer: for S orientable, $\widetilde{\mathcal{P} \mathcal{A}(S)} \simeq \dot{\mathbb{B}}^{N(S)-1}$, where $N(S)$ is the dimension of the Teichmüller space of S. (analytic methods)
- Bowditch-Epstein: for S orientable, cellular decomposition of the Teichmüller space using the arc complex and cut locus. (hyperbolic geometry)
- Fomin-Schapiro-Thurston: for S orientable, the arc complex is a subset of the associated cluster complex. (combinatorics, hyperbolic geometry)

Decorated Teichmüller Theory

Introduced by Penner to study Teichmüller theory of surfaces decorated with horoballs using combinatorial methods.

- "lambda" lengths of h.c parametrise $\mathfrak{D}(S)$
- the a.c gives a cellular decomposition of $\mathfrak{D}(S)$
- lambda lengths behave like cluster variables

One particular application

Let $S_{0,3}$ be the three-holed sphere.

One particular application

$$
x=c_{1}[\alpha]+c_{2}[\beta]+c_{3}[\gamma]
$$

One particular application

Theorem (Danciger-Guéritaud-Kassel)

Let S be a compact hyperbolic surface with totally geodesic boundary. Let $m=([\rho]) \in \mathfrak{D}(S)$ be a metric. Fix a choice of strip template $\left\{\left(\alpha_{g}, p_{\alpha}, w_{\alpha}\right)\right\}_{\alpha \in \mathcal{K}}$ with respect to m. Then the restriction of the projectivised infinitesimal strip map $\mathbb{P f}: \mathcal{P} \mathcal{A}(S) \longrightarrow \mathbb{P}^{+}\left(T_{m} \mathfrak{D}(S)\right)$ is a homeomorphism on its image $\mathbb{P}^{+}(\Lambda(m))$.

Here the admissible cone $\Lambda(m)$ consists of all infinitesimal deformations that uniformly lengthen every non-trivial closed geodesic.

Margulis spacetimes

Why are admissible deformations important?

Margulis spacetimes

Why are admissible deformations important?

- Used in the construction of Margulis spacetimes: flat Lorentzian non-compact 3-manifolds with free fundamental group, homeomorphic to interior of a handlebody.

Margulis spacetimes

Why are admissible deformations important?

- Used in the construction of Margulis spacetimes: flat Lorentzian non-compact 3-manifolds with free fundamental group, homeomorphic to interior of a handlebody.
- Auslander (Conjecture): $\Gamma \subset \mathrm{GL}(n, \mathbb{R}) \ltimes \mathbb{R}^{n}$, discrete s.t. \mathbb{R}^{n} / Γ is a compact manifold $\Rightarrow \Gamma$ is virtually solvable.

Margulis spacetimes

Why are admissible deformations important?

- Used in the construction of Margulis spacetimes: flat Lorentzian non-compact 3-manifolds with free fundamental group, homeomorphic to interior of a handlebody.
- Auslander (Conjecture): $\Gamma \subset \mathrm{GL}(n, \mathbb{R}) \ltimes \mathbb{R}^{n}$, discrete s.t. \mathbb{R}^{n} / Γ is a compact manifold $\Rightarrow \Gamma$ is virtually solvable.
- Proved to be true up to $n=6$.

Margulis spacetimes

Why are admissible deformations important?

- Used in the construction of Margulis spacetimes: flat Lorentzian non-compact 3-manifolds with free fundamental group, homeomorphic to interior of a handlebody.
- Auslander (Conjecture): $\Gamma \subset \mathrm{GL}(n, \mathbb{R}) \ltimes \mathbb{R}^{n}$, discrete s.t. \mathbb{R}^{n} / Γ is a compact manifold $\Rightarrow \Gamma$ is virtually solvable.
- Proved to be true up to $n=6$.
- In 1983, Margulis showed that the cocompactness assumption is necessary by producing an action of F_{2} on $\mathbb{R}^{2,1}$ (Margulis spacetimes), answering a question of Milnor.

Margulis spacetimes

Why are admissible deformations important?

- Used in the construction of Margulis spacetimes: flat Lorentzian non-compact 3-manifolds with free fundamental group, homeomorphic to interior of a handlebody.
- Auslander (Conjecture): $\Gamma \subset \mathrm{GL}(n, \mathbb{R}) \ltimes \mathbb{R}^{n}$, discrete s.t. \mathbb{R}^{n} / Γ is a compact manifold $\Rightarrow \Gamma$ is virtually solvable.
- Proved to be true up to $n=6$.
- In 1983, Margulis showed that the cocompactness assumption is necessary by producing an action of F_{2} on $\mathbb{R}^{2,1}$ (Margulis spacetimes), answering a question of Milnor.
- D-G-K: The arc complex parametrises Margulis spacetimes.

Applications: decorated surfaces

Let S be a decorated hyperbolic surface.
Aim: To parametrise decorated Margulis spacetimes using the arc complex of decorated hyperbolic surfaces.

Theorem (P.)

Let S be a finite-type decorated surface with a metric $m \in \mathfrak{D}\left(\widehat{\Pi_{n}}\right)$. Then the projectivised strip map $\mathbb{P f}: \mathcal{P} \mathcal{A}(S) \longrightarrow \mathbb{P}^{+}\left(T_{m} \mathfrak{D}(S)\right)$ is a homeomorphism on its image $\mathbb{P}^{+}(\wedge(m))$.

Here $\Lambda(m)$ is the set of deformations uniformly lengthening all horoball connections.

$$
\left.\begin{array}{l}
\text { - } 4 \text { h.cs } \\
-4 \text { edge-to-edge arcs } \\
-4 \text { m.p-to-edge arcs }
\end{array}\right\} \begin{aligned}
& \text { new } \\
& \text { arcs }
\end{aligned}
$$

Decorated surfaces to bicolourings

Non-trivial bicolouring of marked points with blue and red: at least one R-R diagonal.

(P_{6}, alt bicd)

The subcomplex \mathcal{Y} generated by $G-G, R-G$ diagonals is isomorphic to the arc complex of the decorated surface

Examples

Examples

Contributions

Theorem (P.)

Let $\mathcal{P}_{n}\left(\right.$ resp. $\left.\mathcal{P}_{n}^{\times}\right)$be a polygon with a non-trivial bicolouring. Then the subcomplex $\mathcal{Y}\left(\mathcal{P}_{n}\right)\left(\right.$ resp. $\left.\mathcal{Y}\left(\mathcal{P}_{n}^{\times}\right)\right)$is a shellable closed ball of dimension $2 n-4$ (resp. $2 n-2$).

Theorem (P.)

Let $S=\mathcal{P}_{n}^{\ominus}, \mathcal{M}_{n}$, where $n \geq 1$ with any bicoloring. Then, the subcomplex $y(S)$ is a collapsible combinatorial ball of dimension $n-1$.

In fact, we show something stronger...

Shellability

Let X be a pure simplicial complex of dimension n.

Definition

A shelling order is an ordering of the maximal simplices $\left\{C_{1}, C_{2} \ldots\right\}$ of X such that $C_{k} \cap\left(\bigcup_{i=1}^{k-1} C_{i}\right)$ is a pure simplicial complex of dimension $n-1$.

A complex is called shellable if there exists a shelling order.

Ex:

Non-ex:

$$
\operatorname{dim} C_{1} \cap C_{2}=0
$$

Shellability: Example

Danaraj-Klee: Any shellable pseudomanifold with boundary is PL-homeomorphic to a closed ball.

Shellability of the arc complex

Theorem (P.)

Let $\mathcal{P}_{n}\left(\right.$ resp. $\left.\mathcal{P}_{n}^{\times}\right)$be a polygon with a non-trivial bicolouring. Then the subcomplex $\mathcal{Y}\left(\mathcal{P}_{n}\right)\left(\right.$ resp. $\left.\mathcal{Y}\left(\mathcal{P}_{n}^{\times}\right)\right)$is a shellable closed ball of dimension $2 n-4$ (resp. $2 n-2$).

Corollary

- For $n \geq 3$, the arc complex of a decorated polygon is a closed ball of dimension $2 n-4$.
- For $n \geq 1$, the arc complex of a decorated once-punctured polygon is a closed ball of dimension $2 n-2$.

Collapsibility

Let X be a finite simplicial complex.

Definition

Let σ, τ be two simplces of X such that

- $\sigma \subsetneq \tau$,
- τ is the unique maximal simplex containing σ.

Then X is said to be collapsing onto $X \backslash\{\sigma, \tau\}$. A complex X is said to be collapsible if there is a finite sequence of collapses ending at a 0 -simplex.

Strong collapsibility

Definition

Let X be a finite simplicial complex. A 0 -simplex $v \in X$ is vertex-dominated by another 0 -simplex v^{\prime} if $\operatorname{Link}(X, v)=v^{\prime} \bowtie L$. In this case, X is said to strongly collapse onto $X \backslash v$.
A finite complex is strongly collapsible if there is a finite sequence of strong collapses terminating at a 0 -simplex.

In $\operatorname{dim} 2$:

Non. ex:

Strong collapsibility and the arcs

An arc v is vertex-dominated by an arc v^{\prime} if any triangulation containing the arc v also contains v^{\prime}.

Orientable crown

Non orientable crown

Strong collapsibility: Illustration

A coincidence in dimension two...

> vertex domination

$\mathcal{A}\left(S_{0,3}\right)$

Collapsibility of the arc complexes

Theorem (P.)

For $n \geq 1$,

- $\mathcal{A}\left(\mathcal{P}_{n}^{\ominus}\right)$ is strongly collapsible.
- $\mathcal{A}\left(\mathcal{M}_{n}\right)$ collapses onto $\mathcal{A}_{C}\left(\mathcal{M}_{n}\right)$.
- $\mathcal{A}_{C}\left(\mathcal{M}_{n}\right)$ is strongly collapsible.
- $\mathcal{A}\left(\mathcal{M}_{n}\right)$ is collapsible but not strongly collapsible.

The statements remain true even if we put a bicolouring on the marked points.

Walls of the admissible cone

What next?

- Is $\mathcal{Y}\left(\mathcal{P}_{n}\right)$ or $\mathcal{Y}\left(\Pi_{n}^{\times}\right)$collapsible for any bicolouring?
- Collapsibility of infinite arc complexes: arborescence (Adiprasito-Funar).
- How to interpret collapsibility in terms of hyperbolic geometry?

