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e).Abstra
t. A 
onsiderable number of asymptoti
 distributions arising inrandom 
ombinatori
s and analysis of algorithms are of the exponential-quadrati
 type (e�x2), that is, Gaussian. We exhibit here a new 
lassof \universal" phenomena that are of the exponential-
ubi
 type (eix3 ),
orresponding to nonstandard distributions that involve the Airy fun
-tion. Su
h Airy phenomena are expe
ted to be found in a number ofappli
ations, when 
on
uen
es of 
riti
al points and singularities o

ur.About a dozen 
lasses of planar maps are treated in this way, leading tothe o

urren
e of a 
ommon Airy distribution that des
ribes the sizes of
ores and of largest (multi)
onne
ted 
omponents. Consequen
es in
ludethe analysis and �ne optimization of random generation algorithms formultiply 
onne
ted planar graphs.Maps are planar graphs presented together with an embedding in the plane,and as su
h, they model the topology of many geometri
 arrangements in theplane and in low dimensions (e.g., 3-dimensional 
onvex polyhedra). This paper
on
erns itself with the statisti
al properties of random maps, i.e., the questionof what su
h a random map typi
ally looks like. We fo
us here on 
onne
tiv-ity issues, with the spe
i�
 goal of �nely 
hara
terizing the size of the highly
onne
ted \
ore" of a random map.The bases of an enumerative theory of maps have been laid down by Tutte [22℄in the 1960's, in an attempt to atta
k the four-
olour 
onje
ture. The presentpaper builds upon Tutte's results and upon the detailed yet partial analyses oflargest 
omponents given by Bender, Ri
hmond, Wormald, and Gao [2, 11℄. Weestablish the 
ommon o

urren
e of a new probability distribution, the \map{Airy distribution", that pre
isely quanti�es the sizes of 
ores in about a dozenvarieties of maps, in
luding general maps, triangulations, 2-
onne
ted maps, et
.As a 
orollary, we are able to improve on the 
omplexity of the best known ran-dom samplers for multiply 
onne
ted planar graphs and 
onvex polyhedra [19℄.The analysis that we introdu
e is largely based on a method of \
oales
ingsaddle points" that was perfe
ted in the 1950's by applied mathemati
ians [3,24, 1℄ and has found s
attered appli
ations in statisti
al physi
s and the studyof phase transitions [16℄. However, this method does not appear to have beenemployed so far in the �eld of random 
ombinatori
s. We 
laim some gener-ality for the approa
h proposed here on at least two 
ounts. First, a numberof enumerative problems are known to be of the \Lagrangean type", being re-lated to the Lagrange inversion theorem and its asso
iated 
ombinatori
s. The
lassi
al saddle point method is then instrumental in providing asymptoti
s ofsimpler problems. However, 
on
uen
e of saddle points is a stumbling blo
k of



the basi
 method. As we show here, planar maps are pre
isely instan
es of thisspe
ial situation. Next, the method extends to the analysis of a new 
ompositions
heme. Indeed, it is known, in the realm of analyti
 
ombinatori
s, that asymp-toti
 properties of random stru
tures are 
losely related to singular exponentsof 
ounting generating fun
tions. For \most" re
ursive obje
ts the exponent is 12and the probabilisti
 phenomena are des
ribed by 
lassi
al laws, like Gaussian,exponential, or Poisson. Methods of the paper permit us to quantify distribu-tions asso
iated with singular exponents 32 present in maps and unrooted treesand leading to Airy laws.Very roughly, the 
lassi
al saddle point method gives rise to probabilisti
and asymptoti
 phenomena that are in the s
ale of n1=2 and the analyti
 ap-proximations are in the form of an \exponential-quadrati
" (e�x2) 
orrespond-ing to Gaussian laws. The 
oales
ent saddle-point method presented here givesrise to phenomena in the s
ale of n1=3, with analyti
 approximations of the\exponential-
ubi
 type" (eix3), whi
h, as we shall explain, is 
ondu
ive to Airylaws. The Airy phenomena that we un
over in random 
ombinatori
s shouldthus be expe
ted to be of a fair degree of universality. To support this 
laim,here are s
attered o

urren
es of what we re
ognize as Airy phenomena in theperspe
tive of this paper: the emergen
e of �rst 
y
les and of the giant 
ompo-nent in the Erd�os-R�enyi graph model [8, 13℄, the enumeration of random forestsof unrooted trees [14℄, 
lustering formation in the 
onstru
tion of linear probinghash tables [10℄, the area under ex
ursions and the 
umulative storage 
ost ofdynami
ally varying sta
ks [15℄, the area of 
ertain polyominoes [7℄, path lengthin 
ombinatorial tree models [21℄, and (we 
onje
ture) the threshold phenomenainvolved in the 
elebrated random 2-SAT problem [4℄. We propose to elaborateon these 
onne
tions in future papers.Plan of the paper. Basi
s of maps are introdu
ed in Se
tion 1 where the Airydistribution is presented. The enumerative theory 
an be developed along twoparallel lines, one Lagrangean, the other based on singularity analysis. We �rstapproa
h the analysis of 
ore size via the Lagrangean framework and variationson the saddle point method: a �ne analysis of the geometry of asso
iated 
omplex
urves is shown to open a

ess to the size of the 
ore, with the Airy distributionarising from double or \nearby" saddles (Se
tion 2); a re�ned analysis basedon the method of 
oales
ent saddle points then enables us to quantify the dis-tribution of 
ore size over a wide range with pre
ise large deviation estimates(Se
tion 3). The method applies to about a dozen of types of planar maps, itprovides a pre
ise quanti�
ation of largest 
omponents, with 
onsequen
es onthe random generation of highly 
onne
ted planar graphs (Se
tion 4). Finally,we show that the very same Airy law is bound to o

ur in any instan
e of ageneral 
omposition s
heme of analyti
 
ombinatori
s (Se
tion 5).1 Basi
s of mapsA map is a planar graph given together with an embedding in the plane 
onsid-ered up to 
ontinuous deformations. Following Tutte, we 
onsider rooted maps,



that is, maps with an oriented edge 
alled the root|this simpli�es this anal-ysis without essentially a�e
ting statisti
al properties (see [17℄ and Se
tion 4).Generi
ally, we take M and C to be two 
lasses of maps, with Mn, Cn the sub-sets of elements of size n (typi
ally elements with n+1 edges). Here, C is alwaysa subset ofM that satis�es additional properties (e.g. higher 
onne
tivity). Theelements ofM are then 
alled the \basi
 maps" and the elements of C are 
alledthe \
ore-maps". We de�ne the 
ore-size of a map m 2 M as the size of thelargest C{
omponent of m that 
ontains the root of m. As a pilot example, weshall spe
ialize the basi
 maps Mn to be the 
lass of nonseparable maps (i.e.,2-
onne
ted loopless maps) with n+1 edges and Ck to be the set of 3-
onne
tedmaps with k + 1 edges.Our major obje
tive is to 
hara
terize the probabilisti
 properties of 
ore-sizeof a random element ofMn, that is, of a random map of size n, when all elementsare taken equally likely. Core-size then be
omes a random variable Xn de�nedon Mn. In essen
e, the pilot example thus deals with 3-
onne
tivity in random2-
onne
ted maps. The paradigm that we illustrate by a parti
ular example isin fa
t of 
onsiderable generality as 
an be seen from Se
tions 4, 5 below.The physi
s of maps. From earlier works [2, 11, 18℄, it is known that a randommap ofMn has with high probability a 
ore that is either \small" (roughly of sizek = O(1)) or \large" (being �(n)). The probability distribution Pr(Xn = k) thushas two distin
t modes. The small region (say k = o(n)) has been well quanti�edby previous authors, see [2, 11, 18℄: a fra
tion ps = 6581 of the probability mass is
on
entrated there. The large region is also known from these authors to haveprobability mass p` = 1 � ps = 1681 
on
entrated around �0n with �0 = 13 butthis region has been mu
h less explored as it poses spe
i�
 analyti
al diÆ
ulties.Our results pre
isely 
hara
terize what happens in terms of an Airy distribution.The Airy fun
tion Ai(z), as introdu
ed by the Royal Astronomer Sir GeorgeBidell Airy, is a solution of the equation y00 � zy = 0 that 
an be de�ned by avariety of integral or power series representations in
luding [23℄:Ai(z) = 12� Z +1�1 ei(zt+t3=3) dt = 1�32=3 1Xn=0 � ((n+ 1)=3)n! sin 2(n+ 1)�3 �31=3x�n:(1)Equipped with this de�nition, we present the main 
hara
ter of the paper.De�nition 1. The (standard) \map{Airy" distribution is the probability distri-bution whose density isA(x) = 2 exp��23x3��xAi(x2)�Ai0(x2)� :The \map{Airy" distribution of parameter 
 is de�ned by its density, 
A(
x).Note the nonobvious fa
t that the map{Airy distribution is a probability dis-tribution, i.e., RRA(x) dx = 1, whi
h 
an be 
he
ked by Mellin transform te
h-niques. An unusual feature is the fa
t that the tails are extremely asymmetri
:A(x) = O �jxj�5=2� ; as x! �1, and A(x) = O �x1=2 exp �� 43x3��, as x! +1:



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ai(x)

–4 –3 –2 –1 1 2
x

0

20

40

60

80

100

200 400 600 800 1000
20<k<1000Fig. 1. (i) The map{Airy distribution. (ii) Observed frequen
ies of 
ore-sizes k 2[20; 1000℄ in 100,000 random maps of size 2000, against predi
tions of Thms 3, 4.We shall �nd that the size of the 
ore (
onditioned upon the large region) is de-s
ribed asymptoti
ally by an Airy law of this type; see Figure 1.The 
ombinatori
s of maps. Let Mn and Ck be the 
ardinalities ofMn andCk. The generating fun
tions of M and C are respe
tively de�ned byM(z) := Xn>1Mnzn; and C(z) :=Xk>1Ckzk:(i) Root-fa
e de
omposition. As shown by Tutte, there results from a root-fa
ede
omposition and from the quadrati
 method [12, Se
. 2.9℄ that the generatingfun
tion of M(z) is Lagrangean, whi
h means that it 
an be parametrized by asystem of the formM(z) =  (L(z)) where L(z) = z�(L(z)); (2)for two power series  ; �, with L being determined impli
itly by �. For nonsep-arable maps, we have �(y) = (1+ y)3;  (y) = y(1� y): There results from theform (2) and from the Lagrange inversion theorem [12℄ an expli
it form for the
oeÆ
ients of M(z), namely,Mn � [zn℄M(z) = 1n [yn℄ 0(y)�(y)n; (3)where [zn℄f(z) denotes the 
oeÆ
ient of zn in the series expansion of f(z). Fornonseparable maps, this instantiates to Mn � [zn℄M(z) = 4(3n)!n!(2n+2)! :(ii) Substitution de
omposition. As shown again by Tutte, maps satisfy addi-tionally relations of the \substitution type": one has: M(z) = �z + 2M(z)21+M(z)� +C(M(z)); meaning that ea
h map (left part) either has no 
ore (right part, the�rst term) or is formed of a nondegenerate 
ore in whi
h maps are substituted(right part, the se
ond term). This equation e�e
tively gives a

ess to the exa
tenumeration of obje
ts of type C that are more \
omplex", i.e., more highly
onne
ted than the initial maps of M.



Our interest lies in the probability Pr(Xn = k) that a map of Mn hasa 
ore with k + 1 edges. Let Mn;k be the set of maps with this property; wede�ne the bivariate generating fun
tion M(z; u) =Pn;kMn;kukzn; withMn;k =
ard (Mn;k). Tutte proved the following re�nement: M(z; u) = C(uM(z)): Thisdetermines the probability distribution of the 
ore-size:Pr(Xn = k) = Ck [zn℄M(z)kMn ; [zn℄M(z)k = kn [yn�1℄y 0(y) (y)k�1�(y)n; (4)where the se
ond equality results from Lagrange inversion.All the involved generating fun
tions are algebrai
 fun
tions leading to 
om-pli
ated alternating binomial sums expressing Pr(Xn = k). The exponential
an
ellations involved are however not tra
table in this elementary way, and
omplex asymptoti
 methods must be resorted to.The asymptoti
s of maps. There are here two sides to the 
oin: one evokednow and explored further in Se
tion 5 relies on singularity analysis [9℄, a methodthat establishes a general 
orresponden
e between the expansion of a generatingfun
tion at a singularity and the asymptoti
 form of its 
oeÆ
ients; the otherdis
ussed in the next two se
tions makes use of the power forms provided by theLagrange inversion theorem that 
an be exploited asymptoti
ally by the saddlepoint method.An impli
itly de�ned fun
tion like L(z) in (2) has a singularity of the square-root type L(z) = � � 
(1� z=�)1=2+O(1� z=�); where the singularity � and thesingular value � are determined by the equations ��0(�) � �(�) = 0; � = ��(�) :This expansion yields the singular expansion of the generating fun
tion of maps,M(z) =  (�)� a(1� z=�) + b(1� z=�)3=2 +O((1� z=�)2) (5)(in all known map-related 
ases, one has  0(�) = 0 whi
h indu
es the singu-lar exponent of 3=2). A

ording to singularity analysis (or the Darboux-P�olyamethod), this last expansion entailsMn � 3b4p� ��nn5=2 ; � = 12 ; � = 427 ; M (nonsep:)n � p32p� �274 �n n�5=2 (6)Finally, this approa
h also yields by dire
t inversion the asymptoti
 number of
ore maps: C(z) has a singularity at  (�) and singular exponent 32 . We haveC(z) = 
0 � a0(1� z= (�)) + b0(1� z= (�))3=2 +O((1� z= (�))2); (7)Ck = [zk℄C(z) � 3b04p�  (�)�kk�5=2; C(3�
onn:)k � 8243p� 4kk�5=2 (8)The foregoing dis
ussion is then 
onveniently summarized by a statement that
onstitutes the starting point of our analysis.Proposition 1. The distribution of the size of the 
ore in nonseparable maps is
hara
terized by Eq. (4), where the 
ore map 
ounts Ck are determined asymptot-i
ally by (8). The basi
 maps in Mn are enumerated exa
tly by (3) and asymp-toti
ally by (6).



2 Two saddlesThe probability distribution of 
ore-size in maps is determined by Proposition 1,espe
ially by Equation (4). What is needed is a way to estimate [zn℄M(z)k. Theapproa
h starts from the 
ontour integral representation deriving from Cau
hy's
oeÆ
ient formula,[zn℄Mk(z) = kn 12i� Z� z( (z)k)0�(z)n dzzn+1 = kn 12i� Z� G(z) (z)k (�(z)=z)n dz(9)where � is a 
ontour en
ir
ling the origin anti
lo
kwise andG(z) =  0(z)= (z) =(1� 2z)=(z(1� z)).In simpler 
ases, integrals over 
omplex 
ontours involving large powers areamenable to the basi
 saddle point method. The idea 
onsists in deforming the
ontour � in the 
omplex plane, this, in order to have it 
ross a saddle point of theintegrand (i.e., a zero of the derivative) and to take advantage of 
on
entration ofthe integral near the saddle point. Then lo
al expansions are of the \exponentialquadrati
" type and the (real-variable) Lapla
e method permits one to estimatethe integral asymptoti
ally [5℄.For the problem at hand, there are two saddle points, given by the equation��z (k ln + n ln(�=z)) = 0:z+(n; k) = 12 and z�(n; k) = n� kn+ k :The basi
 saddle point method applies when these two points are distin
t, thatis, as long as k=n is \far away" from 13 . This 
orresponds to the situation alreadywell-known from the works of [2, 11, 18℄. The \interesting" region is however whenk = n=3 and when k is 
lose to n=3 in the s
ale of n2=3. In that 
ase, the basi
version of the saddle point method is no longer appli
able. This is pre
isely wherewe �t in: we prove that a detailed examination of the analyti
 geometry of thesaddle points in 
onjun
tion with suitable integration 
ontours \
aptures" themajor 
ontributions and leads to a pre
ise quanti�
ation of 
ore-size in randommaps.Distin
t saddles When k is far enough from n=3, one of the saddle pointsis nearer to the origin and predominates. In that 
ase, the basi
 method ap-plies using a 
ontour that is a 
ir
le 
entered at the origin, passing through thedominant saddle point. This 
orresponds to the already known results of [2, 11℄supplemented by [18℄.Theorem 1 (Tails and distin
t saddles [11℄). Let �(n) be an arbitrary fun
-tion with �(n) ! +1 and �(n) = o(n1=3). Then, the probability distribution ofthe 
ore of random element of Mn satis�esPr(Xn = k) � 32243p� � n5=2k3=2(n� 3k)5=2 ; uniformly for �(n)<k< n3�n2=3�(n)Pr(Xn = k) = O �exp(�n(k=n� 1=3)3)� ; uniformly for k > n3 + n2=3�(n):



Proof (Sket
h). The left tail (n < 3k) 
orresponds to the saddle point z+ = 12 that isdominant (i.e., nearer to the origin and providing the major asymptoti
 
ontribution).The right tail (n > 3k) has z� = (n � k)=(n + k) dominating. In ea
h 
ase, the basi
saddle point method applies.A double saddle Here we atta
k dire
tly the analysis of the \
enter" of thedistribution, that is, the 
ase where n = 3k exa
tly. Then, the saddle pointsbe
ome equal: z� = z+. This 
ase serves to introdu
e with minimal apparatusthe enhan
ements that need to be brought to the basi
 saddle point method.Observe that the 
omplete 
on
uen
e of the saddle points pre
ludes the use of\exponential-quadrati
" approximations and the problem be
omes of an \expo-nential 
ubi
" type. (See also [2℄ for a partial dis
ussion of this 
ase based on amethod of Van der Corput.)Theorem 2 (Central part and a double saddle). The probability distribu-tion of the 
ore of random element of Mn satis�es, when n = 3k,Pr(X3k = k) = 427 � (2=3)31=6� k�2=3 �1 +O((ln(k))4k�1=3)� ; 427 � (2=3)31=6� � 0:0531:Proof. When n = 3k, equation (9) be
omes[z3k℄Mk(z) = 16i� Z� G(z)P (z)kdz; (10)where P (z) :=  �3=z3 = (1 � z)(1 + z)9=z2 and the \kernel" ln(P ) (together withP; P k) now has a double saddle point at � = z� = z+ = 12 ; sometimes 
alled a\monkey saddle", viz., a saddle with pla
es for two legs and a tail. The idea 
onsistsin 
hoosing a 
ontour that is no longer a 
ir
le 
entered at the origin, but, rather,approa
hes the real axis at an angle. Spe
i�
ally, the integration path � 
onsists ofthe following: the part �0 of a 
ir
le 
entered at 0 from whi
h a small ar
 is taken out,joining with two (small) segments �1; �2 of length Æ that interse
t at 12 at an angle of�2�=3.We shall adopt a value of Æ satisfying two 
on
i
ting requirements,nÆ3 !1; nÆ4 ! 0; spe
i�
ally Æ = (lnn)n�1=3: (11)The kernel ln(P ) has a double saddle point in � , meaning that its lo
al expansion is ofthe 
ubi
 type:ln(P (z)) = ln(P (� ))� d(z � � )3 +O((z � � )4); d = 649 :The geometry of the level 
urves of the kernel shows that the 
ontribution E0 along�0 to the integral in (10) is bounded by a 
onstant times the value of P (z)k at theendpoints of �0. This 
ontribution then satis�esE0 � Z�0G(z) exp[k ln(P (z))℄ dz = O(P (� )k exp(�kdÆ3));whi
h, given the 
onstraints on Æ (
ondition nÆ3 !1 in (11)) is exponentially small.The 
ontribution E1;2 along �1 [�2 to the integral in (10) provides the dominant
ontribution and is estimated next by a lo
al analysis of P k for values of z near � .Set u = z � � . The 
ondition nÆ4 ! 0 in (11) implies that terms of order 4 and



higher do not matter asymptoti
ally, and a simple 
al
ulation, using the fa
t thatG(� + u) = �8u+O(u2), yieldsE1;2 � Z�1[�2G(z) exp[k ln(P (z))℄ dz = �8P (� )k Z�1[�2u exp ��kdu3� (1+O(kÆ4)) du :The integral along �1 [ �2 
an be extended to two full half lines of angle �2�=3emanating from the origin, this at the expense of introdu
ing only exponentially smallerror terms (sin
e nÆ3 ! 1). The res
aling v = u(kd)1=3 exp(2i�=3) on �1 and v =u(kd)1=3 exp(�2i�=3) on �2 then shows that the 
ompleted integral equals(kd)�2=3(e4i�=3 � e�4i�=3)Z +10 v exp(�v3)dv = �(kd)�2=3 ip3� (2=3);where the evaluation results from a 
ubi
 
hange of variable. In summary, we havefound [zn℄Mk(z) = 16i� (E0 + E1;2) = 35=612� P (� )kk2=3 � (2=3) �1 +O(kÆ4)� ;whi
h, given our 
hoi
e of Æ, is equivalent to the statement.A similar reasoning proves that the estimate remains valid for n = 3k + ewith e = 1 or e = 2, and more generally with any e satisfying e = O(1).Nearby saddles When k is 
lose to n=3, we 
hoose in the representation (9)an integration 
ontour � that 
at
hes simultaneously the 
ontributions of thetwo saddle points z� and z+. For this purpose, we adopt a 
ontour that goesthrough the mid-point, � := (z� + z+)=2; and, like in the previous 
ase, meetsthe positive real line at an angle of �2�=3. Lo
al estimates of the integrand, on
esuitably normalized, lead to a 
omplex integral representation that eventuallyredu
es to Airy fun
tions.Theorem 3 (Lo
al limit law and nearby saddles). The probability distri-bution Pr(Xn = k) admits a lo
al limit law of the map{Airy type: for any realnumbers a; b, one hassupa�k�n=3n2=3 �b ����n2=3 Pr(Xn = k)� 1681 34=34 A�34=34 k � n=3n2=3 �����! 0:Proof. We set k = n=3 + xn2=3 where x lies in a �nite interval of the real line, andde�ne H := ln( k=n�=z) (this repla
es ln(P ) in the previous argument). The startingpoint is again the integral representation (9) taken along a 
ontour � that 
omprises�0, a 
ir
le minus a small ar
, together with two 
onne
ting small segments �1; �2of length Æ, now meeting at �, where Æ is 
hosen a

ording to the requirement (11).The ar
 �0 lies below the level 
urve of �, and the 
orresponding 
ontribution E0 isestimated to be exponentially negligible.We turn next to the 
ontribution E1;2 arising from �1 [�2. The distan
e betweenthe two saddle points z�; z+ is O(n�1=3) whi
h represents the \s
ale" of the problem.One thus sets z = � + vn�1=3: Lo
al expansions of H and G are then best 
arried outwith the help (suitably monitored!) of a 
omputer algebra system like Maple. The 
om-putation relies on the assumption x = O(1), but some 
are in performing expansionsis required be
ause of the relations (11). We �nd eventuallyE1;2 =�274 �n4�kn�2=3 exp��2732x3�Z�01[�02(9x=2�8v) exp��6427v3� 94x2v�(1+�) dv;



where the error term � satis�es � = O(Æ4n + n�1=12) and the segments �01; �02 ea
hhave length Æn1=3 tending to in�nity a

ording to our assumptions. Perform �nallythe 
hange of variable v = � 649 ��1=3 t and 
omplete the integration path to e�2i�=31:the integral then redu
es to Ai(x);Ai0(x) through 
ontour integrals representationsequivalent to (1) (by Cau
hy's theorem, with integration path e�2i�=31 
hanged toe�i�=21). Thus, for x = O(1) and k = n=3 + xn2=3, the main estimate found is[zn℄Mk(z) = kn4�k �274 �n n�2=3 34=34 A�34=34 x� (1 + o(1));where A(x) is the map{Airy density fun
tion. This form is equivalent to the statement.The argument also gives a speed of 
onvergen
e to the limit law of O(n�1=12+o(1)).3 Coales
ing saddlesIn the present se
tion, we provide a uniform des
ription of the transition regionsaround n=3, allowing k to range anywhere o(n) and n� o(n), pre
isely, between�(n) and and n � �(n), for any �(n) = o(n) with �(n) ! 1. For the study ofthis wide region in the s
ale of n, we setk = �0n+ �n = (1=3 + �)n;with estimates valid uniformly for � in any 
ompa
t subinterval of ℄� 13 ; 23 [.Theorem 4 (Large range and 
oales
ent saddles). Let k = n(1=3 + �),and 
; a1; a4 be the fun
tions of � given below. Let �(n) be any fun
tion with�(n) = o(n) and �(n)! +1. Then, with � = n1=3
, Pr(Xn = n=3+�n) equals1681(1 + 3�)3=2n2=3 �a12 A(�) + a4n2=3 exp��23�3�Ai(�2)� (1 +O (1=n)) ; (12)where the error term is uniform for � in any 
ompa
t subinterval of ℄ � 13 ; 23 [and, up to repla
ing O(1=n) by O(�(n)�1), it is also uniform for any k > �(n).With L(x) = x lnx, the quantities 
, a1, and a4 are:
 = �2L(1 + 3�=4)� 12L(1� 3�=2)� 14L(1 + 3�)� 94� ln 2�1=3 (13)a12 = 98 � �=
(1 + 3�=4)(1� 3�=2)(1 + 3�)�1=2 a4 = 49�2r
� � a14
2 (14)The estimates involve Airy fun
tions 
omposed with the quantity � that dependsnonlinearly on �. In parti
ular, formula (12) extends the estimates of Se
tion 2when k = n=3 + xn2=3, sin
e in that 
ase � / x while � ! 0 and the followingapproximations apply:
 = 34=34 � +O(�2); a12 = 34=34 +O(�); a4 = �156432=3 +O(�); � ! 0:



(The resulting speed of 
onvergen
e to the Airy law appears to be O(n�2=3).)As soon as k leaves the n=3� O(n2=3) region, the two Airy terms in (12) startinterfering and large deviations are then pre
isely quanti�ed by (12). When kdrifts away to the left of n=3 (and �! �1), basi
 asymptoti
s of Airy fun
tionsshow that the formula simpli�es to agree with the results of Se
tion 2.Proof. The transition phenomenon to be des
ribed is the 
oales
en
e of two simplesaddle points into a double one; see [3, 24℄. The simplest o

urren
e of the phenomenonappears in the integration of exp[nf(t; 
)℄ withf 0(t; 
) = t2 � 
2:Indeed in this 
ase there are two saddle points �
, 
oales
ing into a double saddlepoint as 
 ! 0. The strategy 
onsists in performing a 
hange of variable in order toredu
e the original problem (9) to this simpler 
ase. Denote the kernel of the integralas H(z; �) = ln( k=n�=z) with k = (1=3+�n) and the dependen
y on � made expli
it.The integral in (9) is I(n; �) = Z� G(z) exp[nH(z; �)℄dz;and we seek a 
hange of variable of the formH(z; �) = � �t3=3� 
2t�+ r = f(t; 
): (15)It turns out that, taking 
 = 
(�) to be the real 
ubi
 root of 
3 = 34 [H(z+; �) �H(z�; �)℄; (the relation is expressed by (13)) and r = r(�) to ber = 12 [H(z+; �) +H(z�; �)℄ = H(z+; �)� 23
3 = ln( (� )k=n=�)� 23
3; (16)there exists a 
onformal map z ! t from the dis
 D of diameter [ 14 ; 34 ℄ to a domainD� satisfying (15) and mapping z� onto �
. For simpli
ity, we restri
t � to [� 14 ; 14 ℄.The domain D� 
ontains the dis
 D0 of diameter [� 14 ; 14 ℄. Let us denote by z(t) theinverse mapping and G0(t; �) = G(z(t)) _z(t) where _z(t) = dzdt . Remark that G0(t; �) isregular in D0. To guide his intuition, the reader may think of the map z ! t as a slightdeformation of the map z ! 2(z � r).Let us now pro
eed with the integral. As is usual with saddle point integrals we�rst lo
alise the integral in D, negle
ting the parts of the path down in valleys,I(n; �) = Z� G(z) exp[nH(z; �)℄ dz = Z�\D G(z) exp[nH(z; �)℄ dz + E1(n; �);where E1(n; �) is exponentially negligible when n!1, uniformly in �. Inside the dis
D we apply the 
hange of variables (15), then restri
t attention to the dis
 D0, anddeform the 
ontour onto the relevant part of �1 = fte� 2i�3 ; t � 0g:I(n; �) = Z��\D� G(z(t)) exp[nf(t; 
)℄ _z(t)dt+ E1(n; �)= Z�1\D0 G0(t; �) exp[nf(t; 
)℄ dt+ E2(n; �):In order to evaluate this integral one needs to dispose of the modulation fa
tor G0(t; �).This 
an be done via an integration by part: A lo
al expansion near 
 yieldsG0(t; �) = (
 � t)a1 + (t2 � 
2)H0(t; �);



where H0(t; �) is regular in D0, and a1 is given by (14). The integral I(n; �) is thusI(n; �) = exp(nr) Z�1\D0(
 � t)a1 exp ��n �t3=3� 
2t�� dt+R0(n; �);where after integration by part, and up to another exponentially negligible term,R0(n; �) = exp(nr)n Z�1\D0 � ddtH0(t; �)� exp��n� t33 � 
2t�� dt+ E3(n; �):The integration by part has redu
ed the order of magnitude by a fa
tor n, but R0(n; �)is amenable to the same treatment as I(n; �). We shall 
ontent ourselves with the nextterms: let ddtH0(t; �) = a2
 + a3t+ (t2 � 
2)H1(t; �); with H1(t; �) regular in D0, a2,a3 fun
tions of �, so that we haveI(n; �) = exp(nr)Z�1�
 �a1+ a2n �� t�a1� a3n �� exp��n� t33 � 
2t�� dt+R1(n; �):where the integral has been extended to the whole of �1 at the expense of yet anotherexponentially negligible term. The error term isR1(n; �) = exp(nr)n2 Z�1\D0 � ddtH1(t; �)� exp��n� t33 � 
2t�� dt+ E4(n; �):In terms of the Airy fun
tion, we thus haveI(n; �) = 2i� exp(nr)n2=3 �
n1=3�a1+ a2n �Ai(n2=3
2)� �a1� a3n �Ai0(n2=3
2)�+R1(n; �);and the error term R1(n; �) 
an be estimated: there exist d0 and d1 positive su
h thatjR1(n; �)j � exp(nr)n2 � d0n1=3 jAi(n2=3
2)j+ d1n2=3 jAi0(n2=3
2)j� :The theorem follows from formulae (6), (8), (16) and the de�nition of the map{Airylaw, upon setting a4 = 
(a2 + a3).4 Appli
ations to maps and random samplingThe results obtained in the parti
ular 
ase of 3-
onne
ted 
ores of nonseparablemaps are instan
es of a very general pattern in the physi
s of random maps.Indeed all families in the table below obey the Lagrangean framework and areamenable to the saddle point methods developed in previous se
tions.Table 1. A sele
tion of 
omposition s
hemes (X an edge, L;D auxiliary families).maps (M), Mn 
ores (C), s
heme �0 
general, n edges nonseparable, M' C[XM2℄ 1/3 3=42=3general, n edges bridgeless, M' C[X (XM)�℄ 4/5 (5=3)2=3=4general, n edges loopless, M' L+ C[X ((XM)�)2℄ 2/3 3=2loopless , n edges simple, M' C[XM℄ 2/3 34=3=4bipartite, n edges bip. simples, M' C[XM℄ 5/9 38=3=20bipartite, n edges bip. nonsep., M' C[XM2℄ 5/13 (13=6)5=3 � 3=10bipartite, n edges bip. bridgeless, M' C[X (XM)�℄ 3/5 (15=2)5=3=18nonsep., n edges simple nonsep., M' C[XM℄ 4/5 155=3=36nonsep., n+ 1 edges 3-
onne
ted, M' D + C[M℄ 1/3 34=3=4
ubi
 nonsep., n+ 2 fa
es 
ubi
 3-
onn., M' C[X (1 +M)3℄ 1/2 (3=2)1=3
ubi
 3-
onn., n+ 2 fa
es 
ubi
 4-
onn., M'M � C[XM2℄ 1/2 62=3=3



Theorem 5. Consider any s
heme of Table 1 with parameters �0 and 
. Theprobability Pr(Xn = k) that a map of size n has a 
ore of size k has a lo
al limitlaw of the map{Airy type with 
entering 
onstant �0 and s
ale parameter 
.The te
hnique of [11℄ relates the size of the 
ore to the size of the largest
omponent in random maps. Also, sin
e maps have almost surely no symmetries[17℄, the analysis extends to unrooted maps. As a 
onsequen
e:Theorem 6. (i) Consider any s
heme of Table 1 with parameters �0 and 
.Let X�n be the size of the largest 
omponent of in a random map of size n withuniform distribution. ThenPr�X�n = b�0n+ xn2=3
� = 
A(
x)n2=3 (1 +O(n�2=3));uniformly for x in any bounded interval. Furthermore, if x is restri
ted to theshorter range jxj < �(n)�1 for a �xed fun
tion �(n) going to in�nity with n,then Pr�X�n = b�0n+ xn2=3
� = 
n2=3 31=6� (2=3)� (1 +O(�(n)�1)):(ii) The same results hold for random unrooted maps.Theorem 6 extends results of Bender, Gao, Ri
hmond, and Wormald [2, 11℄who proved that X�n lies in the range �0n � �(n)n2=3 with probability tendingto 1, where �(n) is any fun
tion going to in�nity with n.Random sampling algorithms for various families of planar maps were de-s
ribed in [19℄. For general, nonseparable, bipartite, and 
ubi
 nonseparablemaps, an algorithm Map is given there that takes an integer n and outputsin linear time a map of size n uniformly at random. For the other families ofTable 1, a probabilisti
 algorithm Core des
ribed below is used.Probabilisti
 algorithm Core(k) with parameter f(k)1. use Map(n) to generate a random map M 2 M of size n = f(k);2. extra
t the largest 
omponent C of M with respe
t to the s
heme;3. if C does not have size k, then go ba
k to step 1;4. output C.Safe for a set of measure that is exponentially small, this algorithm produ
es auniform element of Ck. The expe
ted number of loops made by Core is exa
tly`n = Pr(Xn = k)�1. The results of the paper enable us to pre
isely analyse thisand a number of related algorithms of [18, 19℄. We 
ite just here:Theorem 7. In all extra
tion/reje
tion algorithms of [19℄, the 
hoi
e f(k) =n=�0 yields an algorithm whose average number of iterations satis�es`n � n2=3=(A(0)
):Let x0 � 0:44322 be the position of the peak of the map-Airy density fun
-tion ((1 � 4x30)Ai(x20) + 4x20Ai0(x20) = 0). The optimal 
hoi
e f(k) = k=�0 �x0�0
(k=�0)2=3 redu
es the expe
ted number of loops by 1�A(0)=A(x0) � 30%.



This proves that the extra
tion/reje
tion algorithms have overall 
omplexityO(k5=3), as do variant algorithms of [18, 19℄ that are uniform over all Ck. The
omplexity be
omes O(k) if some small toleran
e is allowed on the size of themultiply 
onne
ted map generated. Theorems of the paper enable us to quantifypre
isely various trade-o�s and �ne-tune algorithms (details in the full paper).As exempli�ed by Fig. 1(ii), the predi
tions �t ni
ely with experimental results.5 Composition of SingularitiesMap enumeration 
an be approa
hed through the Lagrangean framework andthe saddle point analysis developed so far takes o� from there. An alterna-tive approa
h to the problem relies on singularity analysis [9℄, as introdu
ed inSe
tion 1. The results of this se
tion 
ontribute to the general 
lassi�
ation of
ombinatorial s
hemas a

ording to the nature of their singularities [20℄.First, a de�nition. Let M and C be two generating fun
tions with dominantsingularities at � and �, su
h thatM(z) = ��a(1�z=�)+b(1�z=�)3=2+O((1�z=�)2); and C(z) = 
0�a0(1�z=�)+b(1�z=�)3=2+O((1�z=�)2), in an indenteddomain extending beyond the 
ir
le of 
onvergen
e (see [9℄). Then the bivariatesubstitution s
heme C(uM(z)) is said to be a 
riti
al 
omposition s
heme oftype (3=2; 3=2). The fun
tional 
omposition C(uM(z)) des
ribes the size of theC 
omponent in a 
ombinatorial substitution C[M℄. The s
heme is 
alled 
riti
alsin
e the singular value of the inner fun
tion (M) equals the singularity of theouter fun
tion (C). It will be re
ognized that Tutte's 
onstru
tion is an instan
e(with � repla
ing the map spe
i�
  (�) of formulae (5) and (7)). S
hemes ofthis broad form have been only s
antily analysed, a notable ex
eption being the
riti
al 
omposition s
heme of type (�1; 3=2) that shows up in ordered forestsand in random mappings (fun
tional graphs): in that 
ase, the density is knownto be of the Rayleigh type [6, 20℄. The results of this se
tion somehow re
y
lein a di�erent realm the intuition gathered by the method of 
oales
ing saddles,although the te
hni
al developments are a bit di�erent.Theorem 8. (i) For k = �n+�(n), with 0 6 � < �0 = �a and �(n) = o(n), theprobability distribution of the size Xn of the C{
omponent of random element ofC[M℄ of size n satis�esPr(Xn = k) � b0�p� ��3=2(1� �=�0)�5=2 n�3=2 for � > 0;Pr(Xn = k) � b0�p� �(n)�3=2 for � = 0 and �(n)! +1 :(ii) For k = �0n+ xn2=3, �0 = �=a, x = o(n1=3), an Airy-map law holds:n2=3 Pr(Xn = �0n+ xn2=3) � b0�3=20 b
A(
x) where 
 = � b3a�2=3 =�0.The proof relies on a modi�
ation of the Hankel 
ontour used in 
lassi
al singu-larity analysis together with a di�erent s
aling. It will be developed in the fullpaper. The theorem is a 
ompanion to Theorems 1, 2, 3, 4 that 
an also be usedto analyse forests of unrooted trees [14℄ in the 
riti
al region, a problem itselfrelevant to the emergen
e of the giant 
omponent in random graphs [13, 14℄.
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