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Generating Fun
tions For Kernels of Digraphs(Enumeration & Asymptoti
s for Nim Games)Cyril Banderier, Jean-Marie Le Bars, and Vlady RavelomananaAbstra
t. In this arti
le, we study dire
ted graphs (digraphs) with a 
oloring 
onstraint dueto Von Neumann and related to Nim-type games. This is equivalent to the notion of kernels ofdigraphs, whi
h appears in numerous �elds of resear
h su
h as game theory, 
omplexity theory,arti�
ial intelligen
e (default logi
, argumentation in multi-agent systems), 0-1 laws in monadi
se
ond order logi
, 
ombinatori
s (perfe
t graphs)... Kernels of digraphs lead to numerous diÆ-
ult questions (in the sense of NP-
ompleteness, #P-
ompleteness). However, we show here thatit is possible to use a generating fun
tion approa
h to get new informations: we use te
hniqueof symboli
 and analyti
 
ombinatori
s (generating fun
tions and their singularities) in order toget exa
t and asymptoti
 results, e.g. for the existen
e of a kernel in a 
ir
uit or in a uni
ir
uitdigraph. This is a �rst step toward a generatingfun
tionology treatment of kernels, while using,e.g., an approa
h \�a la Wright". Our method 
ould be applied to more general \lo
al 
oloring
onstraints" in de
omposable 
ombinatorial stru
tures.R�esum�e. Nous �etudions dans 
et arti
le les graphes dirig�es (digraphes) ave
 une 
ontrainte de
oloriage introduite par Von Neumann et reli�ee aux jeux de type Nim. Elle �equivaut �a la no-tion de noyaux de digraphes, qui apparâ�t dans de nombreux domaines, tels la th�eorie des jeux,la th�eorie de la 
omplexit�e, l'intelligen
e arti�
ielle (logique des d�efauts, argumentation dansles syst�emes multi-agents), les lois 0-1 en logique monadique du se
ond ordre, la 
ombinatoire(graphes parfaits)... Les noyaux des digraphes posent de nombreuses questions diÆ
iles (au sensde la NP-
ompl�etude ou de la #P-
ompl�etude). Cependant, nous montrons i
i qu'il est possiblede re
ourir aux s�eries g�en�eratri
es a�n d'obtenir de nouvelles informations : nous utilisons leste
hniques de la 
ombinatoire symbolique et analytique (�etude des singularit�es d'une s�erie) a�nd'obtenir des r�esultats exa
ts ou asymptotiques, par exemple pour l'existen
e d'un noyau dansun digraphe uni
ir
uit. Il s'agit l�a de la premi�ere �etape vers une s�erie g�en�eratrilogie des noyaux.Notre m�ethode peut être appliqu�ee plus g�en�eralement �a des \
ontraintes lo
ales" de 
oloriagedans des stru
tures 
ombinatoires d�e
omposables.1. Introdu
tionLet V and E be the set of verti
es and dire
ted edges (also 
alled ar
s) of a dire
ted graph Dwithout loops or multiar
s (we 
all su
h graphs digraphs hereafter). A kernel of D is a nonemptysubset K of V , su
h that for any a; b 2 K, the edge (a; b) does not belong to E, and for any vertexoutside the kernel (a 62 K), there is a vertex in the kernel (b 2 K), su
h that the edge (a; b) belongsto E. In other words, K is a nonempty independent and dominating set of verti
es in D [2℄. Notevery digraph has a kernel and if a digraph has a kernel, this kernel is not ne
essarily unique. Thenotion of kernel allows elegant interpretations in various 
ontexts, sin
e it is related to other well-known 
on
epts from graph theory and 
omplexity theory. In game theory the existen
e of a kernel
orresponds to a winning strategy in two players for famous Nim-type games (
f. [3, 16, 17, 31℄).Imagine that two players A and B play the following game on D in whi
h they move a tokenea
h in turn: A starts the game by 
hoosing an initial vertex v0 2 V and then makes a move toa vertex v1. A move 
onsists in taking the token from the present position vi and pla
ing it on a
hild of vi, i.e. a vertex vi+1 su
h that (vi; vi+1) 2 E. B makes a move from v1 to v2 and givesthe hand to A, whi
h has now to play from v2, and so on. The �rst player unable to move losesKey words and phrases. generating fun
tions, analyti
 
ombinatori
s, kernels of graphs, Nim games.Corresponding author: Cyril.Banderier at lipn.univ-paris13.fr.1



2 CYRIL BANDERIER, JEAN-MARIE LE BARS, AND VLADY RAVELOMANANAthe game. One of the two players has a winning strategy (as this game is �nite in a digraph Dwithout 
ir
uit, for 
ir
uits one extends the rules by saying that the game is lost for the playerwho replays a position previously rea
hed). Von Neumann and Morgenstern [31℄ proved that anydire
ted a
y
li
 graph has a unique kernel, whi
h is the set of winning positions for A (A alwaysfor
es B to play outside the kernel, until B 
annot play anymore). Ri
hardson [27℄ proved laterthat every digraph without odd 
ir
uit has a kernel [7, 29℄. Berge wrote a 
hapter on kernelsin [2℄. Furthermore, there is a strong 
onne
tion between perfe
t graphs and kernels (see the Bergeand Du
het survey [1℄). Some natural variants of this property are studied in various logi
 forIntelligen
e Arti�
ial, some of them are de�nable in default logi
 [8℄ and used for argumentationin multi-agents systems, kernels appear there as sets of 
oherent arguments [6, 12℄.Fernandez de la Vega [13℄ and Tomes
u [30℄ proved independently that dense random digraphswith n verti
es and m = �(n2) edges, have asymptoti
ally almost surely a kernel. In addition,they get the few possible sizes of a kernel and a pre
ise estimation of the numbers of kernels.Few years ago a new interest for these studies arises by their appli
ations in �nite modeltheory. Indeed variants of kernel are the best properties to provide 
ounterexamples of 0-1 laws infragments of monadi
 se
ond-order logi
 [21, 22℄. Goranko and Kapron showed in [19℄ that su
ha variant is expressible in modal logi
 over almost all �nite frames for frame satis�ability; re
entlyLe Bars proved in [23℄ that the 0-1 law fails for this logi
.The existen
e of a kernel in a digraph has been shown NP-
omplete, even if one restri
ts thisquestion to planar graphs with in- and out-degree � 2 and degree � 3 [9, 11, 15℄. It is somehowrelated to �nding a maximum 
lique in graphs [4, 21℄, whi
h is known to be diÆ
ult for randomdense graphs.In this arti
le, we use some generating fun
tion te
hniques to give some new results on Nim-typegames played on dire
ted graphs (or, equivalently, some new informations on kernel of digraphs).More pre
isely, we deal with a family of planar digraphs with at most one 
ir
uit or one 
y
le and wegive enumerative (Theorems 4.1, 4.2, 4.3, 4.4 in Se
tion 4) and asymptoti
s results (Theorems 5.1,5.2, 5.3, 5.4 in Se
tion 5) on the size of the kernel, the probability of winning on trees for the �rstplayer... 2. De�nitionsWe give below more pre
ise de�nitions, readers familiar with digraphs 
an skip them.Let D = (V;E) be a digraph. For ea
h v 2 V , let v+ = fw 2 V=(v; w) 2 Eg and v� = fw 2V=(w; v) 2 Eg, jv+j is the out degree of v and jv�j is the in degree of v.A vertex with an in degree of 0 is 
alled a sour
e (sin
e one 
an only leave it) and a vertexwith an out degree of 0 is 
alled a sink (sin
e one 
annot leave it). Let U � V , U+ = [v2Uv+ andU� = [v2Uv�, we denote by D(U) the subgraph indu
ed by the verti
es of U .There is a path from vertex v to w means that there exists a sequen
e (v1; : : : ; vk) su
h thatv1 = v, vk = w and vi 2 v+i+1 [ v�i+1, for i = 1 : : : k � 1. There is a dire
ted path from vertex vto w means that there exists a sequen
e (v1; : : : ; vk) su
h that v1 = v, vk = w and vi 2 v+i+1, fori = 1 : : : k � 1.A 
y
le is a path (v1; : : : ; vk) su
h that v1 = vk. A 
ir
uit is a dire
ted path (v1; : : : ; vk) su
hthat v1 = vk.IfD 
ontains a dire
ted path from vertex v to w then v is an an
estor of w and w is a des
endantof v. If this dire
ted path is of length 1, then the an
estor v of w is also 
alled a parent of w, andv a 
hild of w.D is strongly 
onne
ted if for ea
h pair of verti
es, ea
h one is an an
estor of the other. D(U)is a strongly 
onne
ted 
omponent of D if it is a maximal strongly 
onne
ted subgraph of D.U is an independent set when U \ U+ = ; and a dominating set when v+ \ U 6= ; for anyv 2 V n U . U is a kernel if it is an independent dominating set.D is a DAG if it is a dire
ted digraph without 
ir
uit (the terminology \dire
ted a
y
li
 graph"being popular, we use the a
ronym DAG although it should stands for \dire
ted a
ir
uit graph",a

ording to the above de�nitions of 
y
les and 
ir
uits).



GENERATING FUNCTIONS FOR KERNELS OF DIGRAPHS 33. How to �nd the kernel of a digraphConsider digraphs satisfying the following rules:� ea
h vertex is 
olored either in red or in green,� ea
h green vertex has at least a red 
hild,� no red vertex has a red 
hild.It is immediate to see that a digraph satisfying su
h 
oloring 
onstraints possesses a kernel, whi
his exa
tly the set of its red verti
es. It is now easy to see, e.g., that the 
ir
uit of length 3 has nokernel, that the 
ir
uit of length 4 has 2 kernels, that any DAG has exa
tly one kernel. For this lastpoint, assume that D is a DAG (dire
ted a
ir
uit graph). Algorithm 1 (below) returns its uniquekernel. It begins to 
olor the sinks in red and then goes up toward sour
es, as it is deterministi
and as it 
olors at least a new vertex at ea
h iteration, this proves that ea
h DAG has a singlekernel. Su
h an algorithm was already 
onsidered by Zermelo while studying 
hessgame.Algorithm 1 The kernel of a DAGInput: a DAG D = (V;E), Non
olored= V (i.e. no vertex is 
olored for yet)Output: the DAG, with all its verti
es 
olored, the red verti
es being its kernelwhile it remains some non 
olored verti
es (Non
olored 6= ;) dofor all v 2 Non
olored doif v is a sink or if all the 
hildren of v are green then
olor v in red
olor all the parents of v in greenremove the 
olored verti
es from Non
oloredend ifend forend whileFor sure, it is possible to improve this algorithm by using the poset stru
ture of a DAG, andthus repla
ing the \for all v 2 Non
olored" line by something like \for all v 2 To
olornow" whereTo
olornow is a set of 
andidates mu
h smaller than Non
olored.More generally, in order to 
olor a digraph whi
h is not a DAG, simply split it in p 
omponentswhi
h are DAGs. Then, apply the above algorithm on ea
h of these DAGs (ex
epted the 
utpoints that you arbitrarily �x to be red or green). It �nally remains to 
he
k the global 
oheren
eof these 
olorings. As one has p 
utting points (whi
h 
an also be seen as p bran
hing points in aba
ktra
king version of this algorithm), this leads to at most 2p kernels. This also suggests whythis problem is NP: for large (dense) graph, one should need to 
ut at least p � n points, whi
hleads to a 2n 
omplexity (lower bound).
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���Figure 1. The �rst digraph is a well-
olored DAG (it has several 
y
les, but no
ir
uit). The se
ond digraph is a well-
olored digraph (it is not a DAG, as it
ontains one 
ir
uit). The third digraph is a DAG, but is not well 
olored (thetop green vertex misses a red 
hild). [For people who are reading a bla
k & whiteversion of this arti
le, red verti
es are ful�lled and green verti
es are empty 
ir
les.℄



4 CYRIL BANDERIER, JEAN-MARIE LE BARS, AND VLADY RAVELOMANANA4. Generating fun
tions of well-
olored uni
ir
uit digraphsThere exists in the literature some noteworthy results on digraphs using generating fun
tions(related e.g. to EGF of a
y
li
 digraphs [18, 28℄, Cayley graphs [26℄, (0,1) matri
es [25℄, Erd}os{R�enyi random digraph model [24℄), but as fas as we know we give here the �rst example ofappli
ation to the kernel problem.The 
oloring 
onstraints mentioned in Se
tion 3 are \lo
al": they are de�ned only in fun
tionof ea
h vertex and its neighbors. One ni
e 
onsequen
e of this \lo
al" viewpoint of kernels is that itopens up a whole range of possibilities for a kind of 
ontext-free grammar approa
h. Indeed if one
onsiders rooted labeled dire
ted trees that are well-
olored (i.e. whi
h possesses a kernel), one 
andes
ribe/enumerate them with the help of the �ve following families of 
ombinatorial stru
tures(all of them being rooted labeled dire
ted trees):� T : all the trees with the 
oloring 
onstraint� T "r : well-
olored trees with a red root (with an additional out-edge)� T #r : well-
olored trees with a red root (with an additional in-edge)� T "g : well-
olored trees with a green root (with an additional out-edge)� T #g : well-
olored trees with a green root (with an additional in-edge)� T "gr : well-
olored trees with a green root (with an additional out-edge whi
h has to beatta
hed to a red vertex)Those families are related by the following rules:8>>>>>>>><>>>>>>>>:
T = T "g [ T "rT "g = g" � Set�1(T "r )� Set(T #r [ T #g [ T "g )T #g = g# � Set�1(T "r )� Set(T #r [ T #g [ T "g )T "r = r" � Set(T #g [ T "gr )T #r = r# � Set(T #g [ T "gr )T "gr = g" � Set(T "r [ T #r [ T #g [ T "g )The Set operator re
e
ts the fa
t that one 
onsiders non planar trees, i.e. the relative order of thesubtrees atta
hed to a given vertex does not matter. The notation Set�1 means one 
onsiders nonempty set only.
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2 1Figure 2. A tree 2 T #g of size 3 and all its possible labellings. T #g stands fordire
ted trees with a green root with an additional in-edge on this root.As we are dealing with labeled obje
ts (we refer to Figure 2 for the di�erent labellings of arooted dire
ted tree), it is more 
onvenient to use exponential generating fun
tions, the aboverules are then translated (see e.g. [20, 14℄ for a general presentation of this theory of \graphi
alenumeration/symboli
 
ombinatori
s" ) into the following set of fun
tional equations (where zmarks the verti
es):8><>:T (z) = T "g (z) + T "r (z) ;T "g (z) = T #g (z) = z(exp(T "r (z))� 1) exp(T #r (z) + T #g (z) + T "g (z)) ;T "r (z) = T #r (z) = z exp(T #g (z) + T "gr (z)) :Note that T "gr = T as one has the trivial bije
tion \T "gr trees with a root without red 
hild"= \T "r trees" and \T "gr trees with a root with at least a red 
hild" = \T "g trees". De�ne nowTg(z) := T "g (z) and Tr(z) := T "r (z), the above system simpli�es to:



GENERATING FUNCTIONS FOR KERNELS OF DIGRAPHS 58><>:T (z) = Tg(z) + Tr(z) = T "gr(z) ;Tg(z) = z exp(2T (z))� z exp(T (z) + Tg(z)) ;Tr(z) = z exp(Tg(z) + T (z)) = T (z) exp(�Tr(z)) :This system has a unique solution, as the relations 
an be 
onsidered as �xed point equationsfor power series. Their Taylor expansions are:T (z) = z + 4z22! + 36z33! + 512z44! + 10000z55! + 248832z66! + 7529536z77! +O(z8) ;Tg(z) = 2z22! + 15z33! + 232z44! + 4535z55! + 114276z66! + 3478083z77! +O(z8) ;Tr(z) = z + 2z22! + 21z33! + 280z44! + 5465z55! + 134556z66! + 4051453z77! +O(z8) :For sure, the i-th 
oeÆ
ients of these series are divisible by i, as we are dealing with rootedobje
t. Here are the 3 generating fun
tions of the 
orresponding unrooted trees:T unr:(z) = z + 2z22! + 12z33! + 128z44! + 2000z55! + 41472z66! + 1075648z77! +O(z8) ;T unr:g (z) = z22! + 5z33! + 58z44! + 907z55! + 19046z66! + 496869z77! +O(z8) ;T unr:r (z) = z + z22! + 7z33! + 70z44! + 1093z55! + 22426z66! + 578779z77! +O(z8) :Of 
ourse, trees are DAG and therefore have a unique kernel. This implies that T (z) is exa
tlythe exponential generating fun
tion of dire
ted rooted trees, i.e.T (z) = C(2z)=2 and Tn = (2n)n�1where C(z) is the Cayley fun
tion (see Figure 3 and referen
es [5, 10℄), de�ned byC(z) = z exp(C(z)) =Xn�1nn�1 znn! :
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z

Figure 3. The Cayley tree fun
tion C(z) goes from �1 for z � �1 to 1 atz = 1e . It satis�es C(z) = z exp(C(z)).Solving the set of equations for T; Tg and Tr �nally leads to



6 CYRIL BANDERIER, JEAN-MARIE LE BARS, AND VLADY RAVELOMANANATheorem 4.1 (Enumeration of well-
olored trees).By ditrees, we mean well-
olored rooted labeled dire
ted trees. By well-
olored, we mean ea
h greenvertex has at least a red 
hild, ea
h red vertex has no red 
hild.The exponential generating fun
tion of ditrees is given by T (z) = C(2z)=2,the EGF of ditrees with a red root is given by Tr(z) = �C(�C(2z)=2),the EGF of ditrees with a green root is given by Tg(z) = C(2z)=2 + C(�C(2z)=2),where C(z) is the Cayley tree fun
tion C(z) = z exp(C(z)).The EGF for the unrooted equivalent obje
ts 
an be expressed in terms of the rooted ones:T unr: = T � T 2 ; T unr:g = T unr: � T unr:r ; and T unr:r = 2T � 2TTr + Tr � 2T=Tr + T 2r =2 :Proof. The formulae for T; Tr and Tg 
an be 
he
ked using the de�nition of C(z) in the�x-point equations in the simpli�ed system above. The fa
t that the GF for unrooted trees 
an beexpressed in terms of the GF of rooted ones 
an be proven by integration of the Cayley fun
tion,or by a 
ombinatorial splitting argument on trees. �We 
an go on and enumerate the di�erent possibilities of 
ir
uits for a well-
olored digraph.They 
an be des
ribed as Cy
(g) [ Cy
(r !fg !g+)This re
e
ts the fa
t that either a 
ir
uit is made up of green verti
es only, or it 
ontains somered verti
es, but they have to be followed by at least a green vertex. NB: Whether one 
ounts ornot the 
y
les of length 1 (i.e. a single red or green vertex) will only modify the �rst term of thegenerating fun
tion. Symboli
 
ombinatori
s [14℄ translates the above 
y
le de
ompositions in thefollowing fun
tion: ln� 11� g�+ ln 11� rg1�g !where r/g mark the number of red/green verti
es. This leads to the following Theorem:Theorem 4.2 (Enumeration of possible well-
olored 
ir
uits).The exponential generating fun
tion of possible well-
olored 
ir
uits is given byL(z) = � ln(1� z � z2) = z + 3z22! + 8z33! + 42z44! + 264z55! + 2160z66! + 20880z77! +O(z8) :Its 
oeÆ
ients satisfy Ln = (n�1)! (�n + (1� �)n), where Ln are known as the n-th Lu
as number(usually de�ned by the re
urren
e Ln+2 = Ln+1 + Ln; L1 = 1; L2 = 3) and where � = (1 +p5)=2is the golden ratio.Note that a reverse engineering le
ture of this generating fun
tion leads to the simpler de-
omposition Cy
(g [ rg), whi
h also explains the re
urren
e! Now, the following de
omposition ofpossible 
y
les is trivially related to the de
omposition of possible 
ir
uits:Cy
(r � f !g [  gg+ � f ![  g) [ Cy
(g ![ g  )leads to the EGF � ln(1� 2z � 4z2) whose 
oeÆ
ients are, with no surprise, 2nLn.
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TgrFigure 4. Uni
ir
uit digraphs 
onsist in a 
ir
uit with atta
hed trees on it. Theleft pi
ture above is a uni
ir
uit digraph, to the right, we give its \
anoni
alde
omposition" as a 
ir
uit of atoms whi
h are trees. Any well-
olored uni
ir
uitdigraph has su
h a \
anoni
al de
omposition".



GENERATING FUNCTIONS FOR KERNELS OF DIGRAPHS 7Using the de
omposition given in Figure 4, one obtains the generating fun
tion for uni
ir
uits:Theorem 4.3 (Enumeration of uni
ir
uit well-
olored digraphs).The EGF of uni
ir
uit well-
olored digraphs isU(z) = T unr: � Tg + ln� 11� (Tg + TgrTr)�= �C(2z)24 � C(�C(2z)2 )� ln�1� C(2z)2 � C(�C(2z)2 ) + C�� C(2z)2 �C(2z)2 �= z + 4z22! + 30z33! + 452z44! + 8840z55! + 224832z66! + 6909784z77! +O(z8) ;where C(z) is the Cayley tree fun
tion C(z) = z exp(C(z)).Now, 
onsider the larger 
lass of uni
y
le digraphs (digraphs whi
h have 0 or 1 
y
le). Re
allthat a 
ir
uit is a 
y
le, but a 
y
le is not ne
essarily a 
ir
uit. In order to get a \
anoni
alde
omposition" for uni
yle digraphs (similar to the one given in Fig. 4 for uni
ir
uit digraphs), one
onsiders 3 
ases:� Either the graph has no 
y
le, those graphs are 
ounted by T unr:.� Either it is a 
y
le with only Tg trees bran
hed on it (i.e. no red nodes in the 
y
le), thosegraphs are 
ounted by (ln� 11�2Tg �� 2Tg � 4Tg2=2)=2 + Tg2=2, where 2Tg 
orrespondsto Tg �f! [  g, one removes 
y
les of length 1 and 2 from the logarithm (this explainsthe �2Tg � 4Tg2=2 term) and one divides the whole formula by 2 be
ause one has totake into a

ount the fa
t the 
y
le 
an be read 
lo
kwise or not, and one adds the onlylegal 
y
le of length 2.� Either the graph 
ontains a 
y
le with some red nodes and then one 
onsiders the followingpossible \bri
ks":8>>>>>>>><>>>>>>>>:
Tr  Tgr  Tr  Tgr ! (but not a 
y
le of length 2, be
ause multiar
s are not allowed)Tr ! (Tgf! [  g)� Tg  (but not a 
y
le of length 2)Tr ! (Tgf! [  g)� Tgr !Tr  Tgrf! [  g (Tgf! [  g)� Tg  Tr  Tgrf! [  g (Tgf! [  g)� Tgr !Theorem 4.4 (Enumeration of uni
y
le well-
olored digraphs).The EGF of uni
y
le well-
olored digraphs isV (z) = T unr: + 12 ln� 11� 2Tg�� Tg � Tg2=2� TrTg=2� TrT=2+12 ln0� 11� �2TrTgr + TrTg+TrTgr+2TrTgrTg+2TrT 2gr1�2Tg �1A= T unr: � T + Tr � T 2=2� ln(1 + Tr)� 12 ln(1� 2T )= z + 4z22! + 36z33! + 692z44! + 15920z55! + 458622z66! + 15559264z77! +O(z8) :where T , Tg, Tr, and T unr: are given in Theorem 4.1.Note that in the two theorems above, any given non-
olored graph is 
ounted with multipli
ity0, 1 or 2 (if there are 0, 1 or 2 ways to 
olor it). We explained in Se
tion 3 that a multipli
itylarger than 2 was not possible for uni
y
le digraphs. We enumerate in the following propositionthose with exa
tly 2 possible 
olorations.Proposition 4.5 (Enumeration of uni
y
le digraphs with two kernels).The EGF of uni
y
le digraphs with 2 kernels isD(z) = � lnp1 + C(�C(2z)=2)2 ;where C(z) is the Cayley tree fun
tion C(z) = z exp(C(z)).



8 CYRIL BANDERIER, JEAN-MARIE LE BARS, AND VLADY RAVELOMANANARemark: From the de�nition of 
y
le/
ir
uit, D(z) is also the EGF of uni
ir
uit digraphs with2 kernels.Proof. Let D be the set of uni
y
le digraphs with 2 kernels. First, it is easy to see thatCy
(T 2r ) � D (with a sligth abuse of notation, as we �rst only 
onsider the shape, not the 
olorationof the Tr trees): simply 
olor the nodes in the 
y
le alternatively in green and red, and swit
h the
olors of a part of atta
hed trees, if needs be.We now prove the next step D � Cy
(T 2r ): Take a uni
y
le graph in D, it means at least oneof its vertex 
an be 
olored both green and red. Su
h a vertex v 
an be taken, without loss ofgenerality, in the 
ir
uit (from the above remark, the 
y
le is in fa
t a 
ir
uit). [If it were not the
ase, all bi-
olorabled verti
es would be in the tree 
omponents, but then one 
ould split our graphto get DAGs whi
h are known to be uniquely 
olorable℄. But when v is red, it implies it has onlyTg trees atta
hed to it, whi
h means than when it gets green, the next node in the 
ir
uit has bered (and was previously green!). This implies alternation red/green (and even length for parityreasons) for all the nodes in the 
ir
uit.This leads to a 
anoni
al de
ompositionCy
(T 2r ) :If one divides by 2 for the (anti)
lo
kwise readings, this leads to the Theorem. �Most of these results (and also the 
omputations of Se
tion 5 hereafter) were 
he
ked withthe 
omputer algebra system Maple. A worksheet 
orresponding to this arti
le is available athttp://algo.inria.fr/banderier/Paper/kernels.mws (or kernels.html), it uses the Algoliblibrairy, downloadable at http://algo.inria.fr/libraries/).5. Asymptoti
sIn this se
tion, we give asymptoti
 results for n! +1.Theorem 5.1 (Proportion of trees with a green/red root).Asymptoti
ally 1��1+� � 47:95% of the trees have a green root, where the 
onstant � � 0:351733 isde�ned as the unique real root of 2� = exp(��).A more pleasant way to formulate this Theorem 
onsists in 
onsidering Nim-type games (�rstplayer who 
annot move loses) on dire
ted trees where the tree and the starting position are 
hosenuniformly at random. The strategies of the two players being optimal, the �rst player has then aprobability of 47.95% (asymptoti
ally) to win the game. (Re
all that if the starting position 
an be
hosen by the �rst player, then he will always win.)Proof. The key step of this result and the following ones are the following expansions (derivedfrom the expansion of the Cayley fun
tion) for T , Tr and Tg:T (z) � 56 � 1p2p1� 2ez +O(1� 2ez)Tr(z) � �� �p21 + �p1� 2ez +O(1� 2ez)Tg(z) � 12 � �� 1p2 1� �1 + �p1� 2ez +O(1� 2ez) ;where the 
onstant � is de�ned as � := Tr( 12e ) � 0:351733.By Pringsheim theorem [14℄, as Tr(z) has nonnegative 
oeÆ
ients, then Tr(z) has a positivesingularity. As 
oeÆ
ients of Tr are smaller than 
oeÆ
ients of T , its radius of 
onvergen
e belongsto [0; 1=(2e)℄. Now, �C(2z)=2 is negative on this interval, and thus C(�C(2z)=2) is analyti
 there,and 1=(2e) is therefore its only possible dominating singularity. The radius of Tg follows fromT = Tr + Tg. The theorem follows by 
onsidering [zn℄Tg(z)[zn℄T (z) = 1��1+� � �2(�+4)(1+�)5 1n +O( 1n2 ). �Theorem 5.2 (Proportion of red verti
es in possible 
ir
uits).Asymptoti
ally 12 � 12p5 � 27:63% of the verti
es of a possible 
ir
uits are red.
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onsiderer the following bivariate generating fun
tion (exponential inz, ordinary in u): ln� 11�(z+uz2)�. The wanted proportion is then given by [zn℄�uF (z;1)[zn℄F (z;1) , where[zn℄�uF (z; 1) means the n-th 
oeÆ
ient of \the derivative with respe
t to u of F (z; u), then eval-uated at u = 1". �Then, one 
an wonder if the asymptoti
 density of well-
olored uni
ir
uit graphs is more than50% or even if it is 100%? The following theorem gives the answer:Theorem 5.3 (Proportion of well-
olored uni
ir
uit digraphs).The proportion of well-
olored graphs amongst uni
ir
uit digraphs is asymptoti
ally:3�3 + �2 � �� 1(1 + �)2(�� 1)) � 92:65%where � is the 
onstant de�ned in Theorem 5.1.Proof. Relies on a singularity analysis of the generating fun
tion of Theorem 4.3, with theexpansions given in Theorem 5.1. Note that some uni
ir
uit digraphs 
an have 2 kernels, so onehas to perform the following asymptoti
 expansions:[zn℄U(z)�D(z)[zn℄F (z) � 92:65� 0:12n +O( 1n2 ) ;where F (z) = T unr(z) + ln( 11�T (z) )� T (z) is the EGF of (non-
olored) uni
ir
uit digraphs. �For sure, it one 
onsiders now the asymptoti
 density of well-
olored uni
ir
uit graphs, theproportion should be larger, as one only adds DAGs (whi
h are all well-
olorable). The followingtheorem gives the noteworthy result that uni
ir
uit graphs are in fa
t almost surely well-
olored:Theorem 5.4 (Proportion of well-
olored uni
y
le digraphs).There is asymptoti
ally a proportion of 1 � 2�3p2(1+�)2(1��)p� 1pn � 1 � 0:05pn of well-
olored graphsamongst uni
y
le digraphs of size n, where � is the 
onstant de�ned in Theorem 5.1.Proof. Relies on a singularity analysis of the generating fun
tion of Theorem 4.4, with theexpansions given in Theorem 5.1. Note that some uni
y
le digraphs 
an have 2 kernels, so one hasto 
onsider [zn℄V (z)�D(z)[zn℄G(z) ;where G(z) = T unr(z) + 12 ln( 11�2T (z) ) � T (z) � T (z)2=2 is the EGF of (non-
olored) uni
y
ledigraphs (one substra
ts T 2=2 be
ause amongst the 4 graphs with a 
y
le of length 2 
reated bythe ln( 11�2T (z) ) part, 3 are not legal: 1 was already 
ounted be
ause of symmetries, and the other2 have in fa
t a multiple ar
, whereas it is forbidden for our digraphs). �Finally, if one 
onsiders graphs with at most k 
y
les, it means one has more 
utting points,whi
h relaxes the 
onstraints for well-
olarability (=existen
e of kernel). A

ording to the aboveresults, this implies an asymptoti
 density of one. This gives as a 
orolary of our results, that allthese families have almost surely a kernel. A kind of \limit 
ase" is dense graphs, for whi
h someresults already mentionned by Fernandez de la Vega [13℄ and Tomes
u [30℄ give that they haveindeed almost surely a kernel.



10 CYRIL BANDERIER, JEAN-MARIE LE BARS, AND VLADY RAVELOMANANA6. Con
lusionIt is quite pleasant that our generating fun
tion approa
h allows to get new results on the kernelproblem, giving e.g. the proportion of graphs satisfying a given property, and new informations onNim-type games for some families of graphs.As a �rst extension of our work, it is possible to apply 
lassi
al te
hniques from analyti

ombinatori
s [14℄ in order to get informations on standard deviation, higher moments, and limitlaws for statisti
s studied in Se
tion 5.Another extension is to get 
losed form formulas for bi
ir
uit/bi
y
les digraphs, (the generatingfun
tion involves the derivative of the produ
t of two logs and the asymptoti
s are performed likein our Se
tion 5). It is still possible (for sure with the help of a 
omputer algebra system) to doit for 3 or 4 
y
les but the \
anoni
al de
ompositions" and the 
omputations get 
umbersome. Inorder to go on our analysis far beyond low-
y
li
 graphs, one needs an equation similar to the onegiven by E.M. Wright [32, 33℄ for graphs. Let W` be the family of well-
olored digraphs with` edges more than verti
es, (` � �1). It is possible to get an equation \�a la Wright" for W` bypointing any edge (ex
ept edges linking a green vertex to a red one) in a well-
olored digraph. It ishowever not 
lear for yet if and how su
h equations 
an be simpli�ed in order to get a re
urren
eas \simple/ni
e" to the one that Wright got for graphs, thus opening the door to asymptoti
s andthreshold analysis beyond the uni
y
li
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