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Abstract. A considerable number of asymptotic distributions arising in
random combinatorics and analysis of algorithms are of the exponential-
quadratic type (6_5”2), that is, Gaussian. We exhibit here a new class
of “universal” phenomena that are of the exponential-cubic type (e“’g),
corresponding to nonstandard distributions that involve the Airy func-
tion. Such Airy phenomena are expected to be found in a number of
applications, when confluences of critical points and singularities occur.
About a dozen classes of planar maps are treated in this way, leading to
the occurrence of a common Airy distribution that describes the sizes of
cores and of largest (multi)connected components. Consequences include
the analysis and fine optimization of random generation algorithms for
multiply connected planar graphs.

Maps are planar graphs presented together with an embedding in the plane,
and as such, they model the topology of many geometric arrangements in the
plane and in low dimensions (e.g., 3-dimensional convex polyhedra). This paper
concerns itself with the statistical properties of random maps, i.e., the question
of what such a random map typically looks like. We focus here on connectiv-
ity issues, with the specific goal of finely characterizing the size of the highly
connected “core” of a random map.

The bases of an enumerative theory of maps have been laid down by Tutte [22]
in the 1960’s, in an attempt to attack the four-colour conjecture. The present
paper builds upon Tutte’s results and upon the detailed yet partial analyses of
largest components given by Bender, Richmond, Wormald, and Gao [2,11]. We
establish the common occurrence of a new probability distribution, the “map—
Airy distribution”, that precisely quantifies the sizes of cores in about a dozen
varieties of maps, including general maps, triangulations, 2-connected maps, etc.
As a corollary, we are able to improve on the complexity of the best known ran-
dom samplers for multiply connected planar graphs and convex polyhedra [19].

The analysis that we introduce is largely based on a method of “coalescing
saddle points” that was perfected in the 1950’s by applied mathematicians [3,
24, 1] and has found scattered applications in statistical physics and the study
of phase transitions [16]. However, this method does not appear to have been
employed so far in the field of random combinatorics. We claim some gener-
ality for the approach proposed here on at least two counts. First, a number
of enumerative problems are known to be of the “Lagrangean type”, being re-
lated to the Lagrange inversion theorem and its associated combinatorics. The
classical saddle point method is then instrumental in providing asymptotics of
simpler problems. However, confluence of saddle points is a stumbling block of



the basic method. As we show here, planar maps are precisely instances of this
special situation. Next, the method extends to the analysis of a new composition
scheme. Indeed, it is known, in the realm of analytic combinatorics, that asymp-
totic properties of random structures are closely related to singular exponents
of counting generating functions. For “most” recursive objects the exponent is %
and the probabilistic phenomena are described by classical laws, like Gaussian,
exponential, or Poisson. Methods of the paper permit us to quantify distribu-
tions associated with singular exponents % present in maps and unrooted trees
and leading to Airy laws.

Very roughly, the classical saddle point method gives rise to probabilistic

and asymptotic phenomena that are in the scale of n'/2 and the analytic ap-
proximations are in the form of an “exponential-quadratic” (e‘“z) correspond-
ing to Gaussian laws. The coalescent saddle-point method presented here gives
rise to phenomena in the scale of n'/3, with analytic approximations of the
“exponential-cubic type” (e’*"), which, as we shall explain, is conducive to Airy
laws. The Airy phenomena that we uncover in random combinatorics should
thus be expected to be of a fair degree of universality. To support this claim,
here are scattered occurrences of what we recognize as Airy phenomena, in the
perspective of this paper: the emergence of first cycles and of the giant compo-
nent in the Erd6s-Rényi graph model [8,13], the enumeration of random forests
of unrooted trees [14], clustering formation in the construction of linear probing
hash tables [10], the area under excursions and the cumulative storage cost of
dynamically varying stacks [15], the area of certain polyominoes [7], path length
in combinatorial tree models [21], and (we conjecture) the threshold phenomena
involved in the celebrated random 2-SAT problem [4]. We propose to elaborate
on these connections in future papers.
Plan of the paper. Basics of maps are introduced in Section 1 where the Airy
distribution is presented. The enumerative theory can be developed along two
parallel lines, one Lagrangean, the other based on singularity analysis. We first
approach the analysis of core size via the Lagrangean framework and variations
on the saddle point method: a fine analysis of the geometry of associated complex
curves is shown to open access to the size of the core, with the Airy distribution
arising from double or “nearby” saddles (Section 2); a refined analysis based
on the method of coalescent saddle points then enables us to quantify the dis-
tribution of core size over a wide range with precise large deviation estimates
(Section 3). The method applies to about a dozen of types of planar maps, it
provides a precise quantification of largest components, with consequences on
the random generation of highly connected planar graphs (Section 4). Finally,
we show that the very same Airy law is bound to occur in any instance of a
general composition scheme of analytic combinatorics (Section 5).

1 Basics of maps

A map is a planar graph given together with an embedding in the plane consid-
ered up to continuous deformations. Following Tutte, we consider rooted maps,



that is, maps with an oriented edge called the root—this simplifies this anal-
ysis without essentially affecting statistical properties (see [17] and Section 4).
Generically, we take M and C to be two classes of maps, with M,,, C,, the sub-
sets of elements of size n (typically elements with n+ 1 edges). Here, C is always
a subset of M that satisfies additional properties (e.g. higher connectivity). The
elements of M are then called the “basic maps” and the elements of C are called
the “core-maps”. We define the core-size of a map m € M as the size of the
largest C—component of m that contains the root of m. As a pilot example, we
shall specialize the basic maps M,, to be the class of nonseparable maps (i.e.,
2-connected loopless maps) with n+ 1 edges and Cy, to be the set of 3-connected
maps with £ + 1 edges.

Our major objective is to characterize the probabilistic properties of core-size
of a random element of M,,, that is, of a random map of size n, when all elements
are taken equally likely. Core-size then becomes a random variable X,, defined
on M. In essence, the pilot example thus deals with 3-connectivity in random
2-connected maps. The paradigm that we illustrate by a particular example is
in fact of considerable generality as can be seen from Sections 4, 5 below.

The physics of maps. From earlier works [2,11, 18], it is known that a random
map of M,, has with high probability a core that is either “small” (roughly of size
k= 0(1)) or “large” (being @(n)). The probability distribution Pr(X,, = k) thus
has two distinct modes. The small region (say k = o(n)) has been well quantified
by previous authors, see [2,11,18]: a fraction p; = g—‘;’ of the probability mass is
concentrated there. The large region is also known from these authors to have
probability mass py = 1 — ps; = 5 concentrated around agn with oy = % but
this region has been much less explored as it poses specific analytical difficulties.
Our results precisely characterize what happens in terms of an Airy distribution.

The Airy function Ai(z), as introduced by the Royal Astronomer Sir George
Bidell Airy, is a solution of the equation y”" — zy = 0 that can be defined by a
variety of integral or power series representations including [23]:

1 [tee ((n + 1)/3) . 2(n+1)rm n

: i(zt+t%/3) : 1/3
Ai(z) = 2ﬂ_/ e dt = 32/3 E sin 3 (3 :L') .
(1)

Equipped with this definition, we present the main character of the paper.

Definition 1. The (standard) “map-Airy” distribution is the probability distri-
bution whose density is

A(z) = 2exp <—§x3> (zAi(z?) — Ai'(2?)) .

The “map-Airy” distribution of parameter c is defined by its density, cA(cz).

Note the nonobvious fact that the map—Airy distribution is a probability dis-
tribution, i.e., fR A(z)dz = 1, which can be checked by Mellin transform tech-
niques. An unusual feature is the fact that the tails are extremely asymmetric:
A(z) = O (|z|7%/?) ,as # = —o0, and A(z) = O (z'/? exp (—22?)), as 7 — +o0.
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Fig.1. (:) The map—Airy distribution. (z4) Observed frequencies of core-sizes k €
[20, 1000] in 100,000 random maps of size 2000, against predictions of Thms 3, 4.

We shall find that the size of the core (conditioned upon the large region) is de-
scribed asymptotically by an Airy law of this type; see Figure 1.

The combinatorics of maps. Let M, and C} be the cardinalities of M, and
Ck. The generating functions of M and C are respectively defined by

M(z) := Z Myp2", and C(z) := ZC’kzk.

n>1 k>1

(7) Root-face decomposition. As shown by Tutte, there results from a root-face
decomposition and from the quadratic method [12, Sec. 2.9] that the generating
function of M (z) is Lagrangean, which means that it can be parametrized by a
system of the form

M(2) = (L(z)) where L(z) = z¢(L(2)), (2)

for two power series 9, ¢, with L being determined implicitly by ¢. For nonsep-
arable maps, we have ¢(y) = (1+y)?, (y) = y(1 —y). There results from the
form (2) and from the Lagrange inversion theorem [12] an explicit form for the
coefficients of M(z), namely,

My = M) = [T (0)60)" Q@

where [2"]f(z) denotes the coefficient of 2™ in the series expansion of f(z). For

nonseparable maps, this instantiates to M,, = [z"|M(z) = %

(4i) Substitution decomposition. As shown again by Tutte, maps satisfy addi-

1+M(z)
C(M(z)), meaning that each map (left part) either has no core (right part, the
first term) or is formed of a nondegenerate core in which maps are substituted
(right part, the second term). This equation effectively gives access to the exact
enumeration of objects of type C that are more “complex”, i.e., more highly
connected than the initial maps of M.

tionally relations of the “substitution type”: one has: M (z) = (z + 2M(z)* ) +



Our interest lies in the probability Pr(X, = k) that a map of M, has
a core with k£ + 1 edges. Let M, ;, be the set of maps with this property; we
define the bivariate generating function M(z,u) = an My, pub2™, with M, , =
card (M, ). Tutte proved the following refinement: M (z,u) = C(uM (z)). This
determines the probability distribution of the core-size:

Pr(X, = k) = W ="M (2)k = %

i [y~ ' ()p(»)* o y)", (4)
n
where the second equality results from Lagrange inversion.

All the involved generating functions are algebraic functions leading to com-
plicated alternating binomial sums expressing Pr(X,, = k). The exponential
cancellations involved are however not tractable in this elementary way, and
complex asymptotic methods must be resorted to.

The asymptotics of maps. There are here two sides to the coin: one evoked
now and explored further in Section 5 relies on singularity analysis [9], a method
that establishes a general correspondence between the expansion of a generating
function at a singularity and the asymptotic form of its coefficients; the other
discussed in the next two sections makes use of the power forms provided by the
Lagrange inversion theorem that can be exploited asymptotically by the saddle
point method.

An implicitly defined function like L(z) in (2) has a singularity of the square-
root type L(z) = 7 —c(1—2/p)'/? + O(1 — z/p), where the singularity p and the

T

singular value 7 are determined by the equations 7¢'(7) — ¢(7) =0, p = rok

This expansion yields the singular expansion of the generating function of maps,

M (z) = ¢(r) = a(l = z/p) + b(1 = 2/p)** + O((1 - 2/p)?) (5)

(in all known map-related cases, one has ¢'(7) = 0 which induces the singu-
lar exponent of 3/2). According to singularity analysis (or the Darboux-Pélya
method), this last expansion entails

3b p" _ _ 4 (nonsep.) \/5 27\" —5/2
Mn 4\/7—rn5/277._27p_277 Mn 2\/7_7' 4 n (6)

Finally, this approach also yields by direct inversion the asymptotic number of
core maps: C(z) has a singularity at ¢(7) and singular exponent 3. We have

O(2) = co — a' (1= 2/3p(r) + V(1 = 2/$(7))*/* + O((1 = 2/9(7))*),  (7)

3bl — — —conn. 8 —
Cr = [10(2) ~ Loz 0O, O~ S (9)

243./7
The foregoing discussion is then conveniently summarized by a statement that
constitutes the starting point of our analysis.

Proposition 1. The distribution of the size of the core in nonseparable maps is
characterized by Eq. (4), where the core map counts Cy, are determined asymptot-
ically by (8). The basic maps in M,, are enumerated exactly by (3) and asymp-
totically by (6).



2 Two saddles

The probability distribution of core-size in maps is determined by Proposition 1,
especially by Equation (4). What is needed is a way to estimate [2"]M (2)*. The
approach starts from the contour integral representation deriving from Cauchy’s
coefficient formula,

) = o [ s = S [ 6@uet 6e)/" d:

n2ir |, n 2ir
(9)

where I" is a contour encircling the origin anticlockwise and G(z) = ¢'(2) /1 (z) =
(1-22)/(=(1 - 2)).

In simpler cases, integrals over complex contours involving large powers are
amenable to the basic saddle point method. The idea consists in deforming the
contour I" in the complex plane, this, in order to have it cross a saddle point of the
integrand (i.e., a zero of the derivative) and to take advantage of concentration of
the integral near the saddle point. Then local expansions are of the “exponential
quadratic” type and the (real-variable) Laplace method permits one to estimate
the integral asymptotically [5].

For the problem at hand, there are two saddle points, given by the equation

2 (kIng + nln(p/z)) = 0:

n—=k
n+k

1
zy(n, k) = 3 and z_(n,k) =

The basic saddle point method applies when these two points are distinct, that
is, as long as k/n is “far away” from % This corresponds to the situation already
well-known from the works of [2, 11, 18]. The “interesting” region is however when
k =n/3 and when k is close to n/3 in the scale of n?/3. In that case, the basic
version of the saddle point method is no longer applicable. This is precisely where
we fit in: we prove that a detailed examination of the analytic geometry of the
saddle points in conjunction with suitable integration contours “captures” the
major contributions and leads to a precise quantification of core-size in random
maps.

Distinct saddles When k is far enough from n/3, one of the saddle points
is nearer to the origin and predominates. In that case, the basic method ap-
plies using a contour that is a circle centered at the origin, passing through the
dominant saddle point. This corresponds to the already known results of [2, 11]
supplemented by [18].

Theorem 1 (Tails and distinct saddles [11]). Let A(n) be an arbitrary func-
tion with A(n) = 400 and A\(n) = o(n'/?). Then, the probability distribution of
the core of random element of M, satisfies
Pr(X, = k) 52 n iformly for A(n) <k<2—n2/3\(n)
Tr n = ~ . R n__
2135 B2 (n — k) uniformly for AX(n 5N n
Pr(X, = k) = O (exp(—n(k/n — 1/3)%)), uniformly for k > 2 + n?/3X(n).




Proof (Sketch). The left tail (n < 3k) corresponds to the saddle point z4 = 3 that is
dominant (i.e., nearer to the origin and providing the major asymptotic contribution).
The right tail (n > 3k) has z_ = (n — k)/(n + k) dominating. In each case, the basic
saddle point method applies.

A double saddle Here we attack directly the analysis of the “center” of the
distribution, that is, the case where n = 3k exactly. Then, the saddle points
become equal: z_ = z,. This case serves to introduce with minimal apparatus
the enhancements that need to be brought to the basic saddle point method.
Observe that the complete confluence of the saddle points precludes the use of
“exponential-quadratic” approximations and the problem becomes of an “expo-
nential cubic” type. (See also [2] for a partial discussion of this case based on a
method of Van der Corput.)

Theorem 2 (Central part and a double saddle). The probability distribu-
tion of the core of random element of M,, satisfies, when n = 3k,

o A T(2/3), o 47.-1/3 4 I'(2/3) _
Pr(Xaw = k) = =5k (1+O((ln(k)) k )), =g ~ 0.0531.
Proof. When n = 3k, equation (9) becomes
YN k
e = g [ GePE s, (10)

where P(z) := ¢¢%/2> = (1 — 2)(1 + 2)°/2? and the “kernel” In(P) (together with

P, Pk) now has a double saddle point at 7 = 2. = z; = 1, sometimes called a

“monkey saddle”, viz., a saddle with places for two legs and a %ail. The idea consists
in choosing a contour that is no longer a circle centered at the origin, but, rather,
approaches the real axis at an angle. Specifically, the integration path I' consists of
the following: the part I'y of a circle centered at 0 from which a small arc is taken out,
joining with two (small) segments A1, Ay of length & that intersect at 1 at an angle of
+27/3.

We shall adopt a value of § satisfying two conflicting requirements,
né® - oo,  né* =0, specifically § = (Inn)n~'/%. (11)
The kernel In(P) has a double saddle point in 7, meaning that its local expansion is of
the cubic type:
_ o
=35
The geometry of the level curves of the kernel shows that the contribution & along

Iy to the integral in (10) is bounded by a constant times the value of P(z)* at the
endpoints of I'y. This contribution then satisfies

In(P(z)) = In(P(7)) —d(z — 7)* + O((z — 7)*), d

& = | G(2)explkIn(P(2))]dz = O(P(r)* exp(—kds®)),

Iy

which, given the constraints on § (condition né® — oo in (11)) is exponentially small.

The contribution £1,» along A; U As to the integral in (10) provides the dominant
contribution and is estimated next by a local analysis of P* for values of z near 7.
Set v = z — 7. The condition nd* — 0 in (11) implies that terms of order 4 and



higher do not matter asymptotically, and a simple calculation, using the fact that
G(1 + u) = —8u + O(u?), yields

€102 / G(2) explkIn(P(2))] d = —8P(r)* / wexp (—kdu®) (1+0(ks")) du.
AUA, AUAy

The integral along A; U Ay can be extended to two full half lines of angle +27/3

emanating from the origin, this at the expense of introducing only exponentially small

error terms (since nd®> — c0). The rescaling v = u(kd)'/® exp(2ir/3) on A; and v =

u(kd)'/® exp(—2im/3) on A, then shows that the completed integral equals

) . too i
(kd) /3 (e¥im/3 — g =4in/3y / vexp(—v®)dv = —(kd) "> —=1(2/3),
0 V3
where the evaluation results from a cubic change of variable. In summary, we have

found 5/ .
n k _ ]. _ 3 P(T) 4
[2"|M"(2) = Gin (Eo+&1p2) = Tor 72/ r(/3) (1+ O(ks")),

which, given our choice of 4, is equivalent to the statement.

A similar reasoning proves that the estimate remains valid for n = 3k + e
with e = 1 or e = 2, and more generally with any e satisfying e = O(1).
Nearby saddles When k is close to n/3, we choose in the representation (9)
an integration contour I' that catches simultaneously the contributions of the
two saddle points z_ and zy. For this purpose, we adopt a contour that goes
through the mid-point, ¢ := (2_ + 24)/2, and, like in the previous case, meets
the positive real line at an angle of £27/3. Local estimates of the integrand, once
suitably normalized, lead to a complex integral representation that eventually
reduces to Airy functions.

Theorem 3 (Local limit law and nearby saddles). The probability distri-
bution Pr(X,, = k) admits a local limit law of the map—Airy type: for any real
numbers a,b, one has

16343 (343 k —n/3

23Pr(X, =k) — o A T T 0.

N e T A( TRSIE )‘_)
3 =

= 2/

Proof. We set k = n/3 4+ xn?/® where z lies in a finite interval of the real line, and
define H := In(¢)*/"¢/z) (this replaces In(P) in the previous argument). The starting
point is again the integral representation (9) taken along a contour I' that comprises
Iy, a circle minus a small arc, together with two connecting small segments Aq, A,
of length §, now meeting at ¢, where § is chosen according to the requirement (11).
The arc I lies below the level curve of ¢, and the corresponding contribution & is
estimated to be exponentially negligible.

We turn next to the contribution £ 2 arising from A; U A,. The distance between
the two saddle points z_, z; is O(n~'/?) which represents the “scale” of the problem.
One thus sets z = ¢ + vn~'/3. Local expansions of H and G are then best carried out
with the help (suitably monitored!) of a computer algebra system like Maple. The com-
putation relies on the assumption z = O(1), but some care in performing expansions
is required because of the relations (11). We find eventually

1,2 = <§> 477 exp (—Ez‘?’) / (92/2—8v) exp <—%v3—gz‘2v) (14n) dv,
1 32" ) Jarim, 27" "1



where the error term 5 satisfies n = O(6*n + n=/*2) and the segments A), A} each

have length dn'/® tending to infinity according to our assumptions. Perform finally

the change of variable v = (%)71/% and complete the integration path to e*2™/3c0:
the integral then reduces to Ai(z), Ai'(z) through contour integrals representations
equivalent to (1) (by Cauchy’s theorem, with integration path ¢*?™/3co changed to

et™/250). Thus, for z = O(1) and k = n/3 4+ zn*?, the main estimate found is

() = By (%)n/%ft (%m) (1+0(1)),

where A(z) is the map—Airy density function. This form is equivalent to the statement.
The argument also gives a speed of convergence to the limit law of O(n~1/12+o(),

3 Coalescing saddles

In the present section, we provide a uniform description of the transition regions
around n/3, allowing k to range anywhere o(n) and n — o(n), precisely, between
A(n) and and n — A(n), for any A(n) = o(n) with A(n) — oo. For the study of
this wide region in the scale of n, we set

k=aon+ pn=(1/3+ B)n,

with estimates valid uniformly for 8 in any compact subinterval of ] — 1, 2[.
Theorem 4 (Large range and coalescent saddles). Let k = n(1/3 + f),
and 7,a1,aq4 be the functions of B given below. Let A(n) be any function with

A(n) = o(n) and X(n) — 400. Then, with x = n'/?y, Pr(X, = n/3+ fn) equals

16 a ay AN
St (3 A+ e (<3¢ ) i) a+oa/m). 12)
where the error term is uniform for B in any compact subinterval of | — %, %[
and, up to replacing O(1/n) by O(X(n)~1), it is also uniform for any k > \(n).
With L(z) = xlnz, the quantities 7, a1, and a4 are:

1/3
)= (2,5(1 +38/4) - %cu _38/2) - i,cu +38) - gﬂln 2) (13)

0,1_2

6/7 1/2 _ 4 Yy a1
278 <(1+36/4)(1—3B/2)(1+3B)> o= 9_62\/%_4_72 (14)

The estimates involve Airy functions composed with the quantity y that depends
nonlinearly on §. In particular, formula (12) extends the estimates of Section 2
when k = n/3 + zn?/3, since in that case y o<  while 8 — 0 and the following
approximations apply:

34/3 a; 343 15

Y= T5+O(52)a - =——+0(8), as=

_ _1292/3
5 1 643 +0(B), B—0.



(The resulting speed of convergence to the Airy law appears to be O(n=2/3).)
As soon as k leaves the n/3 + O(n*/?) region, the two Airy terms in (12) start
interfering and large deviations are then precisely quantified by (12). When k&
drifts away to the left of n/3 (and x — —o00), basic asymptotics of Airy functions
show that the formula simplifies to agree with the results of Section 2.

Proof. The transition phenomenon to be described is the coalescence of two simple
saddle points into a double one; see [3, 24]. The simplest occurrence of the phenomenon
appears in the integration of exp[nf(¢,~)] with

fity) =t -+

Indeed in this case there are two saddle points %+, coalescing into a double saddle
point as v — 0. The strategy consists in performing a change of variable in order to
reduce the original problem (9) to this simpler case. Denote the kernel of the integral
as H(z,B) = In(¢*/"¢/z) with k = (1/3+4 3n) and the dependency on 3 made explicit.
The integral in (9) is

I00,6) = [ GG:)explnH (2. )l
r
and we seek a change of variable of the form
H(z,0) = — (t*/3 =7°t) + 7 = f(t,). (15)

It turns out that, taking v = y(83) to be the real cubic root of v* = 3[H(zy,) —
H(z_,[)], (the relation is expressed by (13)) and r = r(3) to be

r= 3 [H(zs, 0) + Hm, )] = H(zt, ) = 29° = (0" [p) = 34°,  (16)
there exists a conformal map z — ¢ from the disc D of diameter [%, 2] to a domain
Dy satisfying (15) and mapping z+ onto +v. For simplicity, we restrict 3 to [—, 5].
The domain Dg contains the disc D' of diameter [—%, 1]. Let us denote by z(t) the
inverse mapping and Go(t, 3) = G(z(t))2(t) where (t) = %. Remark that Go(t, ) is
regular in D’. To guide his intuition, the reader may think of the map z — ¢ as a slight
deformation of the map z — 2(z — r).
Let us now proceed with the integral. As is usual with saddle point integrals we
first localise the integral in D, neglecting the parts of the path down in valleys,

I(n,B) = /FG(Z) exp[nH(z, 8)] dz = G(2) exp[nH (z, B)]dz + &1 (n, B),

rnb

where &1 (n, 3) is exponentially negligible when n — oo, uniformly in 3. Inside the disc
D we apply the change of variables (15), then restrict attention to the disc D’, and

2im

3 ,t>0}

deform the contour onto the relevant part of As = {te*
1008) = [ G(0) explnf (10 de + € (n, )
IrzNDg

= /A . Go(t, B) exp[nf(t,)] dt + E2(n, B).

In order to evaluate this integral one needs to dispose of the modulation factor Go(t, 3).
This can be done via an integration by part: A local expansion near ~ yields

Go(t, B) = (v — t)ar + (t° — 7*)Ho(t, B),



where Hy(t,(3) is regular in D', and a1 is given by (14). The integral I(n, 3) is thus
I(n,B) = exp(nr) / (y —t)aiexp (—n (t3/3 — 'y?t)) dt + Ro(n, 3),
AonD?
where after integration by part, and up to another exponentially negligible term,

Ro(n, §) = &2(7) /AOOW (%Ho(t,ﬂ)> exp [—n (? —7%)] dt + £5(n, B).

n

The integration by part has reduced the order of magnitude by a factor n, but Ro(n, 3)
is amenable to the same treatment as I(n, 3). We shall content ourselves with the next
terms: let & Ho(t, 8) = a2y + ast + (t* — v*)Hi(t, 3), with Hi(t,3) regular in D', a2,
a3 functions of 3, so that we have

3

I(n, B) = exp(nr) /Am(y (a1+a—n2) —t (al—%)) exp [—n (% - 72t>] dt + Ri(n, B).

where the integral has been extended to the whole of A, at the expense of yet another
exponentially negligible term. The error term is

Ri(n, g) = &2 /AOOW (%Hl(t,ﬂ)> exp [—n (? —7%)] dt + E4(n, B).

n2

In terms of the Airy function, we thus have

o eXP(nT) 1/3 as s 2/3 2 as e 2/3 2
I(n,B) = Qlﬂ'W (’yn (a1+;)A1(n v — (al_Z)Al (n™"y )) +Ri(n,B),

and the error term Ri(n, ) can be estimated: there exist dp and di positive such that

exp(nr d . d .
[Ri(n, B)| < % (nl—%|A1(n2/372)| + n2—}3|A1'(n2/3’y2)|> .

The theorem follows from formulae (6), (8), (16) and the definition of the map-Airy
law, upon setting a4 = v(a2 + as).

4 Applications to maps and random sampling

The results obtained in the particular case of 3-connected cores of nonseparable
maps are instances of a very general pattern in the physics of random maps.
Indeed all families in the table below obey the Lagrangean framework and are
amenable to the saddle point methods developed in previous sections.

Table 1. A selection of composition schemes (X an edge, £, D auxiliary families).

maps (M), M, cores (C), scheme o c
general, n edges nonseparable, M ~ C[X M?) 1/3 3/4%/3
general, n edges bridgeless, M ~ C[X (X M)~] 4/5  (5/3)%3/4
general, n edges loopless, M ~ L + C[X((XM)*)?] 2/3 3/2
loopless , n edges simple, M ~ C[X M] 2/3 34/3 /4
bipartite, n edges bip. simples, M ~ C[X M] 5/9 38/3 /20
bipartite, n edges bip. nonsep., M ~ C[X M?] 5/13 (13/6)%/% . 3/10
bipartite, n edges bip. bridgeless, M ~ C[X(XM)*] 3/5 (15/2)°%/18
nonsep., n edges simple nonsep., M ~ C[X¥ M] 4/5 15°/3/36
nonsep., n + 1 edges 3-connected, M ~ D + C[M] 1/3 34/3 /4

cubic nonsep., n + 2 faces cubic 3-conn., M ~ C[X(1+ M)?*] 1/2 (3/2)%/°
cubic 3-conn., n + 2 faces cubic 4-conn., M ~ M -C[XM?] 1/2 6%/%/3




Theorem 5. Consider any scheme of Table 1 with parameters ag and c. The
probability Pr(X,, = k) that a map of size n has a core of size k has a local limit
law of the map—Airy type with centering constant cg and scale parameter c.

The technique of [11] relates the size of the core to the size of the largest
component in random maps. Also, since maps have almost surely no symmetries
[17], the analysis extends to unrooted maps. As a consequence:

Theorem 6. (i) Consider any scheme of Table 1 with parameters ag and c.
Let X be the size of the largest component of in a random map of size n with
uniform distribution. Then

cA(ex)

2 (1+0(n2/%)),

Pr (X;; = |laon + xn2/3j) =
uniformly for x in any bounded interval. Furthermore, if x is restricted to the
shorter range |x| < X(n)~' for a fized function \(n) going to infinity with n,
then

c 3451 (2/3)

Pr (X; = Laon + on?/*]) = —2 =22 (14 0(Am) ™).

(ii) The same results hold for random unrooted maps.

Theorem 6 extends results of Bender, Gao, Richmond, and Wormald [2, 11]
who proved that X* lies in the range agn + A(n)n?/® with probability tending
to 1, where A\(n) is any function going to infinity with n.

Random sampling algorithms for various families of planar maps were de-
scribed in [19]. For general, nonseparable, bipartite, and cubic nonseparable
maps, an algorithm Map is given there that takes an integer n and outputs
in linear time a map of size n uniformly at random. For the other families of
Table 1, a probabilistic algorithm Core described below is used.

Probabilistic algorithm Core (k) with parameter f(k)

1. use Map (n) to generate a random map M € M of size n = f(k);
2. extract the largest component C' of M with respect to the scheme;
3. if C' does not have size k, then go back to step 1;

4. output C.

Safe for a set of measure that is exponentially small, this algorithm produces a
uniform element of C. The expected number of loops made by Core is exactly
{, = Pr(X,, = k)~!. The results of the paper enable us to precisely analyse this
and a number of related algorithms of [18,19]. We cite just here:

Theorem 7. In all extraction/rejection algorithms of [19], the choice f(k) =
n/ag yields an algorithm whose average number of iterations satisfies

U ~ 1?3 [(A0)e).
Let xy = 0.44322 be the position of the peak of the map-Airy density func-

tion ((1 — 4zd)Ai(x3) + 423Ai'(z3) = 0). The optimal choice f(k) = k/ag —
2o (k/ap)?/® reduces the expected number of loops by 1 — A(0)/ A(zo) ~ 30%.

xpcC



This proves that the extraction/rejection algorithms have overall complexity
O(k>/3), as do variant algorithms of [18,19] that are uniform over all C. The
complexity becomes O(k) if some small tolerance is allowed on the size of the
multiply connected map generated. Theorems of the paper enable us to quantify
precisely various trade-offs and fine-tune algorithms (details in the full paper).
As exemplified by Fig. 1(ii), the predictions fit nicely with experimental results.

5 Composition of Singularities

Map enumeration can be approached through the Lagrangean framework and
the saddle point analysis developed so far takes off from there. An alterna-
tive approach to the problem relies on singularity analysis [9], as introduced in
Section 1. The results of this section contribute to the general classification of
combinatorial schemas according to the nature of their singularities [20].

First, a definition. Let M and C be two generating functions with dominant
singularities at p and o, such that M (z) = o —a(1—z/p) +b(1—2/p)*/2+0O((1 -
z/p)?), and C(2) = co—a'(1—z/0)+b(1—2/0)?/>+O((1—2/0)?), in an indented
domain extending beyond the circle of convergence (see [9]). Then the bivariate
substitution scheme C'(uM (2)) is said to be a critical composition scheme of
type (3/2,3/2). The functional composition C(uM (z)) describes the size of the
C component in a combinatorial substitution C[M]. The scheme is called critical
since the singular value of the inner function (M) equals the singularity of the
outer function (C). It will be recognized that Tutte’s construction is an instance
(with o replacing the map specific (1) of formulae (5) and (7)). Schemes of
this broad form have been only scantily analysed, a notable exception being the
critical composition scheme of type (—1,3/2) that shows up in ordered forests
and in random mappings (functional graphs): in that case, the density is known
to be of the Rayleigh type [6,20]. The results of this section somehow recycle
in a different realm the intuition gathered by the method of coalescing saddles,
although the technical developments are a bit different.

Theorem 8. (i) For k= an+A(n), with0 < a < ap = Z and A(n) = o(n), the
probability distribution of the size X,, of the C—component of random element of
C[M] of size n satisfies

Pr(X, =k) ~ % a3 (1 — afag) ™52 n=3/? for a > 0;

Pr(X, =k) ~ 0:’}; A(n) /2 for « =0 and A(n) = +00.

(i1) For k = agn + zn?/?, ag = o/a, = = o(n'/?), an Airy-map law holds:

n*?Pr(X, = agn + zn*?) ~ a3b/’2bc.4(cx) where ¢ = (%)2/3 /oo
0

The proof relies on a modification of the Hankel contour used in classical singu-
larity analysis together with a different scaling. It will be developed in the full
paper. The theorem is a companion to Theorems 1, 2, 3, 4 that can also be used
to analyse forests of unrooted trees [14] in the critical region, a problem itself
relevant to the emergence of the giant component in random graphs [13, 14].
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