Résumé : Étude de chaînes de Markov à l'aide de représentations de monoïdes
La théorie des représentations des groupes finis est un sujet classique. Dans le cadre plus général des monoïdes finis, la théorie est plus récente et a priori plus complexe. Cependant il existe des classes de monoïdes où, comme pour les groupes, la théorie se simplifie et fait surgir de la combinatoire, ce qui ouvre la porte à des applications.
Dans cet exposé, nous présenterons brièvement les éléments de la théorie en mentionnant quelques développements algorithmiques récents [1], et décriront une application typique à l'étude d'une chaîne de Markov sur des tas de sable à écoulement orienté [2]. La démarche exploratoire sera illustrée par quelques calculs typiques avec le logiciel Sage.
Refs:
- [1] Cartan invariant matrices for finite monoids
http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/viewArticle/dmAR0178
- [2] arXiv:1305.1697: Directed nonabelian sandpile models on trees
Ayyer, Schilling, Steinberg, T.
[arXiv]
Dernière modification : Friday 10 January 2025 | Contact pour cette page : Cyril.Banderier at lipn.univ-paris13.fr |