Topology of the arc complex

Pallavi Panda

Université Paris 13

Pallavi Panda (Université Paris 13)

Topology of the arc complex

Pallavi Panda

Université Paris 13

Pallavi Panda (Université Paris 13)

Marked surfaces

Setting: Let *S* be a finite-type, possibly non-orientable surface with finitely many marked points such that

- if ∂S ≠ Ø, then there is at least one marked point on every boundary component;
- interior points can be marked.

Examples of marked surfaces

Pallavi Panda (Université Paris 13)

2

Definition

An arc on S is defined as $\alpha : [0, 1] \hookrightarrow S$ such that $\alpha([0, 1]) \cap S = \{\alpha(0), \alpha(1)\} \subset \mathcal{P}.$

イロト イ部ト イヨト イヨト

Definition

An arc on *S* is defined as $\alpha : [0, 1] \hookrightarrow S$ such that $\alpha([0, 1]) \cap S = \{\alpha(0), \alpha(1)\} \subset \mathcal{P}.$

- we consider isotopy classes of non-trivial arcs;
- 2 classes are *disjoint* if they have two disjoint representatives.

 (S, \mathcal{P}) : a marked surface.

 $\mathcal{A}(S)$: a flag, pure simplicial complex constructed in the following way:

- 0-simplices ↔ isotopy classes of embedded arcs,
- For k ≥ 1, k-simplices ↔ (k + 1) pairwise disjoint and distinct classes.

Example: a convex polygon \mathcal{P}_n , for $n \ge 4$

(b) Two-dimensional associahedron

æ

• The arcs of top-dimensional simplices divide the surface into triangles and at most one once-punctured disk.

- The arcs of top-dimensional simplices divide the surface into triangles and at most one once-punctured disk.
- The arc complex is connected.

- The arcs of top-dimensional simplices divide the surface into triangles and at most one once-punctured disk.
- The arc complex is connected.
- For a "generic" surface, the arc complex is locally non-compact with infinite diameter.

"Generic" example: One-holed torus

The arc complex $\mathcal{A}(S_{1,1})$

Example: orientable crown \mathcal{P}_n^{\otimes} , for $n \geq 1$

Example: non-orientable crown \mathcal{M}_n , for $n \geq 1$

э

э

< 口 > < 同 >

Example: Once-punctured polygon \mathcal{P}_n^{\times} , for $n \geq 2$

 $\mathcal{A}(\mathcal{P}_n^{\times}) \simeq \partial \mathcal{A}(\mathcal{P}_n^{\odot}) \simeq \partial \mathcal{A}(\mathcal{M}_n)$

Crowned hyperbolic surfaces

Classical result: For $n \ge 4$, the arc complex $\mathcal{A}(\mathcal{P}_n)$ of a polygon is a PL-sphere of dimension n - 4.

Theorem (Penner)

- The arc complex $\mathcal{A}(\Pi_n)$ of an ideal polygon Π_n $(n \ge 4)$ is a *PL*-sphere of dimension n 4.
- The arc complex A (Π[×]_n) of an once-punctured ideal polygon Π[×]_n (n ≥ 2) is a PL-sphere of dimension n – 2.

Penner gave a list of surfaces for which the *quotient* arc complex is a sphere.

• **Hatcher**: for *S* orientable, $\mathcal{A}(S)$ is contractible. (Hatcher flow, combinatorics)

- Hatcher: for S orientable, A(S) is contractible. (Hatcher flow, combinatorics)
- Harer: for S orientable, PA(S) ≃ B^{N(S)-1}, where N(S) is the dimension of the Teichmüller space of S. (analytic methods)

- Hatcher: for S orientable, A(S) is contractible. (Hatcher flow, combinatorics)
 pen dense subject of A(S)
- Harer: for S orientable, PA(S) ≃ B^{N(S)-1}, where N(S) is the dimension of the Teichmüller space of S. (analytic methods)
- **Bowditch-Epstein**: for *S* orientable, cellular decomposition of the Teichmüller space using the arc complex and cut locus. (hyperbolic geometry)

- Hatcher: for S orientable, $\mathcal{A}(S)$ is contractible. (Hatcher flow, combinatorics) $\frac{\text{open dense}_{\text{subject of }} \mathcal{A}(s)}{\text{open dense}_{\text{subject of }} \mathcal{A}(s)}$
- **Harer**: for *S* orientable, $\widetilde{\mathcal{PA}}(S) \simeq \mathbb{B}^{N(S)-1}$, where N(S) is the dimension of the Teichmüller space of *S*. (analytic methods)
- **Bowditch-Epstein**: for *S* orientable, cellular decomposition of the Teichmüller space using the arc complex and cut locus. (hyperbolic geometry)
- Fomin-Schapiro-Thurston: for *S* orientable, the arc complex is a subset of the associated cluster complex. (combinatorics, hyperbolic geometry)

Introduced by Penner to study Teichmüller theory of surfaces decorated with horoballs using combinatorial methods.

- "lambda" lengths of h.c parametrise D(S)
- the a.c gives a cellular decomposition of D(S)
- lambda lengths behave like cluster variables

One particular application

Let $S_{0,3}$ be the three-holed sphere.

One particular application

Theorem (Danciger-Guéritaud-Kassel)

Let S be a compact hyperbolic surface with totally geodesic boundary. Let $m = ([\rho]) \in \mathfrak{D}(S)$ be a metric. Fix a choice of strip template $\{(\alpha_g, p_\alpha, w_\alpha)\}_{\alpha \in \mathcal{K}}$ with respect to m. Then the restriction of the projectivised infinitesimal strip map $\mathbb{P}f : \mathcal{PA}(S) \longrightarrow \mathbb{P}^+(T_m\mathfrak{D}(S))$ is a homeomorphism on its image $\mathbb{P}^+(\Lambda(m))$.

Here the admissible cone $\Lambda(m)$ consists of all infinitesimal deformations that uniformly lengthen every non-trivial closed geodesic.

24

• Used in the construction of Margulis spacetimes: flat Lorentzian non-compact 3-manifolds with free fundamental group, homeomorphic to interior of a handlebody.

- Used in the construction of Margulis spacetimes: flat Lorentzian non-compact 3-manifolds with free fundamental group, homeomorphic to interior of a handlebody.
- Auslander (Conjecture): Γ ⊂ GL(n, ℝ) κ ℝⁿ, discrete s.t. ℝⁿ/Γ is a compact manifold ⇒ Γ is virtually solvable.

- Used in the construction of Margulis spacetimes: flat Lorentzian non-compact 3-manifolds with free fundamental group, homeomorphic to interior of a handlebody.
- Auslander (Conjecture): Γ ⊂ GL(n, ℝ) κ ℝⁿ, discrete s.t. ℝⁿ/Γ is a compact manifold ⇒ Γ is virtually solvable.
- Proved to be true up to n = 6.

- Used in the construction of Margulis spacetimes: flat Lorentzian non-compact 3-manifolds with free fundamental group, homeomorphic to interior of a handlebody.
- Auslander (Conjecture): Γ ⊂ GL(n, ℝ) κ ℝⁿ, discrete s.t. ℝⁿ/Γ is a compact manifold ⇒ Γ is virtually solvable.
- Proved to be true up to n = 6.
- In 1983, Margulis showed that the cocompactness assumption is necessary by producing an action of F₂ on ℝ^{2,1} (Margulis spacetimes), answering a question of Milnor.

- Used in the construction of Margulis spacetimes: flat Lorentzian non-compact 3-manifolds with free fundamental group, homeomorphic to interior of a handlebody.
- Auslander (Conjecture): Γ ⊂ GL(n, ℝ) κ ℝⁿ, discrete s.t. ℝⁿ/Γ is a compact manifold ⇒ Γ is virtually solvable.
- Proved to be true up to n = 6.
- In 1983, Margulis showed that the cocompactness assumption is necessary by producing an action of F₂ on ℝ^{2,1} (Margulis spacetimes), answering a question of Milnor.
- **D–G–K**: The arc complex parametrises Margulis spacetimes.

Applications: decorated surfaces

Let S be a decorated hyperbolic surface.

Aim: To parametrise *decorated* Margulis spacetimes using the arc complex of decorated hyperbolic surfaces.

Theorem (P.)

Let S be a finite-type decorated surface with a metric $m \in \mathfrak{D}(\widehat{\Pi_n})$. Then the projectivised strip map $\mathbb{P}f : \mathcal{PA}(S) \longrightarrow \mathbb{P}^+(T_m\mathfrak{D}(S))$ is a homeomorphism on its image $\mathbb{P}^+(\Lambda(m))$.

Here $\Lambda(m)$ is the set of deformations uniformly lengthening all horoball connections.

Decorated surfaces to bicolourings

Non-trivial bicolouring of marked points with blue and red: at least one R-R diagonal.

The subcomplex \mathcal{Y} generated by G - G, R - G diagonals is isomorphic to the arc complex of the decorated surface

Rejected R-R diagonals

The subcomplex $\mathcal{Y}(\mathcal{P}_6)$

물 에 제 물 에

æ

Rejected R-R diagonals

The subcomplex $\mathcal{Y}(\mathcal{P}_4^{\times})$

포 사 문

Theorem (P.)

Let \mathcal{P}_n (resp. \mathcal{P}_n^{\times}) be a polygon with a non-trivial bicolouring. Then the subcomplex $\mathcal{Y}(\mathcal{P}_n)$ (resp. $\mathcal{Y}(\mathcal{P}_n^{\times})$) is a shellable closed ball of dimension 2n - 4 (resp. 2n - 2).

Theorem (P.)

Let $S = \mathcal{P}_n^{\otimes}$, \mathcal{M}_n , where $n \ge 1$ with **any** bicoloring. Then, the subcomplex $\mathcal{Y}(S)$ is a collapsible combinatorial ball of dimension n - 1.

In fact, we show something stronger...

- < ≣ → ---

Shellability

Let X be a pure simplicial complex of dimension n.

Definition

A shelling order is an ordering of the maximal simplices $\{C_1, C_2...\}$ of X such that $C_k \cap (\bigcup_{i=1}^{k-1} C_i)$ is a pure simplicial complex of dimension n-1.

A complex is called *shellable* if there exists a shelling order.

Shellability: Example

Danaraj-Klee: Any shellable pseudomanifold with boundary is PL-homeomorphic to a closed ball.

Theorem (P.)

Let \mathcal{P}_n (resp. \mathcal{P}_n^{\times}) be a polygon with a non-trivial bicolouring. Then the subcomplex $\mathcal{Y}(\mathcal{P}_n)$ (resp. $\mathcal{Y}(\mathcal{P}_n^{\times})$) is a shellable closed ball of dimension 2n - 4 (resp. 2n - 2).

Corollary

- For n ≥ 3, the arc complex of a decorated polygon is a closed ball of dimension 2n - 4.
- For n ≥ 1, the arc complex of a decorated once-punctured polygon is a closed ball of dimension 2n – 2.

Collapsibility

Let X be a finite simplicial complex.

Definition

Let σ, τ be two simplices of X such that

• $\sigma \subsetneq \tau$,

• τ is the unique maximal simplex containing σ .

Then *X* is said to be *collapsing onto* $X \setminus \{\sigma, \tau\}$. A complex *X* is said to be collapsible if there is a finite sequence of collapses ending at a 0-simplex.

Definition

Let X be a finite simplicial complex. A 0-simplex $v \in X$ is vertex-dominated by another 0-simplex v' if $Link(X, v) = v' \bowtie L$. In this case, X is said to strongly collapse onto $X \setminus v$.

A finite complex is *strongly collapsible* if there is a finite sequence of strong collapses terminating at a 0-simplex.

Strong collapsibility and the arcs

An arc v is vertex-dominated by an arc v' if any triangulation containing the arc v also contains v'.

A coincidence in dimension two...

Theorem (P.)

For $n \ge 1$,

- $\mathcal{A}(\mathcal{P}_n^{\odot})$ is strongly collapsible.
- $\mathcal{A}(\mathcal{M}_n)$ collapses onto $\mathcal{A}_C(\mathcal{M}_n)$.
- $\mathcal{A}_{C}(\mathcal{M}_{n})$ is strongly collapsible.
- $\mathcal{A}(\mathcal{M}_n)$ is collapsible but not strongly collapsible.

The statements remain true even if we put a bicolouring on the marked points.

Walls of the admissible cone

э

< 口 > < 同 >

3 🕨 🖌 3

- Is $\mathcal{Y}(\mathcal{P}_n)$ or $\mathcal{Y}(\Pi_n^{\times})$ collapsible for any bicolouring?
- Collapsibility of infinite arc complexes: arborescence (Adiprasito–Funar).
- How to interpret collapsibility in terms of hyperbolic geometry?