Analytic Combinatorics of Lattice Paths with
Forbidden Patterns: Asymptotic Aspects and
Borges’s Theorem

Andrei Asinowski

Technische Universitidt Wien, Institut fiir Diskrete Mathematik und Geometrie,

https://dmg.tuwien.ac.at/asinowski/
https://orcid.org/0000-0002-0689-0775

Axel Bacher
Université Paris 13, LIPN, UMR CNRS 7030, http://lipn.univ-parisi3.fr/~bacher
https://orcid.org/0000-0002-9789-7074

Cyril Banderier
Université Paris 13, LIPN, UMR CNRS 7030, http://lipn.univ-paris13.fr/~banderier
https://orcid.org/0000-0003-0755-3022

Bernhard Gittenberger

Technische Universitdt Wien, Institut fiir Diskrete Mathematik und Geometrie,

https://dmg.tuwien.ac.at/gittenberger/
https://orcid.org/0000-0002-2639-8227

—— Abstract

In a companion article dedicated to the enumeration aspects, we showed how to obtain closed

form formulas for the generating functions of walks, bridges, meanders, and excursions avoiding
any fixed word (a pattern p). The autocorrelation polynomial of this forbidden pattern p (as
introduced by Guibas and Odlyzko in 1981, in the context of regular expressions) plays a crucial
role. In this article, we get the asymptotics of these walks. We also introduce a trivariate
generating function (length, final altitude, number of occurrences of p), for which we derive a
closed form. We prove that the number of occurrences of p is normally distributed: This is what
Flajolet and Sedgewick call an instance of Borges’s theorem.

We thus extend and refine the study by Banderier and Flajolet in 2002 on lattice paths,
and we unify several dozens of articles which investigated patterns like peaks, valleys, humps,
etc., in Dyck and Motzkin paths. Our approach relies on methods of analytic combinatorics,
and on a matricial generalization of the kernel method. The situation is much more involved
than in the Banderier—Flajolet work: forbidden patterns lead to a wider zoology of asymptotic
behaviours, and we classify them according to the geometry of a Newton polygon associated with
these constrained walks, and we analyse what are the universal phenomena common to all these
models of lattice paths avoiding a pattern.
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Asympotics of Lattice Paths with Forbidden Patterns

1 Introduction

Combinatorial structures having a rational or an algebraic generating function play a
key role in many fields: computer science (analysis of algorithms involving trees, lists,
words), computational geometry (integer points in polytopes, maps, graph decomposition),
bioinformatics (RNA structure, pattern matching), number theory (integer compositions,
automatic sequences and modular properties, integer solutions of varieties), probability theory
(Markov chains, directed random walks), see e.g. [4,11,22,32]. They are often the trace of a
structure which has a recursive specification in terms of a system of tree-like structures, or
of some functional equation solvable by variants of the kernel method [12].

Since the seminal article by Chomsky and Schiitzenberger on the link between context-free
grammars and algebraic functions [15], which also holds for pushdown automata [30], many
articles encoded and enumerated combinatorial structures via a formal language approach.
See e.g. [20,25,28] for such an approach on the so-called generalized Dyck languages. The
words generated by these languages are in bijection with directed lattice paths, and in this
article, we try to understand how some of these fundamental objects can be enumerated
when they have the additional constraint to avoid a given pattern. For sure, such a class
of objects can be described as the intersection of a context-free language and a rational
language; therefore, classical closure properties imply that they are directly generated by
another (but huge and clumsy) context-free language. Unfortunately, despite the fact that
the algebraic system associated with the corresponding context-free grammar is in theory
solvable by a resultant computation or by Grébner bases, this leads in practice to equations
which are so big that no current computer could handle them in memory, even for generalized
Dyck languages with only 20 different letters.

In this article, we generalize the asymptotics obtained by Banderier and Flajolet [5] to
lattice paths avoiding a given pattern. As we shall see, the situation is much more involved,
and we build on the explicit formulas that we obtained in our companion article [1]. There,
we introduced a generic way to tackle the question of enumerating words avoiding a given
pattern (for languages generated by pushdown automata) which bypass these intractable
equations. For directed lattice paths, our method allows to handle an arbitrary number
of letters (i.e., allowed steps), up to alphabets of thousands of letters, computationally in
a few minutes. It relies on an analytic combinatorics approach, and also on the kernel
method, which we used in our investigation of enumerative and asymptotic properties of
lattice paths [6-8]. This allows to unify the considerations of many articles which investigated
natural patterns like peaks, valleys, humps, etc., in Dyck and Motzkin words, corresponding
patterns in trees, compositions. . ., see e.g. [9,10,13,16,17,19,21,26,27,29].

N
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Figure 1 Some models of self-avoiding walks are encoded by partially directed lattice paths
avoiding a pattern (see [2]). In this article, we analyse the asymptotics of more general walks (any
jumps, any forbidden pattern).
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2 Definitions and notations

In their paper, Banderier and Flajolet consider the following setting. Let S, the set of steps
(or jumps), be some finite subset of Z that contains at least one negative and at least one
positive number. A lattice path with steps from S is a finite word w = [v1,v2,...,v,] in
which all letters belong to S, visualized as a directed polygonal line in the plane, which starts
in the origin and is formed by successive appending of vectors (1,v1), (1,v2),...,(1,v,). The
letters that form the path w = [v1, ve, ..., v,] are referred to as its steps. The length of w, to
be denoted by |w], is the number of steps in w. The final altitude of w, to be denoted by
h(w), is the sum of all steps in w, that is v1 +ve + ... + vy,.

Under this setting, it is usual to consider two restrictions: that the whole path is (weakly)
above the z-axis, and that it has final altitude 0 (equivalently, terminating at the z-axis).
Consequently, one considers four classes of lattice paths:

1. A walk is any path as described above.

2. A bridge is a path that terminates at the x-axis.

3. A meander is a path that stays (weakly) above the z-axis.

4. An ezxcursion is a path that stays (weakly) above the z-axis and terminates at the z-axis.

ending anywhere ending at 0
=N ;
on Z
bridges
< uf R(t,us)
B(t) = — —
*) Zuz K (t,u;)

i=1

on N >
meanders excursions
w c qyetl c
Mt = g [l -w)|  E0 == —T[uo

Table 1 Summary of our results from [1], which extend the Banderier-Flajolet results
from [5] to lattice paths avoiding a pattern. For the four types of paths and for any set of jumps
encoded by P(u), we give the corresponding generating function of such lattice paths avoiding a
pattern p (of length £ and final altitude b). The formulas involve the autocorrelation polynomial
R(t,u) of p, and the small roots u; of the kernel K (t,u) := (1 — tP(u))R(t,u) + t‘u®.

In the generating functions, the variable ¢ corresponds to the length of a path, and the
variable u to its final altitude. P(u) is the characteristic polynomial of the set of steps S,
defined by P(u) =, .su®. The smallest (negative) number in S is denoted by —c, and the
largest (positive) number in S is denoted by d: that is!, if one orders the terms of P(u) by
the powers of u, one has P(u) = u=¢+u®? +...+ufs-1 +ud with S = {—c¢, s, ..., 5)8|-1,d}-
The drift of the walk is given by the quantity P’(1).

1 Some weights (or probabilities, or multiplicities) could be associated with each jump, but we omit them
in this article for clarity. All the proofs would be similar.
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3 Lattice paths with forbidden patterns and the autocorrelation
polynomial

We consider lattice paths with step set S that avoid a certain pattern, that is, an a priori
fixed path p = [a1,aq,...,as. To be precise, we define an occurrence of p in a lattice path w
as a substring of w which coincides with p. If there is no occurrence of p in w, we say that w
avoids p. For example, the path [1,2,3,1,2] has two occurrences of [1,2], but it avoids [2, 1].

Before we state our results, we introduce some notations.

A presuffiz of p is a non-empty string that occurs in p both as a prefix and as a suffix.
In particular, the whole word p is a (trivial) presuffix of itself. If p has one or several
non-trivial presuffixes, we say that p exhibits an autocorrelation phenomenon. For example,
for the pattern p = [1,1,2,1,2] we have no autocorrelation. In contrast, the pattern
p=11,1,2,3,1,1,2,3,1,1] has three non-trivial presuffixes: [1], [1,1], and [1, 1,2, 3,1, 1], and
thus in this case we have autocorrelation.

While analysing the Boyer—-Moore string searching algorithm and properties of periodic
words, Guibas and Odlyzko [23] introduced in 1981 what turns out to be one of the key
characters of our article, the autocorrelation polynomial® of the pattern p: For any given
word p, let Q be the set of its presuffixes; the autocorrelation polynomial of p is

R(t,u) = Zth‘uh(‘j), (1)

qeEQ

where ¢ denotes the complement of ¢ in p (i.e. ¢ = p) and h(g) the final altitude of a walk
made of the steps of §.

For example, consider the pattern p = [1,1,2,3,1,1,2,3,1,1]. Its four presuffixes produce
four terms of R(t,u) as follows:

q lgl | h(q)

[1] 9 15

[1,1] 8 14

[1,1,2,3,1,1] 4 7
[1,1,2,3,1,1,2,3,1,1] | 0

Therefore, for this p we have R(t,u) = 1 + t*u7 + t3u'* + tu!®. Notice that if for some p no
autocorrelation occurs, then we have Q@ = {p} and therefore R(t,u) = 1.

Finally, we define the kernel of a lattice path avoiding some pattern p as the following
Laurent polynomial:

K(t,u) := (1 — tP(u)R(t, u) + tPlu @), (2)

Also, in our case it can be shown that each root v = wu(t) of K(t,u) = 0 is either small
(i.e., limy_ou(t) = 0) or large (i.e., limy_o |u(t)] = +00). The small roots are denoted by
U, ..., ue.. We will also refer to them as the small branches.

Now we can state the enumeration results. Recall that ¢ is the variable for the length of
a path, and u is the variable for its final altitude.

2 A similar notion also appears in the work of Schiitzenberger on synchronizing words [31].
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» Theorem 1. Let S be a set of steps, and let p be a pattern with steps from S. Denote £ = |p|,
b= h(p). Let R(t,u) be the autocorrelation polynomial of the pattern p. Let uy, ..., u. be the
small roots of the kernel K(t,u), as defined in (2). Then (under one additional constraint
detailed in the proof), the generating functions of walks, bridges, meanders and excursions
avoiding the pattern p are given by:

1
T 1-tP() + /Rt 1)’

W (t) 3)

M(t) = f]?(é’, 11)) 10 =) ®)
(71)(:-}—1 c .
— Lo wit)  ifb>—c
o {S”;* g wil) ib=—c. "

Proof. We refer to our companion article [1] for the proofs and the complete bivariate
generating functions. The kernel K (t,u) is in fact the determinant of (I —tA(u))~1, where
A(u) is the transition matrix encoding the stack automaton associated with the constrained
walk (see Figure 2 below). The formulas then follow from an extension of the kernel method
to matrix equations. (In fact, we presented above the simplified formulas for M and F,
when p is what we call a pseudomeander, i.e. a lattice path which does not cross the z-axis,
except, possibly, at its last step. If this is not the case, then we may have more than ¢ small
roots.) <

Remark. Notice that for these four classes of lattice paths, forbidding a pattern of length 1 or
using symbolic weights for the jumps recovers the formulas from Banderier and Flajolet [5].

[1,2]

-

~1,2

2 )

Figure 2 The automaton for the jumps S = {—1,1,2} and the pattern p = [1,2,1,2, —1]. Any
walk avoiding a given pattern p is associated with a similar automaton. It is in fact a pushdown
automaton, in order to follow the positivity constraint. The matricial kernel method leads to the
formulas of Theorem 1 for the corresponding generating functions, without having to solve a big
algebraic system.
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4 Asymptotics of excursions avoiding a given pattern

The aim of this section is to characterize the asymptotics of the number of walks with
jumps S avoiding a given pattern p.

» Lemma 2 (Location of the dominant singularity). The dominant singularity (i.e. the nearest
from zero) of B(t) and E(t) is p, the smallest real positive number where a small branch
meets a large branch. (The branches refer to the solutions of K (t,u) =0, as defined in (2)).

Proof. Lattice paths avoiding a given pattern can be generated by a pushdown automaton
(see Figure 2). Accordingly, they can be generated by a context-free grammar, and their
generating functions therefore satisfy a “positive” system of algebraic equations (see [15]).
Therefore, the asympotic number of words of length n in such languages is of the form
Cp~"n®. When the system is not strongly connected, « is either an integer (if p is a pole),
either a dyadic number (if one has an iterated square root Puiseux singularity at p), as proven
by Banderier and Drmota in [4]. For excursions, one has a strongly connected dependency
graph (see Figure 2); the dominant singularity p (or, possibly, the dominant singularities)
thus behaves like a square root. What is more, the cycle lemma (see the discussion on this
in [5]) gives a correspondence between excursions and bridges, which implies that E(t) and
B(t) have the same radius of convergence (this still holds when there is a forbidden pattern).

Now, because of the product formula (6) for excursions, one (or several) of the small
branches have to follow this square root Puiseux behaviour. By Pringsheim’s theorem, this
has to be at a place 0 < p < 1; the geometry of the branches implies (see Table 2) that its
location is where a large branch meets a small branch (because if the branching point comes
from the intersection of small branches only, then their product will be regular). Therefore,
p has to be the smallest real positive number where a small branch meets a large branch. <«

Remark: p is also the radius of convergence of meanders with negative or zero drift. For
meanders with positive drift, the dominant pole of 1/K (¢, 1) will be the radius of convergence.

In order to avoid pathological cases, we now focus on generic walks.

» Definition 3 (Generic walks). We call a constrained walk model “generic” if the following
three properties hold.
Property 1. The generating functions B(t), M(t) and E(t) are algebraic, not rational.
Property 2. They have a unique domininant singularity.
Property 3. No large negative branch (i.e. a branch such that lim, o+ u(z) = —00) meets
a small negative branch at p.

These three properties are very natural; we now comment more on them:

For Property 1, it can be the case that the forbidden pattern leads to a degenerated model,
in the sense that it is no more involving any stack and then we have words generated by
a reqular automaton (then, the generating functions are rational and the asymptotics are
well understood). Example: S = {—1,1} and p =[1,—1] or p = [-1, —1].

For Property 2, it is proven in [3] that multiple dominant singularities appear if and only
if the ged of the pairwise differences of the jumps is not 1. In this case, the asymptotics
are obtained via [8, Theorem 8.8].

For Property 3, we conjecture that it always holds. We have a proof for many classes of
walks, but some remaining cases are tricky as it is possible to exhibit cases where one
small negative branch meets a large negative branch, at some p’ > p: This is e.g. the case
for § = {-2,-1,0,1,2} and p = [0, 1, —2]. Moreover, it is also possible that two small
negative branches meet at p: This is e.g. the case for § = {—2,1} and p = [1,-2,1, —2].
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2 -1 0 1 2 3 4 4 -3 2 o0 1 2 3 4
3
p=[1,-21,1,-2,1] p=1[0,0,1,2,0,0]
4 4 1
3 3
4 -3 2 1) 1 2 3 4 4 3 -2 1 1 2 3 4 1 05 l)\ 05 1
0 -1
-4 -4 -1
p= [0707_17_270701 p= [_17_27_17_27_17_2] p= [_17_27_17_17_27_1]
4 1 4
3 3
4 -3 2 - 0| 1 2 3 4 1 05 05 1 4 -3 2 0| 1 2 3 4
B : ‘ . '

74 [\ 7{ :
p=[-1,-1,0,—1,—1,0] p=1[-2-2,0 -2 -20]| p=1[-2-1,1,-2,—1,1]
L 3 3
4 -3 2 1 I)W :N)\ (:W 1 -3 2 1 U‘\\/}——‘x’—ﬂ
-1 -1 -1
| s i

-4

p=1[2,2-1,22-1]

p= [27 _17 _1727 _17

—1]

-4

p= [2, _17 _1727

“1,1]

Table 2 Plot of the real branches of the kernel equation K (t,u) = 0, for several pattern p. This
illustrates the diversity of behaviours. In all the examples, the set of jumps is S = {-2,-1,0, 1, 2},
and the pattern p is indicated. Note that due to a theorem of Pélya—Fatou—Carlson [14] on pure
algebraic functions with integer coeflicients (and therefore for generic walks), the first crossing
between a small and large branch is at 0 < p <1 (i.e. p =1 or any other root of ¢t — t*, cannot be

the dominant singularity).
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We observe that the behaviour of real branches of K (¢,u) = 0 is much more complicated
and diverse than that in the Banderier—Flajolet study. To recall, in their case there are always
exactly two real positive branches (one small branch u; and one large branch v;), and they
meet at a singularity point (¢,u) = (p,7), where u = 7 is the only positive number such that
P’(1) = 0. In contrast, in our case we may have additional positive branches — even when
the autocorrelation is trivial. Table 2 illustrates that we always have a small branch and one
large branch whose shape in general resembles that of u; U v; from Banderier—Flajolet.

In one sense, the forbidden pattern gives a perturbation of the Banderier—Flajolet geometry
of branches, and adds additional branches. A rigorous version of this intuition can be obtained
by playing with a Boltzmann weight/Gibbs measure (like in statistical mechanics): moving
the parameter v in a continuous way from 1 to 0 in the generating function F'(¢,u,v) in the
next section gives the explanation of these phenomena.

More information about these branches (on their Puiseux expansions) can be derived
from the Newton polygon associated with the kernel (see [18] for a crisp presentation of the
theory of Newton polygons for Puiseux expansion).

(I,c+d)

(Ov _b)
(t,c+0)
(0,0)

-l <b< —c —c<b<d d<b<dl

Figure 3 The three possibilities for the Newton polygon of the kernel K (¢, u) (the list is exhaustive
if R(t,u) =1). Each dot (4, ) corresponds to a monomial ¢'u’ of K. The slopes of the convex hull
segments on the left give the Puiseux behaviour at 0 of the small and large roots u; and v;.

Equipped with all this information on the roots, and the way they cross, we can derive
the following asymptotic results. Note that we use the notations K (¢, u) for (0, K)(¢, ), and
Ky (t,u) for (02K)(t,u). We start with asymptotics of walks on Z with a forbidden pattern.

» Theorem 4 (Asymptotics of walks on Z). Let px be the smallest positive root of K(t,1).
For any generic model, the asymptotic number of walks of length n is:

R(t,1)
K(1)"

Proof. This follows from the partial fraction decomposition of W (t) = <

» Theorem 5 (Asymptotics of excursions). Assume that we have a generic walk avoiding
a pattern p which is a pseudomeander. Let Y (t) := (—=1)"Tug(t) - - - uc(t). The number of
excursions of size n satisfies

K, 1
t(pa ) . n—3/2p—n .

E,~Y
(v) 2mpKyu(p, 1)

Proof. Since the walk is generic, Y (t) is analytic for |¢| < p. Thus the singular behaviour of
u1(t) determines the singularity and the local behaviour of E(t). We obtain:

Bt) ~ B(p) - Y (o) S 2T i <
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» Theorem 6 (Asymptotics of bridges). Assume that we have a generic walk avoiding a
pattern p. The number of bridges of size n satisfies

R(paT) Kt(pvl) 'n—l/Qp—n.

B, ~ —
TKi(p,7) \| 2mpKuu(p, 1)

Proof. We know from Lemma 2 that B(t) and E(¢) have the same radius of convergence.

Thus, the singular behaviour of u;(t) determines the singularity and the local behaviour of
B(t). We have therefore
_ Rt w(t) wi(t)

Ki(t,ua(t)) ua(t)

and plugging the singular expansion of u; into this formula yields the result. |

B(t) ~

» Theorem 7 (Asymptotics of meanders). Let px be the smallest positive root of K(t,1) (as
in Theorem /). Assume that the walk is generic and that p is a pseudomeander. Then the
asymptotics of the coefficients of the meander generating function

c

M(z)=(1—ui(t))Y(t)R(t,1)/K(t,1) with Y (t) := H(l —u;(t))

i=2
is given by
My, ~ R(p, 1)Y(p) 2 . n71/2pfn (for pr — p)!
oK (py 1) Kuu(p, 1)
Y(pr)R(pr,1) _
M, ~ -2 PE)p 1) ok o
prKi(pK,1) Pr (for prx < p)
R(p )Y (p) | pKi(p,1) 50 _,
A K(p,1) 21 Kuu(p, 1) noe (for px > p).

Proof. To prove the first assertion, observe that px = p is equivalent to 7 = 1. The dominant
singularity of the generating function M (t) = (1 — uy(¢))Y (t)R(¢,1)/K(t,1) is at px = p
and it originates from a simple zero in the denominator K (¢,u) and from u;. The singular
expansion from uq (t) at p gives (we use k(t) := fm):

—1/2 —-1/2
M) ~ R(p, Y (p)i(p) | 2252 D) (1—t) _ VR@’”Y(’)W <1_t> .

Kuu(p7 1) p pKt(/), I)Kuu(pvl) p

In the case px < p we have 7 # 1 and thus K(p,1) > 0. Hence the generating function
has the dominant singularity px which comes from the kernel only. This implies

M(t)~Y K R K,l RK\PK ) T

(t) ~Y(px)R(pK, 1)k(p )17t/pK
In the last case, px > p, u; has a square-root type singularity before K (t,1) becomes
singular. Singularity analysis thus gives the last claim of the theorem, via the following
Puiseux expansion at the dominant singularity p

K(p,1) Kuu(p,1) p

10:9
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Caveat: We are aware that several constants in these theorems can be further simplified,
but we kept them like this in order to help the reader to follow the proofs (just sketched
here, due to the page limit).

The theorems above for excursions and meanders are stated when the pattern p is a
pseudomeander; there is a similar result for any pattern, but the proof goes through a wider
disjunction of cases to handle, as then the closed form for the generating function is no more
the same. We will handle this in the full version of this article.

These asymptotics also allow to get results on limit laws, as presented in the next section.

5 Limit law for the number of occurrences of a given pattern

Our approach also allows to count the number of occurrences of a pattern in paths. As usual,
an occurrence of p in w is any substring of w that coincides with p, and when we count
them we do not require that the occurrences will be disjoint. For example, the number of
occurrences of 11 in 1111 is 3. We use the same notations than in Section 3. Then one has

» Theorem 8 (Gaussian limit laws for occurrences). Let X,, be the random variable which
counts the number of occurrences of a pattern in a generic walk, bridge, meander, excursion
model. Then X, has a Gaussian limiting distribution with E[X,] = un+O(1) and Var[X,] =
a?n + O(1) for some constants u > 0 and o > 0:

(Xn - ]E[Xn]) — N(O, 0'2).

Proof (sketch). The proof relies on the Gaussian limit laws for positive algebraic systems
from [4, Theorem 9], which itself comes from following the dependency in the graph associated
with the system, and applying Hwang’s quasi-power theorem to each component. In this
process, some positive variance conditions have to be checked on the formulas given by an
equivalent of Theorem 1, with the additional variable v counting the number of occurrences
of the pattern, and where the corresponding trivariate kernel is

K(t,u,v) := det(I —tA) = (1 —v)((1 — tP(u))R(t,u) + t‘u®) + v(1 — tP(u)).  (7)

This comes from the associated automaton (as illustrated in Figure 4), and its adjacency
matrix A. Note that for v = 0 we get the kernel from the avoidance case (see equation (2)),
and for v =1 we get 1 — tP (which is, as expected, the kernel from [5]).

To show the relation (7), we use a method adapted from [22, p. 60]. Let W = W (¢, u,v)
and W, = Wp(t,u,v) be the generating functions of all words and words ending with p,
respectively, where v counts the number of occurrences of p. We show the following two
identities:

L+ WP =W — W, + v 'W,, (8)
Wttub = v 'W,R — (R — 1)W,. (9)

This system is readily solved and gives W as a rational function with denominator the right-
hand side of (7). Since it is an irreducible polynomial, with degree ¢ in ¢, this denominator
times a polynomial factor Q(¢,u,v) has to be equal to det(I — tA). In fact, Q(¢,u,v) = 1.
Indeed, an inspection of the degrees of the product shows that they cannot be higher than the
degrees of the determinant of I — tA, and multiplying the denominator by a non constant @
would contradict this. Now, setting v = 1 gives that 1 —¢P = det(I —tA) = (1 —tP)Q(t, u, 1)
and thus @ = 1. This shows (7).
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To show (8), take a word and add a letter to it. If the resulting word does not end with p,
it is counted by W — W); if it does, it is counted by v_1Wp. To show (9), take a word w
and add the pattern p to it. This creates a number j > 1 of new occurrences of p. The
path wp can be written in j ways as w'r, where w’ ends with a new occurence of p and r is
an autocorrelation factor, or j — 1 ways if we impose that r # €. It is therefore counted with
a factor v + - - - 4+ v/ by W, R and with a factor v + -+ +v/~! by (R — 1)W,, and the result
follows. <

ul+u?

Figure 4 Pushdown automaton for the set of jumps & = {—1,1,2} and the pattern p =
[1,2,-1,1,2]. In dashed red we marked the arrow from the last state (X,_1) labelled by the last
letter of the pattern (a;). Marking this transition with v leads to formulas involving the kernel
K(t,u,v) = det(I —tA) as given in Equation (7), where A is the adjacency matrix of this automaton.

6 Conclusion

In this article, we presented a unifying way which gives the asymptotics of all families of
lattice paths with a forbidden pattern, and we proved that the number of occurrences of a
given pattern is normally distributed. The same approach would, for instance, allow to do
the asymptotics of walks having exactly m occurrences of a given pattern, or to consider
patterns which are no longer a word but a regular expression.

It is also nice that our approach gives a method (let us call it the vectorial kernel method) to
solve in an efficient way the question of the enumeration and asymptotics of words generated
by a pushdown automaton (or words belonging to the intersection of an algebraic language
and a rational language). What is more, it is possible to use our functional equation approach
to analyse the intersection of two algebraic languages. Note that testing if this intersection is
empty is known to be an undecidable problem, even for deterministic context-free grammars
(see e.g. [24]), so we cannot expect too much from a generic method in this case. However,
we can specify a little bit more the type of system of functional equations we get: indeed
this problem is related to automata with two stacks, which, in turn, are known to have the
same power as a Turing machine; the evolution of these two stacks corresponds to lattice
paths in the quarter plane (with steps of arbitrary length), the complexity of the problem is
reflected by the fact that one can then get generating functions which are no more algebraic,
D-finite, or differentially-algebraic, and we do not expect some universal nice results here,
but a wider zoo of behaviours.

However, no doubt that all these cases will be new instances of what Flajolet and
Sedgewick called Borges’s Theorem: Any pattern which is not forbidden by design will appear
a linear number of times in large enough structures, with Gaussian fluctuations.

For sure, it is more a metatheorem, a natural credo, so it is always worthwhile to establish
this claim rigorously. Naturally, may it be with tools of probability theory or of analytic
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combinatorics, there is always some technical conditions to check to ensure this claim. In

this article, our closed form expressions for the generating functions were one of the keys,

together with the universal behaviour of the small branches. This allowed us to prove this

Gaussian behaviour for the number of occurrences of any given pattern. Year after year, this

claim is established for more and more combinatorial structures (it was done for patterns in

Markov chains, trees, maps, permutations, context-free grammars, and now... lattice paths!).

Let us end with the passage of Flajolet and Sedgewick [22, p. 61] which explains where

Borges’s Theorem comes from:
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