
To appear in Random Structure & Algorithms,dedicated to D. E. Knuth's for his 26th birthday.Minor typos �xed in september 2001.RANDOM MAPS, COALESCING SADDLES,SINGULARITY ANALYSIS, AND AIRY PHENOMENACYRIL BANDERIER, PHILIPPE FLAJOLET,GILLES SCHAEFFER, AND MICH�ELE SORIAAbstract. A considerable number of asymptotic distributions arising in ran-dom combinatorics and analysis of algorithms are of the exponential-quadratictype, that is, Gaussian. We exhibit a class of \universal" phenomena that areof the exponential-cubic type, corresponding to distributions that involve theAiry function. In this paper, such Airy phenomena are related to the co-alescence of saddle points and the con
uence of singularities of generatingfunctions. For about a dozen types of random planar maps, a common Airydistribution (equivalently, a stable law of exponent 3=2) describes the sizes ofcores and of largest (multi)connected components. Consequences include theanalysis and �ne optimization of random generation algorithms for multiplyconnected planar graphs. Based on an extension of the singularity analysisframework suggested by the Airy case, the paper also presents a general clas-si�cation of compositional schemas in analytic combinatorics.IntroductionMaps are planar graphs embedded in the plane, and as such, they model thetopology of many geometric arrangements in the plane and in spaces of low dimen-sions (e.g., 3-dimensional convex polyhedra). This paper concerns itself with thestatistical properties of random maps, i.e., the question of what such a random maptypically looks like. We focus here on connectivity issues, with the speci�c goal of�nely characterizing the size of the highly connected \core" of a random map (seeSection 1 for de�nitions).The bases of an enumerative theory of maps have been laid by Tutte [49] in the1960's, this in an attempt to attack the four-colour conjecture. The present pa-per builds upon Tutte's results and upon previous analyses of largest componentsgiven by Bender, Richmond, Wormald, and Gao [7, 27]. We establish the commonoccurrence of an interesting probability distribution, the \Airy distribution of themap type", that precisely quanti�es the sizes of cores in about a dozen varieties ofmaps, including general maps, triangulations, 2-connected maps, etc. As a corol-lary, we are able to improve on the complexity of the best known random samplersfor multiply connected planar graphs and convex polyhedra from [44].The analysis that we introduce is largely based on a method of \coalescing saddlepoints" that was perfected in the 1950's by applied mathematicians [3, 8, 52] andhas found scattered applications in statistical physics and the study of phase tran-sitions [41]. However, this method does not appear to have been employed so farDate: August 31, 2001.Key words and phrases. Airy function, analytic combinatorics, coalescing saddle points, mul-ticonnectivity, planar map, random graph, random generation, singularity analysis, stable law.1



2 C. BANDERIER, P. FLAJOLET, G. SCHAEFFER, AND M. SORIAin the �eld of random combinatorics. We claim some generality for the approachproposed here on at least two counts. First, a number of enumerative problemsare known to be of the \Lagrangean type", being related to the Lagrange inver-sion theorem and its associated combinatorics. The classical saddle point methodis then instrumental in providing asymptotics of simpler problems. However, thecon
uence of saddle points that presents itself in \critical regions" is a stumblingblock for the basic method. As we show here, planar maps are precisely instancesof this situation. Next, parallel developments suggested by the theory of randommaps and the corresponding integration contours lead to the precise analysis of ageneral composition schema. Indeed, it is known, in the realm of analytic com-binatorics, that asymptotic properties of random structures are closely related tosingular exponents of counting generating functions. For \most" recursive objectsthe exponent is 12 and the probabilistic phenomena are described by classical laws,like Gaussian, exponential, or Poisson. Methods of the paper permit us to quantifydistributions associated with singular exponents 32 present in maps and unrootedtrees, and, more generally, they extend to distributions occurring in relation tocompositions of generating functions with algebraic-logarithmic singularities.Very roughly, the classical saddle point method gives rise to probabilistic andasymptotic phenomena that are in the scale of n1=2 and the analytic approximationsare in the form of an \exponential-quadratic" (e�x2) corresponding to Gaussianlaws. The coalescent saddle-point method presented here gives rise to phenomenain the scale of n1=3, with analytic approximations of the \exponential-cubic type"(eix3), which, as we shall explain, is conducive to Airy laws. The Airy phenomenathat we uncover in random combinatorics should thus be expected to be of a fairdegree of universality. Here are scattered occurrences of what we recognize as Airyphenomena in the perspective of this paper: the emergence of �rst cycles and of thegiant component in the Erd}os{R�enyi graph model [20, 24, 32], the enumeration ofrandom forests of unrooted trees [34], cluster formation in the construction of linearprobing hashed tables [23, 33], the area under excursions and the cumulative storagecost of dynamically varying stacks [36], the area of certain polyominoes [15], pathlength in combinatorial tree models [47], and, perhaps, the threshold phenomenainvolved in the celebrated random 2-SAT problem [10]. We brie
y return to thesequestions in the conclusion section of the paper.Plan of the paper. Basics of maps are introduced in Section 1, where the Airy dis-tribution is also presented. The asymptotic theory of maps can be developed alongtwo parallel lines, one based on saddle points, the other on singularity analysis|this is the main thread of the paper. We �rst approach the analysis of core-size viaa representation of generating functions of interest by powers (the so-called \La-grangean framework"), which are then amenable to variations of the saddle pointmethod. A �ne analysis of the geometry of associated complex curves is shown toopen access to the size of the core, with the Airy distribution arising from doubleor \nearby" saddles (Section 2); a re�ned analysis based on the method of coa-lescent saddle points then enables us to quantify the distribution of core-size overa wide range with precise large deviation estimates (Section 3). By singularityanalysis techniques, we show more generally that the very same Airy law is boundto occur in any instance of a composition schema of singular type ( 32 � 32 ), whichsheds a di�erent light on the previous analyses; see Section 4. The methods basedon saddle points and singularities are then applied to more than a dozen types of



RANDOM MAPS AND AIRY PHENOMENA 3planar maps, thereby providing a precise quanti�cation of largest multiconnectedcomponents, with consequences on the random generation of highly connected pla-nar graphs (Section 5). Finally, the singularity analysis methods can be extendedto any composition schema that is \critical": see Appendix A where connectionswith stable distributions of probability theory are also discussed. Major analyticproperties of the Airy distribution \of the map type" are gathered in Appendix B.Here is a diagram summarizing the logical structure of the paper:1. Basics of maps���+ QQQs2. Two saddles3. Coalescing saddles 4. Singularity Analysis(A. Compositions, stable laws)QQQs ���+5. Largest components(B. Airy distribution)An extended abstract of this paper has been presented at the ICALP'2000 con-ference; see [2]. 1. Basics of mapsThis section organizes known facts about the enumeration of maps, and for theconvenience of readers not familiar with this chapter of combinatorial theory it ispresented in a largely self-contained way; see, e.g., [29, 43] for more. It is intendedas a preparation of the technical treatment in the rest of the paper. The two basicingredients introduced concurrently here are: (i) exact power representations formap counts (via the Lagrangean framework) that are to be later exploited by thesaddle point method in Sections 2{3; (ii) singularity analysis, which provides directasymptotic estimates, and is extended in Sections 4{5 as well as Appendix A.A map is an embedding of a connected planar graph in the sphere, consideredup to orientation preserving homeomorphisms. By construction the complement ofthe vertices and edges of a map in the sphere is a union of simply connected faces .In general loops and multiple edges are allowed. A map is completely characterizedby its underlying graph together with a cyclical ordering of edges around eachvertex. Following Tutte [48, 49], we consider rooted maps, that is, maps withan oriented edge called the root|this simpli�es the analysis without essentiallya�ecting statistical properties (see [42] and Section 5). In order to represent mapson the plane, a point of the sphere must be placed at in�nity; by convention wealways choose it so that the root runs along the in�nite face counterclockwise.Figure 1 illustrates this convention. From now on, unless explicitly mentioned, allmaps are rooted.Generically, we take M and C to be two classes of maps, with Mn, Cn thesubsets of elements of size n (typically, elements with n edges). Here, C is alwaysa subset of M that satis�es additional properties|typically, higher connectivity.The elements of M are then called the \basic maps" and the elements of C arecalled the \core-maps". We de�ne informally the core-size of a map m 2 M as thesize of the largest C{component of m that contains the root of m.



4 C. BANDERIER, P. FLAJOLET, G. SCHAEFFER, AND M. SORIAAs a pilot example, we shall specialize the basic maps M to be the class ofall1 maps with size taken as the number of edges. De�ne a separating vertex (orarticulation point) as a vertex whose removal disconnects the graph. The class Ckwill then be taken as the set of nonseparable maps with k edges, where a map iscalled nonseparable (or 2-connected) if it has no separating vertex. In this case, thecore of a map is obtained by starting from the root and removing all \pending"submaps that are attached only through an articulation point. This is illustratedby Figure 2, in which the central map on the right is a nonseparable map, namelythe core of the map displayed on the left.Our major objective is to characterize the probabilistic properties of core-size ofa random element of Mn, that is, of a random map of size n, when all elementsare taken equally likely. Core-size then becomes a random variable Xn de�nedon Mn. In essence, the pilot example thus deals with 2-connectivity in random(connected) maps. The paradigm that we illustrate by a particular example is infact of considerable generality as can be seen from Section 5 below.1.1. The physics of maps. From earlier works [7, 27, 43], it is known that arandom map of Mn has with high probability a core that is either \very small"(roughly of size k = O(1)) or \very large" (being �(n)). The probability distribu-tion Pr(Xn = k) thus has two distinct modes. The small region (say k = o(n)) hasbeen well quanti�ed by previous authors, see [7, 27, 43]: a fraction ps = 23 of theprobability mass is concentrated there. The large region is also known from theseauthors to have probability mass p` = 1 � ps = 13 concentrated around �0n with1We also speak of the class of \general" maps when we need to contrast it with special classesof maps.
Figure 1. Three representations of maps. The �rst two areidentical as maps, while the third one is not, although the threeunderlying planar graphs are identical.
Figure 2. The decomposition of a map into its nonseparablecore and the pending submaps.



RANDOM MAPS AND AIRY PHENOMENA 5�0 = 13 but this region has been much less explored as it poses speci�c analyticaldi�culties. Our results precisely characterize what happens in terms of an Airydistribution.The Airy function Ai(z), as introduced by the Royal Astronomer Sir GeorgeBidell Airy, is a solution of the equation y00 � zy = 0 that can be de�ned by avariety of integral or power series representations including (see [1, 50]):Ai(z) = 12� Z +1�1 ei(zt+t3=3) dt= 1�32=3 1Xn=0�31=3z�n �((n+ 1)=3)n! sin 2(n+ 1)�3 :(1)Equipped with this de�nition, we present the main character of the paper, aprobability distribution closely related to the Airy function.De�nition 1. The standard Airy distribution of the \map type" is the probabilitydistribution whose density isA(x) = 2e�2x3=3 �xAi(x2)�Ai0(x2)�= 1�xXn>1(�x32=3)n�(2n=3 + 1)n! sin(�2n�=3):(2)The Airy distribution of parameter c is de�ned by the density cA(cx).Major properties of the function A(x) (including the equivalence between thetwo de�nitions of (2)) are gathered in Appendix B. The Airy distribution2 is aprobability distribution, i.e., RRA(x) dx = 1, and an unusual feature is the factthat the tails are extremely asymmetric:A(x) �x!�1 14p� jxj�5=2 and A(x) �x!1 2p� x1=2 exp��43x3� :(3)A plot of the map{Airy distribution is presented in Figure 3 (left).We shall �nd that the size of the core (when conditioned upon the large region)and the size of the largest 2-connected component of a random map are describedasymptotically by an Airy law of this type. Figure 3 (right) exempli�es this withsimulation results of core-size: the \bimodal" character of the combinatorial dis-tribution is clearly visible and the convergence of simulation data to the limit Airydistribution curve is already excellent at size n = 2; 000. (Additional simulationdata are given in Section 5.4.)1.2. The combinatorics of maps. Let Mn and Ck be the cardinalities of Mnand Ck. The generating functions of M and C are respectively de�ned byM(z) :=Xn>1Mnzn and C(z) :=Xk>1Ckzk:Root-face decompositions. As shown by Tutte, there results from a root-facedecomposition and from the quadratic method [29, Sec. 2.9] that many familiesof maps have a generating function M(z) that is algebraic, and more speci�callyLagrangean, which means that it can be parametrized by a system of the formM(z) = 	(L(z)) where L(z) = z�(L(z));(4)2The Airy distribution of the map type is known in the probability literature as a stable lawof index 32 (see Appendix A), and in celestial mechanics as the Holtsmark distribution.
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kFigure 3. Left: The standard Airy distribution. Right: Ob-served frequencies of core-sizes k 2 [20; 1000] in 50,000 randommaps of size 2,000, showing the bimodal character of the distribu-tion.for two rational power series 	; �, with L being determined implicitly by �. We�rst prove that M(z) is Lagrangean.Proposition 1. The generating function of general maps M(z) is Lagrangean:M(z) = 	(L(z)); L(z) = z�(L(z))	(y) = 13y(2� y); �(y) = 3(1 + y)2:(5)Accordingly, the number of general maps satis�esMn � [zn]M(z) = 2 � 3n (2n)!(n+ 2)!n! :(6)Proof. Schematically, for the family of general maps with n edges, the treatmentgoes as follows (see [29] for details). Let M�(z; u) be the bivariate generatingfunction of maps where z; u mark respectively the number of edges and the degreeof the root face. Also the map of size 0 with one vertex and no edge is momentarilyallowed. (Consequently, M(z) =M�(z; 1)� 1:) First, the functional equationM�(z; u) = 1 + u2zM�(z; u)2 + uzM�(z; 1)� uM�(z; u)1� u(7)re
ects the construction of maps starting from the map of size 0 by either addingan isthmus (also known as bridge) that connects two simpler maps, or by addingan edge that cuts across an existing face. From (7), upon isolating M�(z; u), onegets the equivalent \quadratic form"(M�(z; u)�R(z; u))2 = Q(z; u) + M�(z; 1)u(1� u) ;(8)for some explicit rational functions Q(z; u) and R(z; u). The principle of the qua-dratic method is to bind z and u in such a way (a priori unknown) that the lefthand side vanishes. Consequently, under the binding, the right side of (8) shouldhave a double root, which is expressed by the conditions�Q(z; u) + M�(z; 1)u(1� u)� = 0; @@u �Q(z; u) + M�(z; 1)u(1� u)� = 0:The compatibility condition of these two equations is then expressed by two rationalrelations between the three quantitiesM�(z; 1), u, and z, from which one �nds thatu = u(z) should satisfy u2z+(u�1)(2u�3) = 0: Computations based on the further



RANDOM MAPS AND AIRY PHENOMENA 7change of parameter L = 1=(1� u) (see [29, 48] and Section 5 for other examples)then lead to the Lagrangean parametrization (5).There results from the form (4) and from the Lagrange inversion theorem [29]an explicit form for the coe�cients of M(z), namely,Mn � [zn]M(z) = 1n [yn�1]	0(y)�(y)n;(9)where [zn]F (z) denotes the coe�cient of zn in the series expansion of F (z). Forthe family of general maps, this instantiates to (6) as given in the statement of thetheorem.Alternatively, elimination shows that M(z) is an algebraic function, in this caseadmitting of closed form:M(z) = �1 + 154z2 ��(1� 18z) + (1� 12z)3=2� :(10)Substitution decompositions. As shown again by Tutte, maps satisfy addi-tionally relations of the \substitution type". Such relations usually take the formM = C �H where the family H is a simple variation of the \basic" familyM whilethe \core" family C is de�ned by stronger connectivity constraints.Proposition 2. The generating function of nonseparable maps is Lagrangean:C(t) = 	(eL(t)); eL(t) = t e�(eL(t))	(y) = 13y(2� y); e�(y) = 3(1� y=3)2 :(11)Accordingly, the number of nonseparable maps satis�esCk � [zk]C(z) = 4(3k � 3)!(2k)!(k � 1)! :(12)Proof (sketch). Between the familyM of general maps and the family C of nonsep-arable maps, the substitution relationM(z) = Xk�1Ckzk(1 +M(z))2k = C(H(z)); with H(z) = z(1 +M(z))2;(13)expresses that each map is formed of a core with k edges (chosen among the Cknonseparable maps with k edges) in which 2k (possibly empty) maps are sub-stituted. This is exactly the decomposition illustrated by Figure 2: the core isobtained starting from the root edge3 by detaching all pending submaps until thereis no separation vertex left; conversely a submap can be attached at each of the 2k\corners" of a nonseparable map in order to form a general map.An equation like (13) determines e�ectively (albeit in an implicit manner) theexact enumeration of objects of type C which are more \complex", i.e., here, morehighly connected than the initial maps of M. One can go further. In view ofEquations (4), (13), the generating function H(z) is also expressible in terms of thebasic Lagrangean series L(z):H(z) =  (L(z)) with  (y) = y3 �1� y3�2 :(14)3Remark that this decomposition covers the cases when the root is a bridge or a loop, providedone adopts the convention that the two maps with one edge (i.e., the bridge and the loop) arenonseparable.



8 C. BANDERIER, P. FLAJOLET, G. SCHAEFFER, AND M. SORIAIn order to extract the generating function C(t) from the relationM(z) = C(H(z)),it is natural to introduce the change of variables z = z(t) de�ned by t = H(z), whichyields C(t) =M(z(t)). As bothM(z) and H(z) are de�ned in terms of L(z), lettingeL(t) = L(z(t)) leads to the system (11). This parametrization is �nally amenableto the Lagrange inversion theorem, hence the expression (12) for the coe�cientsCk.The proof also shows that the generating function C(t) of nonseparable maps isa cubic algebraic function,C3 + 2C2 + (1� 18t)C + 27t2 � 2t = 0;that is an elementary variant of the generating function of ternary trees.The core-size parameter. Our analysis assumes the uniform distribution overgeneral maps of size n, with each map being taken with probability 1=Mn. Underthis model, we let Xn denote the random variable of core-size. Let Mn;k be theset of maps with n edges whose core comprises k edges; we de�ne the bivariategenerating functionM(z; u) =Xn;k Mn;kukzn with Mn;k = card (Mn;k).The following obvious re�nement of (13) gives access to core-size:M(z; u) = C(uH(z)) (with H(z) = z(1 +M(z))2):(15)In summary:Proposition 3. The probability distribution of core-size is determined byPr(Xn = k) = CkMn [zn]H(z)k;(16)where one has, with �(y) = 3(1 + y)2 and  (y) = (y=3)(1� y=3)2:[zn]H(z)k = kn [yn�1] 0(y) (y)k�1�(y)n:(17)Proof. Relation (16) is a mere rephrasing of (15). The expression (17) resultsfrom (14) and Lagrange inversion.The involved generating functions are algebraic (and even rationally parame-trized under the Lagrangean framework), which leads to complicated alternatingbinomial sums expressing Pr(Xn = k). The exponential cancellations involved arehowever not tractable in this elementary way as k increases, and complex asymp-totic methods must be resorted to.1.3. The asymptotics of maps. There is another side to the coin, to be exploredfurther in Section 4. It relies on singularity analysis [22], the principle being a gen-eral correspondence between the expansion of a generating function at a singularityand the asymptotic form of its coe�cients.



RANDOM MAPS AND AIRY PHENOMENA 9Proposition 4. Each generating function M(z); C(z); H(z) has a unique domi-nant singularity (at 112 ; 427 ; 112 resp.) and a singular expansion with singular expo-nent 32 at its singularity in the sense that8<: M(z) = 13 � 43 (1� 12z) + 83 (1� 12z)3=2 +O((1� 12z)2)C(z) = 13 � 49 (1� 27z=4) + 8p381 (1� 27z=4)3=2 +O((1� 27z=4)2)H(z) = 427 � 49 (1� 12z) + 1627 (1� 12z)3=2 +O((1� 12z)2):(18)In particular, one hasMn � 2p� 12nn�5=2; and Ck � 227r 3� �274 �k k�5=2:(19)Proof (sketch). In this proof, we purposely conduct the discussion in abstract terms,and relate the existence of such expansions to the general Lagrangean framework.The motivation stems from the need to cover the schemas of Section 5. (Clearly,singular expansions of M;C;H could be derived by direct computation while theasymptotic forms of (19) are obvious consequences of the closed-forms available forMn; Ck in this particular instance.)(i) The universal asymptotics of maps. An implicitly de�ned function L(z) =z�(L(z)) has in general an isolated singularity of the square-root type dictated bya failure of the implicit function theorem [5, 37]:L(z) = � � l1=2(1� z=�)1=2 +O(1� z=�) (l1=2 > 0);(20)there the singularity � and the singular value � are determined by the equations��0(�)� �(�) = 0; � = ��(�) :(21)The expansion (20) yields in turn the singular expansion of the generating functionof maps via M(z) = 	(L(z)). It appears that in all known map-related parame-trizations of the form (4), the cancellation 	0(�) = 0 holds, so that the singularexponent is shifted to 3=2:M(z) = 	(L(z)) = 	(�)�m1(1� z=�) +m3=2(1� z=�)3=2 + O((1� z=�)2):(22)(The constants l1=2;m1;m3=2 are positive and computable from �;	; � .) Accord-ing to singularity analysis [22] (or the Darboux-P�olya method [5]), the singularexpansion then entails4 Mn � 3m3=24p� ��nn5=2 :(23)This generic asymptotic form is \universal" in so far as it is valid for all known\natural" families of maps (see Section 5 for a listing, as well as the discussion in[6]).(ii) Substitution relations and asymptotics. The substitution relation (13) entailsanother remarkable property of the asymptotic expansions ofM(z), H(z) and C(z).First, as H is de�ned in terms of M by H(z) = z(1+M(z))2, both H and M have4Naturally, in this toy example, asymptotic estimates can be directly derived from closed formslike (6) and (12).



10 C. BANDERIER, P. FLAJOLET, G. SCHAEFFER, AND M. SORIAthe same dominant singularity, �, with singular exponent 3=2. In particular, onehas H(z) =  (L(z)) =  (�) � h1(1� z=�) + h3=2(1� z=�)3=2 +O((1� z=�)2);(24)and, accordingly, the parametrization H(z) =  (L(z)) must also satisfy  0(�) = 0.The function eL that determines C is implicitly de�ned, so that its singularity e�and singular value e� are solutions of a system analogous to (21), which reduces to 0(e� ) = 0, e� =  (e� ). Accordingly, one has e� = � , hence e� =  (�), andC(t) = 	(�)� c1(1� t= (�)) + c3=2(1� t= (�))3=2 +O((1� t= (�))2);(25)where c1 and c3=2 are computable positive numbers. This results inCk = [zk]C(z) � 3c3=24p�  (�)�kk5=2 :(26)The analysis specializes for the families of general maps and nonseparable mapswhere it provides � = 1; � = 112 ;  (�) = 427 . Hence, the singular expansions of (18)and the asymptotic forms (19) of the exact counts (6) and (12).Propositions 3 and 4 open access to the distribution of core-size in two parallelways.(i) The structure constant � which is by construction a saddle point of �(z)=zplays a fundamental rôle, and from the preceding proof one has the \coalescencerelations" ddz ��(z)z �z=� = 0; ddz ( (z))z=� = 0:(27)The coalescence relations express the fact that � is a saddle point common to�(z)=z and  (z). The saddle point analysis of Sections 2{3 takes o� from the powerforms (16), (17) provided by the Lagrangean framework and from the relations (27)which can be taken as basic axioms.(ii) In terms of the composition equationM(z) = C(H(z)), the calculation aboveimplies that the value of H(z) at its singularity � coincides with the dominantsingularity of C(z): H(�) = r.o.c (C(z));(28)where \r.o.c." denotes radius of convergence. Such a composition C � H is calledcritical . This situation of con
uence of singularities is considered in full generalityin Section 4 where the analysis of core-size is developed from the power form (16)of Proposition 3 and from the criticality assumption (28).Both approaches are \universal" for cores in map. Section 5 lists several othertypes of maps for which the coalescence relations (27) hold (with various rationalfunction pairs �;  ), and for which core-size is described by a composition schemathat is critical in the sense of (28) (with various algebraic functions C;M).2. Two saddlesThe probability distribution of core-size in maps is determined by Proposition 3above. What is essentially needed is a way to estimate [zn]H(z)k. The saddle point



RANDOM MAPS AND AIRY PHENOMENA 11approach starts from a contour integral representation based on the Lagrangeanform, Equation (17), in conjunction with Cauchy's coe�cient formula,[zn]Hk(z) = kn 12i� Z� z 0(z) (z)k�1�(z)n dzzn+1(29) = kn 12i� Z�G(z) exp(nK(z)) dz:There � is a contour encircling the origin anticlockwise, whileK(z) � K(z;n; k) = kn log (z) + log(�(z)=z); and G(z) =  0(z) (z)(30)
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12 C. BANDERIER, P. FLAJOLET, G. SCHAEFFER, AND M. SORIAare respectively the \kernel" and the \cofactor" of the integrand. (Principal deter-minations of the log extended by continuity from the positive axis are understood.)In simple cases, integrals over complex contours involving large powers areamenable to the basic saddle point method. The idea consists in deforming thecontour � in the complex plane, this, in order to have it cross a saddle point of theintegrand, (i.e., a zero of the derivative) and to take advantage of concentration ofthe integral near the saddle point. In the process, the contour is made to coincidewith part of a steepest descent line. Then local expansions yield approximations thatare of the \exponential quadratic" type when the saddle point is simple (i.e., onlythe �rst derivative vanishes). We refer to de Bruijn's book for a vivid descriptionof standard saddle point landscapes in connection with asymptotic analysis [13].For the problem at hand, there are two real saddle points, given by the saddlepoint equation @@zK(z) = 0; one is �xed and equal to � , while the other varies withn; k. In particular, for nonseparable cores of general maps, one has� = 1 and � 0 = 3 n� kn+ 3k :(31)The relative positions of these two saddle points and the geometry of the inte-grand evolve with the ratio k=n, as shown by Figure 4. The basic saddle pointmethod applies when these two points are su�ciently separated from one another,that is, as long as � := k=n is \far away" from the special value �0 � 13 . This cor-responds to the situation already known from the works [7, 27, 43]. The situationchanges and there appears a \critical" region when k assumes values near �0n (asit turns out, in the scale of n2=3). In that interesting case, the basic version of thesaddle point method ceases to be applicable, and this is precisely where we �t in:by a detailed examination of the analytic geometry of the saddle points, we providesuitable integration contours that \capture" the main asymptotic contributions.Such an approach leads to a precise quanti�cation of core-size in random maps.Figure 5 summarizes the main methods involved in the saddle-point analyses ofthis and the next section.2.1. Distinct saddles. When k is far enough from �0n, one of the two saddlepoints is nearer to the origin and predominates. In that case, the basic methodapplies, with the integration contour a circle centred at the origin and passingthrough the dominant saddle point. This corresponds to the already known resultsof Bender, Gao, Richmond, and Wormald [7, 27] supplemented by [43].Theorem 1 (Tails and distinct saddles). Consider nonseparable cores of generalmaps. Let � = k=n, �0 � 1=3, and take � an arbitrarily small but �xed positivenumber.(i) The left tail of the probability distribution of core-size has a polynomial decay:uniformly for �n < k < (�0 � �)n, one hasPr(Xn = k) � 135p� 1k3=2(�0 � �)5=2 :(ii) The right tail has an exponential decay: there exists a positive constant A < 1such that, uniformly for (�0 + �)n < k < n(1� �), one hasPr(Xn = k) = O(An):Proof (Sketch). We limit ourselves to brief indications on proof techniques (thatrely on [7]), which merely serves as a basis for comparison with the next sections.



RANDOM MAPS AND AIRY PHENOMENA 13Left tail Centre Right Tailk: [�n; (�0 � �)n] �0n [(�0 + �)n; (1� �)n]Saddle points: � < � 0 � = � 0 � > � 0Method: simple saddle point double saddle point simple saddle point(Section 2.1) (Section 2.2) (Section 2.1)Type: Z e�t2dt Z te�t3dt Z e�t2dtAngle: ��2 �2�3 ��2Error: n�1=2 n�1=3+� n�1=2Central region \Wide" regionk: [�0n+ an2=3; �0n+ bn2=3] [�n; (1� �)n]Saddle points: � 0 � �Method: nearby saddle points coalescing saddle points(Section 2.3) (Section 3)Type: Z (x� t)e xt�t3=3dt Z (x� t)e xt�t3=3dtAngle: �2�3 ! cubic curveError: n�1=3+� n�1=3Figure 5. Top: A broad classi�cation of the methods involvedin the classi�cation of tails and centre of the core-size distribution.Bottom: Re�nements of the saddle point method applicable to thecritical region of the law of core-size.For both left and right tails, � is taken to be a circle through the saddle point thatis \dominant" (in the sense that it is nearer to the origin). We denote by �d thisdominant saddle point.The main contribution to the integral arises from an immediate vicinity of �d.In this vicinity the kernel admits an expansion of the quadratic typeK(�d + u) = K(�d)� �2 j�� �0ju2 +O(u3);where �2 is a positive continuous function of �. In particular, provided � is farenough from �0 the basic saddle point applies and the integral (29) is, up to lowerorder terms, given by the integral over a small vertical segment following the steep-est descent line on both sides of �d. This yields[zn]H(z)k � kn exp(K(�d))n2� Z ��� G(�d + u) exp(�n�2 j�� �0ju2 +O(nu3))du;where the \range" � is chosen so thatn�2 !1; n�3 ! 0;ensuring a complete local capture of the contribution as well as validity of thequadratic approximation. Here, we adopt � = logn=pn.The left tail (k < �0n) corresponds to �d = � , i.e., the �xed saddle point � isdominant (Fig. 4, top). In this case the expansion of G(� + u) leads to part (i)of the theorem. Remark that the slow decay of probabilities (k�3=2) in this region



14 C. BANDERIER, P. FLAJOLET, G. SCHAEFFER, AND M. SORIAresults from the formula Pr(Xn = k) = Ck[zn]H(z)kMnwhere the exponential rate of growth of [zn]H(z)k, namely exp(K(�))n = ��n (�)k ,exactly compensates the exponential rate of decay of Ck=Mn.The right tail (k > �0n) has �d = � 0 dominating (Fig. 4, bottom). This caseleads to part (ii) of the theorem and the exponential decay of probabilities followsbecauseK(� 0) < K(�) does not allow exp(K(� 0))n to catch up with the exponentialfactor present in Ck=Mn.This basic saddle point analysis can lead in fact to precise estimates with correc-tion terms to any order, as long as � stays away from �0. For instance, one has forthe right tail: there exist two real functions f(�) and g(�), positive and continuouson the interval [1=3; 1], such thatPr(Xn = k) � (�� �0)1=2(1� �)3=2 f(�) n�1=2e�n(���0)3 g(�);uniformly for �0n + n2=3�(n) < k < n � n2=3�(n), where �(n) is any functiontending to in�nity.2.2. A double saddle. We next analyse the \centre" of the distribution, thatis, consider the case where k = �0n exactly. Then, the two saddle points of (31)become equal: � 0 = � . This case serves to introduce with minimal apparatus theenhancements that need to be brought to the basic saddle point method. Observethat the complete con
uence of the saddle points precludes the use of \exponential-quadratic" approximations and the problem becomes of an \exponential cubic"type. The following statement is a variant, with error terms added, of Theorem 1,case (c), by Bender, Richmond, and Wormald [7]. (See also comments after theproof.)Theorem 2 (Centre and a double saddle). The centre of the probability distribu-tion of the (nonseparable) core-size of a random element of Mn (general maps)satis�es, when k = �0n with �0 = 13 :Pr(Xn = k) = 3p3 22=3�(2=3)8� k�2=3 �1 +O(n�1=3(logn)4)� : � :44441 k�2=3 :Proof. From now on, we purposely conduct the proof in the form of a generaldiscussion of an integral (29) and a kernel K(z) of the form (30). In this way,generic formul� (see especially (34) below) can be later reused for all families ofmaps listed in the Section 5. What is considered here is the case of a double saddlepoint at � when k = �0n. (For nonseparable cores of general maps, one should take�0 = 13 and � = 1.)When k = �0n, Equation (29) becomes[zn]Hk(z) = �02i� Z�G(z) exp (nK(z)) dz;(32)where the kernelK reduces toK(z) := log ((�=z) �0). By assumption, the quantityeK has a double saddle point at � sometimes called a \monkey saddle", viz., a saddlewith places for two legs and a tail. The idea consists in choosing a contour that is



RANDOM MAPS AND AIRY PHENOMENA 15no longer a circle centred at the origin, but, rather, approaches the real axis at anangle (see Fig. 4, middle), so that it still follows steepest descent lines.Global analysis. Let �� be a small enough but �xed positive quantity (here,�� = 1=10 proves adequate). Speci�cally, the integration path � consists of thefollowing parts: (i) two (small) segments ��1;��2 that have length �� and intersectat � , at an angle of �2�=3; (ii) the part �� of a circle centred at 0 from which asmall arc is taken out, joining with the nonreal ends of ��1;��2.By choosing �� small enough, we ensure that eK decreases strictly in modulusalong ��1;��2, when going away from � . By examining the global topography ofthe real part of K(z) along �� (and possibly deforming the contour but keeping ithomotopic to �� in C nf0g for more complicated cases), we ensure that the modulusof the function eK remains smaller than its value at the nonreal ends of ��0;��1.Consequently, the contribution of the part due to �� is exponentially small.Next, we shall choose a value � < �� (the \range") depending on n and tendingto 0 as n ! 1. With a suitable choice of �, see (33) below, and by virtue ofthe decay of jeK j along the part of the contour at a distance from � that is largerthan �, the corresponding contribution is also exponentially negligible (roughly likeexp(� log3 n)). Then, the analysis reduces to a purely local analysis of eK . Wedenote by �1;�2 the parts of the contour that are at distance at most � from �and adopt a value of � satisfying two con
icting requirements,n�3 !1; n�4 ! 0; speci�cally � = (logn)n�1=3:(33)Local analysis. We can now switch to the local analysis. The situation is suchthat there is coincidence of two saddle points (�; � 0). Accordingly, the kernel K hasa double saddle point in � , meaning that its local expansion is of the cubic type:K(z) = �0 � �3(z � �)3 +O((z � �)4) (�0; �3 > 0):This cubic form together with the fact that �3 is positive explains the geometry ofthe \landscape" corresponding to ��eK��, in particular, the level curves, the steepestdescent lines, and the steepest ascent lines [13]. For example, the steepest descentlines are at angles 0; 2�=3;�2�=3 (see Figure 4, middle). Thus, locally at � , theintegration path � follows two steepest descent lines of the landscape.The contribution I1;2 along �1[�2 to the integral in (32) provides the dominantcontribution and is estimated next by a local analysis of K for values of z near � .Set u = z � � . The condition n�4 ! 0 in (33) implies that terms of order 4 andhigher do not matter asymptotically, and a simple calculation, using the fact thatG(� + u) = �g1u+O(u2), yieldsI1;2 := Z�1[�2G �exp(nK) dz = �g1 exp(�0)n Z�1[�2u exp ��n�3u3� (1+O(n�4)) du :The rightmost integral taken along �1 [ �2 can be extended to two full halflines of angle �2�=3 emanating from the origin, this at the expense of intro-ducing only exponentially small error terms (since n�3 ! 1). The rescalingv = u(n�3)1=3 exp(2i�=3) on �1 and v = u(n�3)1=3 exp(�2i�=3) on �2 then showsthat the completed integral equals(n�3)�2=3(e4i�=3 � e�4i�=3) Z +10 v exp(�v3)dv = �(n�3)�2=3 ip3�(2=3);



16 C. BANDERIER, P. FLAJOLET, G. SCHAEFFER, AND M. SORIAwhere the evaluation results from a cubic change of variable. In summary, we havefound, with I0 the (negligible) contribution due to the part � n (�1 [ �2) of thecontour,[zn]Hk(z) = �02i� (I0 + I1;2) = g1�2=33 �(2=3)2�p3 exp(�0)nn2=3 �1 +O(n�4)� :The de�nition of the kernelK implies that g1, �0 and �3 are expressible in termsof �,  , and � alone,g1 =  00(�) (�) ; �0 = log��(�)�  �0(�)� ; �3 = 6� d3dz3 �(z)z  �0 (z)�z=� ;which leads to[zn]Hk(z) = g1�2=33 �(2=3)2�p3 ��n (�)kn2=3 �1 +O(n�1=3(logn)4)� :(34)By the the asymptotic forms (23), (26) of Mn; Ck, the last estimate renormalizesto give the probability of core-size at k = �0n:Pr (Xn = k) = Ck [zn]Hk(z)Mn = c3=2m3=2 g1�2=33 �(2=3)2�p3 n�2=3 �1 +O(n�1=3(logn)4)� :(35)For nonseparable cores of general maps, one has eK(z) = (1+z)2(z(z�3)2)1=3=z,� = 1, �3 = 1=6 and g1 = 3=2 and the theorem follows as a specialization ofEquation (35).A similar reasoning proves that the estimate remains valid for n = 3k + e withe constant, and more generally for any e that does not grow \too fast" (in fact,e = o(n2=3)). It is interesting to contrast our approach with that of [7]: there, theauthors use a circle centred at the origin that passes though the double saddle point;in other words, because the saddle point is double, the contour adopted in [7] is astationary phase contour that does not bene�t of strong concentration properties;accordingly the proof in [7] needs to appeal to estimates of oscillating integralsbased on the method of Van der Corput, but the situation seems less favourablefor deriving good error bounds. In contrast, as we see next, our approach extendsrather easily to a complete analysis in the central region.2.3. Nearby saddles. When k is close to �0n, we choose in the representation (29)an integration contour � that catches simultaneously the contributions of the twosaddle points � 0 and � . For this purpose, we adopt a contour that goes throughthe mid-point, � := (� 0 + �)=2; and, like in the previous case, meets the positivereal line at an angle of �2�=3. Local estimates of the integrand, once suitablynormalized, lead to a complex integral representation that eventually reduces toAiry functions.Theorem 3 (Local limit law and nearby saddles). The probability distribution ofcore-size admits a local limit law of the Airy type in the following sense: for anyreal numbers a; b, one has, as n!1,�n := supa� k��0nn2=3 �b ����n2=3 Pr(Xn = k)� p` cA�ck � �0nn2=3 �����! 0;(36)with A the Airy density of De�nition 1, p` = 13 , and c = 3422=3.



RANDOM MAPS AND AIRY PHENOMENA 17The method also provides an estimate of the rate of decay of �n, which turns outto be of the same order as the relative error term at the centre of the distribution;see (39) below.Proof. The proof parallels closely the one of Theorem 2. We set k = �0n + xn2=3where x lies in a �nite interval of the real line. The kernel is now a perturbation ofthe previous one: K(z) = log�(�=z) �0  xn�1=3�.The contour of integration now comprises two small segments ��1;��2 of length ��meeting in � = (� 0 + �)=2 at an angle �2�=3 with the positive axis, completed bythe arc of a circle simply encircling the origin. The quantity �� is chosen like beforeand, for asymptotic purposes, we need only consider subparts �1;�2 of ��1;��2that have length � = (logn)n�1=3 satisfying (33) above.We estimate the contribution I1;2 arising from �1 [�2, which is the signi�cantpart of the contour. The distance between the two saddle points �; � 0 is O(n�1=3)which represents the geometric \scale" of the problem. One thus sets z = � +u (with juj < n�1=3 logn). In the neighbourhood of �, local expansions of Kand G are somewhat more complicated and are then best checked (with suitablemonitoring) by a computer algebra system like Maple. The computation relieson the assumption x = O(1), but some care in performing expansions is requiredbecause of the relations (33), namely n�3 !1 and n�4 ! 0.The local expansions of the functions G(� + u) and K(� +u) for x bounded andsmall u are found to beK(� + u) = �0 � �00xn�1=3 � �000x3n�1 + �1x2un�2=3 � �3u3 +O(n�4=3 log4 n) ;G(� + u) = g0xn�1=3 � g1u+O(n�2=3 log2 n):There �0; �00; �000 ; �1; �3; g0; g1 are computable positive numbers and the error termsare valid for u 2 �1 [�2. The change of variable u = vn�1=3 givesI1;2 = n�1=3 Z �(g0x� g1v)n�1=3 + �1� e�0n��00xn2=3��000 x3+�1x2v��3v3+�2 dv= exp(�0)n n�2=3 Z �(g0x� g1v) + n1=3�1� e��000 x3+�1x2v��3v3e�2 dv= exp(�0)n n�2=3 Z (g0x� g1v)e��000 x3+�1x2v��3v3 dv (1 +O(�2)):By convention, the variables �1 and �2 generically denote error terms that satisfy�1 = O �n�2=3(logn)2� and �2 = O �n�1=3(logn)4�, and are uniform in x andn; integration takes place over the union of two segments �01;�02 each of length�n1=3 = logn. Perform �nally the change of variable v = bt (with b = (3�3)�1=3)and complete (introducing a negligible error) the integration path to e�2i�=31:[zn]H(z)k = exp(�0)n2i�n2=3 b2g1 Z 1e2i�=31e�2i�=3( g0wg1x� t)e��000 x3+�1x2bt� t33 dt (1 + �2)= exp(�0)n n�2=3cA(cx)(1 + �2):The reduction to Ai(x) and Ai0(x) is achieved by an integral representation equiv-alent to De�nition 1 (see Appendix B for details). The Airy density function Ainvolves the scaling factor c = bg1 (also: �000 = 23c3, �1b = c2, g0bg1 = c). In summary,



18 C. BANDERIER, P. FLAJOLET, G. SCHAEFFER, AND M. SORIAfor x = O(1) and k = �0n+ xn2=3, the main estimate found is[zn]Hk(z) = kn��n  (�)k n�2=3cA(cx)�1 +O(n�1=3(logn)4)� ;(37)which gives eventuallyPr(Xn = k) = n�2=3p` cA(cx)�1 +O(n�1=3(logn)4)�(38)For nonseparable cores of general maps, one �nds p` = 13 , c = 3422=3, and thestatement follows.Theorem 3 together with the companion Theorem 7 below answer precisely aconjecture of Bender et al. in [7, p. 274], where the authors say (notations adjusted):\we believe that for jk��0nj = xn2=3 the probability is asymptotic to [some unknownfunction] �(x)n�2=3."The quantity �n in (36) measures the \speed of convergence" of the discretedistributions of Xn to the Airy density limit. This speed is dictated by the errorterm �2 above, so that one has�n = O �n�1=3(logn)4� :(39)This error term can be improved to O(n�1=3) provided expansions are pushed tothe next order, and a complete asymptotic expansion could even be derived. We donot continue in this direction but turn instead to the analysis of coalescent saddlepoints that gives access to a wide region of k values|this however at the expenseof a somewhat increased technical complexity.Remark. The situation encountered with maps resorts to a general discussionof coe�cients of the form [zn] (z)k�(z)n(with the possible addition of cofactors), this in critical regions where the basicsaddle point method breaks down. The case of maps leads to coalescence betweena �xed saddle point and a movable one, but other situations could be similarly dealtwith5. Equivalently, the problem can be rephrased as one of estimating coe�cientsof trivariate rational functions,[umvkzn] 1(1� u�(z))(1� v (z)) :Under suitable conditions, an Airy phenomenon must take place when m � n andk � �0n. Pemantle [40] has launched an ambitious research programme that aims atrelating asymptotic coe�cient estimates to geometric properties of singular varietiesand it would be of obvious interest to relate the present study to Pemantle's results.At least, our results indicate that Airy phenomena and, more generally, stablelaws of rational index must be present in certain critical problems of multivariateasymptotic analysis.5Regarding the estimate at the centre, if at � the cofactor G has a zero of order p and thekernel K has a saddle point of multiplicity q, then a factor �( p+1q+1 ) should replace �( 23 ). Moregenerally, functions akin to stable laws (de�ned in Appendix A) of rational index are expectedin the central region. We are however not aware at the moment of any natural combinatorialexample involving saddle points of multiplicity larger than 2.



RANDOM MAPS AND AIRY PHENOMENA 193. Coalescing saddlesIn the present section, we provide a uniform description of the transition regionsaround n=3, allowing k to vary in a wide region between o(n) and n�o(n). To thispurpose, we set k = �0n+ �n = (1=3 + �)n;and derive estimates valid uniformly for � in any compact subinterval of ]� 13 ; 23 [.Theorem 4 (Wide region and coalescent saddles). Let k = (1=3 + �)n for � inany compact subinterval of ]� 13 ; 23 [. Then, Pr(Xn = bn=3 + �nc) equals13(1 + 3�)3=2n2=3 �a12 A(n1=3�) + a4n2=3 exp��23n�3�Ai(n2=3�2)� (1 +O (1=n)) ;(40)where the quantities �, a1, and a4 depend only on � (we set L(x) = x logx):� = �32 L(1 + 3�=2) + 12 L(1� 3�=2)� 12 L(1 + 3�)�1=3 ;(41) a12 = 34 � 3�=�(1� 9�2=4)(1 + 3�)�1=2 and a4 = 29�2s3�� � a14�2 :(42)The error term of (40) is uniform for � in any compact subinterval of ]� 13 ; 23 [.The estimates involve Airy functions composed with the quantity n1=3� thatdepends nonlinearly on �. In particular, Formula (40) extends the estimates ofSection 2.3 when k = n=3 + xn2=3, since in that case � ! 0 while n1=3� is propor-tional to x, and the following approximations apply as � ! 0:a12 = 3422=3(1� 5�=4) +O(�); a4 = �3821=3 +O(�); � = 3422=3(� � �2=2) +O(�3):This results in the following second order approximation, which is uniform in thecentral region x = O(1) and re�nes Theorem 3: with c = 3422=3,Pr(Xn = bn=3 + xn2=3c)= cA(cx)3n2=3 � �1� ( 134 � cx2 A0(cx)A(cx) )xn�1=3 +O(n�2=3)� :(43)As soon as k leaves the n=3 � O(n2=3) region, the two Airy terms in (40) startinterfering and large deviations are then precisely quanti�ed by (40). When k driftsaway to the left of n=3 (and n1=3� ! �1), basic asymptotics of Airy functionsshow that the formula simpli�es to agree with the results of Section 2.1.Proof. The transition phenomenon to be described is the coalescence of two simplesaddle points into a double one6. We follow the book of Bleistein and Handelsman[8, Sec. 9.2], where the method originally due to Chester, Friedman, and Ursellis exposed (see also the books by Olver [39, pp. 351{361] and Wong [52]). Thesimplest occurrence of the phenomenon appears in the integration of exp(nf(t))with a cubic function f , f(t) = t33 � �2t+ r:6As pointed out by a referee, the expansions derived here look similar to uniform asymptoticexpansions derived by Wong and his coauthors for Laguerre and Charlier polynomials [9, 26].
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Figure 6. The landscape of <(f(t)) for � = 1 and � = 0.Indeed, in this case there are two saddle points +� and �� (given by f 0(t) =t2 � �2), coalescing into a double saddle point as � ! 0. The landscape of <(f(t))is represented on Figure 6 for � = 1 and � = 0. As expected, this landscape aroundt = 0 is very similar to the ones of Figure 4 near z = 1. The strategy consists inperforming a change of variable in order to reduce the original problem (29) to thispurely cubic case. Denote the kernel of the integral as K(z) = log( k=n�=z), withk = (1=3 + �)n and the dependency on � kept implicit. The integral in (29) isI(n; �) = Z�G(z) exp(nK(z))dz;where � is any contour that simply encircles the origin. In accordance with thediscussion above, we seek a change of variable of the formK(z) = � �t3=3� �2t�+ r:(44)The parameters � = �(�) and r = r(�) must be chosen in order to map onelandscape onto the other and in particular � and � 0 onto +� and �� respectively.This leads to the conditionsr = 12[K(�) +K(� 0)] = K(�)� 23�3 = log( (�)k=n=�)� 23�3�3 = 34[K(�) �K(� 0)]:(45)There are three possibilities for � and we choose the real cubic root. In view of thevalues of K, � and  , this leads to the de�nition (41).The change of variable must satisfy (44) and map � and � 0 onto � and ��respectively. In fact there exists a unique mapping z ! t of this type that isconformal and sends the disc D of diameter [ 12 ; 32 ] to a domain D�. We note �rstthat we may freely restrict � to a subinterval of [� 13 ; 23 ] provided this intervalcontains the central value �0. Indeed, outside of such an interval, the classicalasymptotic estimates of the Airy function show that the statement reduces to whathas been obtained earlier by standard saddle point arguments. We thus take �in [� 110 ; 110 ]. Then, for � in [� 110 ; 110 ], the image D� contains the �xed disc D0of diameter [� 14 ; 14 ]. In other words, it is possible to choose consistently for eachz in D, an image t among the three branches allowed by (44). As illustrated byFigure 7, this mapping is very close to the linear mapping that sends � and � 0 onto� and ��.
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–0.6 –0.4 –0.2 0 0.2 0.4Figure 7. The conformal mapping z ! t for � = �1=10: (i) Agrid in the z-plane and a part of the path �; (ii) the correspondingimages in t-space.The existence of this conformal mapping is proven in Appendix C. Let z(t) bethe inverse mapping and G0(t) = G(z(t)) _z(t) where _z(t) = dzdt . Remark that G0(t)is analytic in D0, since the change of variable is conformal and G(z) is analytic inD.Next, we make the contour � precise and simultaneously proceed with the esti-mation the integral. As is usual with saddle point integrals, we �rst need to localisethe integral in D, neglecting the parts of the path down in valleys,I(n; �) = Z�G(z) exp(nK(z)) dz = Z�\DG(z) exp(nK(z)) dz + �1:The geometry of the landscape immediately implies that the portion �nD of � canbe chosen so as to wind about the origin while lying entirely in valleys, and we �xsuch choice once and for all. Consequently, the integral on � n D is bounded bythe values at its endpoints, themselves �xed to be at z = �d + e�2i�=3, with �d thedominant saddle point (the one closest to the origin). The error term then satis�es�1 = O(cn)I(n; �) for some 0 < c < 1, i.e., it is exponentially negligible.Inside the disc D we apply the change of variable (44), then restrict attentionto the disc D0, and deform the contour �\D into the relevant �nite part of �1 =fte� 2i�3 ; t � 0g: I(n; �) = Z��\D� G(z(t)) exp(nf(t)) _z(t) dt+ �1= Z�1\D0 G0(t) exp(nf(t)) dt+ �2:As each end point is moved between two locations low in the valleys, the seconderror term �2 is again exponentially negligible.In order to evaluate the last integral one needs to dispose of the cofactor G0(t).This is done via an integration by part. Since G0(�) = 0 and G0 is regular, takinga1 = G0(��)=(2�) leads toG0(t) = (� � t)a1 + (t2 � �2)H0(t);



22 C. BANDERIER, P. FLAJOLET, G. SCHAEFFER, AND M. SORIAwhere H0(t) is regular in D0. The expression (42) for a1 follows from this de�nitionusing the value of _z(��) as computed in Appendix C. The integral I(n; �) is thenI(n; �) = exp(nr) Z�1\D0(� � t)a1 exp ��n �t3=3� �2t�� dt+R0;where after integration by part, and up to another exponentially negligible term,R0 = exp(nr)n Z�1\D0 H 00(t) exp ��n �t3=3� �2t�� dt+ �3:The integration by part above has reduced the order of magnitude by a factorn, but because of the cancellation G0(�) = 0, this second order term might in-terfere. Fortunately, R0 is amenable to the same treatment as I(n; �). Iteratingthe integration by part could lead to a complete expansion of I(n; �) but we shallcontent ourselves with the next term, in which no further cancellation occurs. SetH 00(t) = a2� + a3t+ (t2 � �2)H1(t); with H1(t) regular in D0, and a2, a3 functionsof �; we haveI(n; �) = exp(nr) Z�1�� �a1+ a2n �� t�a1� a3n �� exp ��n �t3=3� �2t�� dt+R1;where the integral has been extended to the whole of �1 at the expense of yetanother exponentially negligible term. The error term isR1 = exp(nr)n2 Z�1\D0 H 01(t) exp ��n �t3=3� �2t�� dt+ �4:In terms of the Airy function, we thus have directlyI(n; �) = 2i� exp(nr)n2=3 ��n1=3�a1+ a2n �Ai(n2=3�2)� �a1� a3n �Ai0(n2=3�2)�+R1;and the error term R1 can be estimated: following [8, p. 375], there exist d0 andd1 positive such thatjR1j � exp(nr)n2 � d0n1=3 jAi(n2=3�2)j+ d1n2=3 jAi0(n2=3�2)j� :The theorem follows from formulae (29), (23), (26), (45) and the de�nition ofthe map{Airy law, upon setting a4 = (a2 + a3)�.4. Singularity Analysis of the Composition SchemaThere are two aspects to the enumeration of maps. One aspect relies on whatwe have called the \Lagrangean framework", and has been treated accordingly bysuitable adaptations of the saddle point method. The other one employed by Gaoand Wormald in [27] is further developed now: it exploits directly the fact thatmap generating functions like M;C;H each have a unique dominant singularitythat is isolated and involves the singular exponent 32 . In this section, we providean analysis of the probability law arising from any functional composition schemaof singular exponent 3=2 under the \criticality" assumption already encountered inSection 1.3; the abstract conditions are (46), (49), and (50) below. (Other non-critical cases turn out to be in fact simpler and are already known from [4, 25, 45]and related works.) We establish that the \map{Airy" distribution is due to appearsystematically in such contexts. Technically, this section extends to large powersthe principles of Flajolet and Odlyzko's singularity analysis method [22, 38] andconstitutes an alternative to the method of nearby saddles.



RANDOM MAPS AND AIRY PHENOMENA 23As we aim at analysing combinatorial generating functions, we restrict attentionin what follows to functions with nonnegative coe�cients at 0. First, a function Fanalytic at 0 with radius of convergence rF is said to be singular with exponent 32if the following conditions hold:8<: F (z) is analytic on jzj = rF , z 6= rF ;F (z) is continuable in � := � z �� jzj < RF ; z 62 [rF ; RF ]	;F (z) = f0 � f1 (1� z=rF ) + f3=2 (1� z=rF )3=2 +O((1� z=rF )2) as z ! rF in �:(46)There, f0; f1; f3=2 are positive constants and RF is some constant satisfying RF >rF . This fact, by virtue of singularity analysis, entails[zn]F (z) � 34 f3=2p� r�nFn5=2 :(47)Next, as seen in Section 1, the equations describing core-size are of the composi-tion type. Given generating functions with nonnegative coe�cients, C and H , weconsider in the abstract the functional composition schemaM(z; u) = C(uH(z))and the associated family of probability distributionsPr(Xn = k) = CkMn [zn]H(z)k; Ck := [zk]C(z); Mn := [zn]M(z; 1):(48)Combinatorially, this corresponds to a composition M = C � H between classesof objects, where objects of type H are substituted freely at individual \atoms"(e.g., nodes, edges, or faces) of elements of C. The bivariate generating functionis such that [znuk]M(z; u) gives the number of M{objects of total size n whoseC{component (the \core") has size k and Xn is the corresponding random variabledescribing core-size in this general context. We then de�ne the composition schemaC(uH(z)) to be of singular type ( 32 � 32 ) by the conditionC(z); H(z) have singular exponent 32 in the sense of (46).(49)In addition, the composition schema is said to be critical if there is exact coincidencebetween the singular value of H and the singularity of C:H(rH ) = rC :(50)(Criticality is satis�ed in all composition schemas of maps examined in this paper.)Here come a few basic observations on the \physics" of the counting problem.We denote the radii of convergence of C and H by rC = � and rH = �, andimpose the condition H(�) = � expressing criticality (50). The local expansionsare assumed to conform to (46):H(z) = � � h1(1� z=�) + h3=2(1� z=�)3=2 + O((1� z=�)2)C(z) = c0 � c1(1� z=�) + c3=2(1� z=�)3=2 + O((1� z=�)2):(51)First, straight singularity analysis (see (46)) provides the asymptotic countsHn � [zn]H(z) � 3h3=24p�n5 ��n; Ck � [zk]C(z) � 3c3=24p�k5 ��k;Mn � [zn]M(z; 1) � 3m3=24p�n5 ��n; where m3=2 := c1 h3=2=� + c3=2(h1=�)3=2:



24 C. BANDERIER, P. FLAJOLET, G. SCHAEFFER, AND M. SORIAAlso, from the de�nition (48) of the distribution of core-size Xn and the fact thatany H(z)k has itself a singular expansion of exponent 32 , there results thatPr(Xn = k) � h3=2m3=2 k �k�1Ck ;(52)for any �xed k. Thus, for bounded values of k, the probability decays initiallyroughly like 3h3=2 c3=24m3=2 �p� k�3=2;(53)(as proved below, this estimate as k !1 remains in fact valid as long as k = o(n))and the O(1) region of k contributes a total mass of aboutps := c1h3=2=(�m3=2);(54)as seen by summation of (52). Thus, the bimodal character present in cores of map(Section 1.1 and Figure 3) is generally present in compositional schemas.Finally, the expectation of core-size in a randomM{structure of size n is foundby similar means to satisfyE(Xn) = 1Mn [zn]� @@uC(uH(z))�u=1 � � c3=2m3=2 (h1=�)1=2� � n:(55)What is noticeable is that the mean of Xn is O(n), while the distribution assigns afraction of the probability mass near the origin.Theorem 5 (Composition Schema (3=2 � 3=2)). Consider a critical combinatorialschema M := C � H of type ( 32 � 32 ), with parameters as speci�ed in (51). Thedistribution of core-size of a random element in M with size n has three asymptoticregimes depending on the value of k=n in comparison to�0 := �=h1:(i) For k = �n, with � �xed and 0 < � < �0, the left tail is polynomially small:Pr(Xn = k) � 3h3=2 c3=24m3=2 �p� (1� �=�0)�5=2 k�3=2 :(ii) In the central region k = �0n+ xn2=3 with x = O(1), an Airy law holds:n2=3 Pr(Xn = �0n+ xn2=3) � ��3=20 c3=2m3=2 cA(cx) where c = 1�0 � h13h3=2�2=3.(iii) For k = �n, with � �xed and � > �0, the right tail is exponentially small:Pr(Xn = k) = O(Ak) for some A � A(�), 0 < A < 1.Proof. The analysis7 reduces to estimating coe�cients of large powers of H(z) andthe starting point is Cauchy's coe�cient formula[zn]H(z)k = 12i� Z
 H(z)k dzzn+1(56)7To keep this section short, we only indicate the major analytic steps and do not attemptto make error terms systematically explicit or uniform (see however Figure 9 for indications).Details can be easily supplied by reference to the singularity analysis paper [22] as the approachis somewhat similar.
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Figure 8. The three contours (
1; 
2; 
3) corresponding to thethree regimes of the distribution of core-size (left tail, centre, righttail, resp.).now evaluated directly without reference to any parametrization. Contours corre-sponding to the three cases are depicted in Figure 8.Common to cases (i) and (ii), we choose the contour 
 as being composed of anarc of some circle of radius R > � connected to a loop around [�;R]. The open loopapproaches � at an angle �� (where � has to be strictly less than �=2) then windsaround � while staying at a distance from � chosen to be n�r, and then continuesat an angle � from the positive axis. (We shall take � = 0 and r = 1 for the lefttail, � = �=3 and r = 2=3 for the central region.)A technical point must be noted before we can proceed. Let DR be the disk ofradiusR centred at 0. In what follows, we analyse large powers of h(z) = H(z)�=z inparts of some DR. Since H(z) has nonnegative coe�cients and a unique dominantsingularity, along any circle centred at 0 of radius < �, it attains its maximummodulus uniquely on the positive real axis, but this property does not necessarilyhold outside of the disk of convergence jzj = �. However, if any �xed neighbourhoodV of � is excluded, one can still ensure that jH(z)j < H(�) and jh(z)j < h(�) forz 2 DR n V . In the analysis described below, we also make use of local expansionsnear � and base the analysis on the fact that jh(z)j decreases locally away from �along certain directions in a neighbourhood V of �. Again, this need not holdglobally , but, by having restricted V suitably, we can always assume that thisdecrease holds throughout V . In what follows the contours 
 that we choose areimplicitly taken inside domains DR; V that satisfy these requirements. In this way,we ensure two properties: (a) the contribution to (56) that is due to the arc of thelarger circle is exponentially small compared to �k��n; (b) the dominant part ofthe integral arises from a vicinity of the singularity where local expansions can beassumed to be valid throughout. In particular, one has for z near � in a �-domainof the form (46):h(z) � H(z)�z = ��� �1 +�1� h1 �� �Z + h3=2�� Z3=2 +O(Z2)� ; Z := 1� z�:(57)



26 C. BANDERIER, P. FLAJOLET, G. SCHAEFFER, AND M. SORIA(The determinations are the principal ones when Z > 0, corresponding to z left of�.)(i) Left tail. For this regime, the local expansion (57) shows that the functionh(z) = H(z)�=z decreases when going away from 1 parallel to the real axis sincethe coe�cient of Z is positive when � < �0 and Z has there a negative real part.The contour 
1 adopted then includes a loop in the z{plane|this is exactly theHankel contour of singularity analysis|passing at distance 1=n from the singularityand oriented positively. Only a small part of the contour, the \range", mattersasymptotically. The standard change of variable z = �(1� t=n) is performed and,up to exponentially small terms, only the part t 6 (logn)2 of the contributes.Then the Cauchy kernel z�n becomes, in the limit n!1, the exponential kernelet multiplied by ��n, and the expansion of H(z)k providesH(z)kzn+1 dz = �k��nn e�t�1 + kh3=2� t3=2n3=2 +O(n�1:99)� dt; � := 1� h1� kn:(58)In the t{plane, the image contour of 
1 is now completed into a loop 
01 coming from�1� i, encircling the origin on the right and going back to �1+ i (introducingagain only exponentially small error terms). In the process, termwise integration ofthe expansion (58) against the kernel e�t shows that the contribution of the term 1is negligible (the complete integral R
01 e�tdt is identically 0). One �nds in this waythat [zn]H(z)k � �k��nn5=2 h3=2k� 12i� Z
01 et(1��h1=�)t3=2 dt� �k��n�(�3=2)n5=2 h3=2k� (1� �h1=�)�5=2;(59)where the second line derives from Hankel's original representation of the Gammafunction [51, Sec. 12.22]: 1�(s) = 12i� Z (0+)�1 t�set dt:From there, the left-tail estimates (i) result after normalization byCkMn � c3=2m3=2 �nk�5=2 ��k�n:(60)The formula (59) extends (53) provided k tends to in�nity more slowly than �0n,but it introduces a curious distortion factor of (1� �=�0)�5=2. The estimate obvi-ously ceases to be valid when � approaches �0.(ii) Central region. In this case, we adopt as integration contour in the z{planea contour 
2 including a positively oriented \loop" that is made of two rays at anangle of �=3 and ��=3 with (0;+1); also, the two rays intersect on the real axisleft of the singularity, at a distance chosen to equal �n�2=3.When � = k=n is exactly at �0, the term linear in Z disappears from (57). Also,the argument of Z3=2 is �� so that h(z) = H(z)�=z decreases in modulus whengoing away from �. When k=n is within O(n�1=3) from �0, jh(z)j decreases alongthe contour away from � provided Z is a bit larger than n�2=3, say, Z > n�2=3 log2 n(since, then, the terms involving Z3=2 take over the terms linear in Z), and we mayneglect the corresponding contribution to the integral as it is exponentially small(roughly like exp(� log3 n)).



RANDOM MAPS AND AIRY PHENOMENA 27We perform the normalization z = �(1� t=n2=3) and, so that, on the signi�cantpart of the contour, one has t 6 log2 n. First, an easy calculation shows that, inthe range,H(z)kzn+1 dz = ��k��nn2=3 exp��h1� xt+ h3=2h1 t3=2 + O(n�0:33)� dt:(61)Next, the variable t evolves on a contour made of two segments of angle 2�=3and �2�=3, intersecting at �1, and each of length O(log2 n). At the expenseof exponentially small error terms, this contour can be extended back to in�nity.Reverting the orientation and shifting the contour by 1, this results for t in the newcontour composed of two in�nite rays, and Equation (61) implies[zn]H(z)k � �k��nn2=3 12i� Z 1e2i�=31e�2i�=3 exp�h3=2h1 t3=2 � h1� xt� dt :The integral representation is one of the basic forms of the Airy distribution (seeAppendix B). In summary, we have found a \central" estimate for large powersof H , [zn]H(z)k � �k��nn2=3 �h1 cA(cx)which, after the normalization (60), gives precisely the Airy density in the centralregion (ii). As a consistency check, note that the total mass concentrated near �0ncomes out as 1 � ps, where ps is the mass of the \small" k region (54); also thecontribution to mean core-size due to the central region is � �0(1 � ps)n, whichmatches asymptotically the direct estimation in (55).(iii) Right tail. Without loss of generality, we assume that H(z) is of exactorder z at 0 and consider accordingly � < 1. Let � be any positive number strictlyless than the radius of convergence � of H(z). Since H has nonnegative coe�cients,trivial bounds applied to coe�cient integrals entail[zn]H(z)k 6 �H(�)�� �n :(62)Let h(z) = H(z)�=z. One has trivially h0(0+) = �1 while, at the other end,h0(�) = ���2 ��h1� � 1�, a quantity that is strictly positive precisely when � > �=h1.Thus h(z) is decreasing away from 0 and increasing when z approaches � from theleft. Consequently, it attains its minimum value at some point �0 2 (0; �) and theinequality h(�0) < h(�) = ��=� holds there. (In fact, the minimum is unique andthus determined by the relations: h0(�0) = 0 and 0 < �0 < �.) Thus, from thebound (62) taken at � = �0, one �nds that [zn]H(z)k 6 h(�0)n: Combining this lastinequality with the known asymptotic forms of Ck and Mn shows thatPr(Xn = k) = O�h(�0)h(�) �n ;where �0 is a computable function of �. This constitutes the exponentially smallestimate of the right tail (iii), with A = h(�0)=h(�). The point �0 is in fact a saddlepoint of the integrand. As is true of coe�cients of order n in powers of order nof \most" analytic functions (see e.g., the survey [28]), the saddle point methodapplies. Here, it su�ces to take as integration contour the circle of radius �0 that



28 C. BANDERIER, P. FLAJOLET, G. SCHAEFFER, AND M. SORIALeft tail Central region Right TailMethod: singularity analysis this paper saddle pointType: Z ett3=2dt ��(�32)�1� Z et3=2�xtdt �Ai(x2)� Z e�t2dt ��(12)�Angle (�): �0 ��3 ��2Dist. to sing.: 1n 1n2=3 O(1)Range: log2 nn log2 nn2=3 log2 nn1=2Error: n�1=2 n�1=3+� n�1=2Figure 9. Composition of singularities: The methods, typesof normalized integrals, contours (angle, distance to singularity),e�ective ranges where the integrals are concentrated, and approx-imation errors corresponding to the three regimes of the law ofcore-size.is a saddle-point contour. In this way, the upper bound is easily re�ned into theasymptotic form cAnn�1=2.Closer inspection of the proof reveals that the error terms can be made uniform(see the last line of Figure 9): for the left tail, this requires � to be con�ned to aclosed subinterval of (0; �0) for the central region, uniformity is granted when x isrestricted to any �nite interval, which corresponds to k = �0n�O(n2=3).It is quite striking to watch the interplay between the various regimes analysedand the choice of the corresponding contours. See Figure 9 for a summary, which isto be compared to Figure 5 for the saddle-point approach. As is expected from thegeneral theory [22], when k remainsO(1), the usual Hankel contour (at distance 1=nfrom �) fully captures the singular behaviour of the generating functions (see (52))and it continues to do so as long as k remains smaller than �0n. As soon as thecentral region k � �0n is approached, the Hankel contour must be moved awayfrom the singularity (at distance n�2=3) while being folded back towards the circleof convergence as shown on Figure 8. Finally, when k exceeds �0n, the contourmoves further back (it can be entirely folded within the disk of convergence) passingthrough a saddle point that is then at distance O(1) from �.5. Varieties of maps, largest components, and random samplingThe results obtained in the particular case of nonseparable cores of maps belongto a very general pattern in the physics of random maps. In this section, we�rst exhibit �fteen classes of maps that resort to the composition schema and theLagrangean framework (Section 5.1). The analytic properties, in terms of eitherthe associated saddle point geometry or the singularity structure, entirely parallelthe treatment given for nonseparable core of general maps. Accordingly, an Airylaw of the map type holds for multiconnected cores of several varieties of maps(Theorem 6). Next, in Section 5.2, we follow the lines of earlier works of Bender,Gao, Richmond, and Wormald and \transfer" the estimates of core-size to largestmulticonnected components of random maps (Theorem 7). Various consequences



RANDOM MAPS AND AIRY PHENOMENA 29for random sampling are given in Section 5.3, and we conclude with simulationresults that support very well all our previous analyses (Section 5.4).5.1. Map related composition schemas. We start with a few de�nitions ofclasses of maps that have proved to be of interest in the combinatorial literature.Families of maps. A map is loopless if it does not contain any loop; bridgelessif it does not contain any bridge (a bridge, or isthmus, is an edge whose removaldisconnects the map); simple if it does not contain multiple edges nor loops; bipar-tite if the vertices can be coloured in two colours such that each edge is incident toboth colours.A map is k-connected , k � 2, if it cannot be separated into several connectedcomponents by removing k� 1 vertices. A map is nonseparable if it is 2-connectedand loopless, with an exception for the two maps with one edge (the bridge andthe loop) that are taken to be nonseparable by convention.A map is a singular triangulation if all its faces have degree three (includingthe outerface); it is a triangulation if moreover it is 3-connected (these correspondto the usual geometric triangulations, with straight line triangles and no multipleedges); it is an irreducible triangulation if moreover all its cycles of length threebound a face. Observe that 3-connected maps are in one-to-one correspondencewith graphs of convex polyhedra, and that irreducible triangulations are also called4-connected maximal planar graphs .Table 1 illustrates these de�nitions by providing for various families the �rst fewterms of their generating functions. These generating functions are well-known [29,35, 43] and the ones given are relative to rooted maps. Historical references on theenumeration of these families can be found in [35].Many families of maps have algebraic generating functions, that admit La-grangean parametrizations of the form (4). Moreover, they normally have a uniquedominant singularity and a singular exponent equal to 3=2, with the validity ofTable 1. A selection of classical families together with their as-sociated generating functions, M(z) = Pn�1Mnzn, where Mn isthe number of maps in M that have size n.maps, size n � 1 generating function (�rst terms)M1 general maps, n edges M1(z) = 2z + 9z2 + 54z3 + 378z4 + 2916z5M2 bridgeless maps, n edges M2(z) = z + 3z2 + 13z3 + 68z4 + 399z5M2 loopless maps, n edges M2(z) = z + 3z2 + 13z3 + 68z4 + 399z5M3 simple maps, n edges M3(z) = z + 2z2 + 6z3 + 23z4 + 103z5M4 nonseparable maps, n edges M4(z) = 2z + z2 + 2z3 + 6z4 + 22z5 + 91z6M5 nonseparable simple maps, n edges M5(z) = z + z3 + z4 + 6z5 + 16z6 + 71z7M6 3-connected maps, n+ 1 edges M6(z) = z5 + 4z7 + 6z8 + 24z9 + 66z10B1 bipartite maps, n edges B1(z) = z + 3z2 + 12z3 + 56z4 + 288z5B2 bip. simple maps, n edges B2(z) = z + 2z2 + 5z3 + 15z4 + 52z5B3 bip. bridgeless maps, n edges B3(z) = z2 + z3 + 6z4 + 16z5 + 71z6B4 bip. nonseparable maps, n edges B4(z) = z + z2 + z3 + 2z4 + 6z5 + 19z6B5 bip. nonsepar. simple maps, n edges B5(z) = z + z4 + 3z6 + 7z7 + 15z8 + 63z9T1 singular triangulations, n+ 2 vert. T1(z) = z + 4z2 + 24z3 + 176z4 + 1456z5T2 triangulations, n+ 3 vert. T2(z) = z + 3z2 + 13z3 + 68z4 + 399z5T3 irreducible triangulations, n + 3 vert. T3(z) = z + z3 + 3z4 + 12z5 + 52z6 + 241z7



30 C. BANDERIER, P. FLAJOLET, G. SCHAEFFER, AND M. SORIAthe singular expansion being as required by Theorem 5. Table 2 illustrates this\universal" phenomenon by providing the parametrizations, dominant singularityand singular expansion for the families of Table 1.Composition schemas. Table 3 presents some interesting composition schemasrelating the previous families. For each line of the table a basic family M and acore family C are given, together with four seriesM(z), C(z), H(z) and D(z). Theseries M(z) and C(z) are the generating function of the familiesM and C and aregiven in terms of the series of Table 2. Except for the last line, the compositionTable 2. Generating functions, parametrizations and singular ex-pansions for the families of Table 1. In this table,M(z) = 	(L(z)),where L(z) = z�(L(z)).M � 	 1=� singular expansion (Z = 1� z=�)M1 3(1+y)2 2y�y23 12 13 � 43Z + 83Z3=2 +O(Z2)M2 3(1+ y4 )4 y(y2+3y�9)27 25627 527 � 1627Z + 32p681 Z3=2 +O(Z2)M3 (y+3)23�y �y(y2+3y�9)27 8 527 � 3281Z + 256729Z3=2 +O(Z2)M4 (1+y)3 y(2+y�y2)(1+y)3 274 13 � 49Z + 8p381 Z3=2 +O(Z2)M5 (y+1)6(2y+1)2 y(�y2+y+1)(y+1)3 729128 527 � 32135Z + 28p153453 Z3=2 +O(Z2)M6 11�y y5(y2+y�1)(1+y)3(y2�y�1) 4 1540 � 1678100Z + 32729Z3=2 +O(Z2)B1 2(1+y)2 y(2�y)4 8 14 � Z + 2Z3=2 +O(Z2)B2 8(1+y)24+2y�y2 y(2�y)4 325 14 � 59Z + 50p5243 Z3=2 +O(Z2)B3 (y+2)632(1+y)2 y2(8�4y2+4y�y3)32(1+y)2 729128 7128 � 189640Z + 18p15125 Z3=2 +O(Z2)B4 32(1+y)2(y2�2y�4)2 y(2�y)4 12825 14 � 513Z + 502197Z3=2 +O(Z2)B5 128(1+y)2(4+2y�y2)3 y(y�2)4 512125 14 � 517Z + 50p854931 Z3=2 +O(Z2)T1 2(1+y)3 � y(y�1)2 272 18 � 38Z + p33 Z3=2 +O(Z2)T2 (1+y)4 �y(y2+y�1) 25627 527 � 1627Z + 32p681 Z3=2 +O(Z2)T3 1(y�1)2 y(y2+y�1)(y�1)(1+y)2 274 532 � 27128Z + 9p3128 Z3=2 +O(Z2)Table 3. Composition schemas, of the form M = C � H + D,except the last one where M = (1 +M)� (C � H).maps, M(z) cores, C(z) submaps, H(z) coreless, D(z)all, M1(z) bridgeless,or loopless M2(z) z=(1� z(1 +M))2 z(1 +M)2loopless M2(z) simple M3(z) z(1 +M) {all, M1(z) nonsep., M4(z) z(1 +M)2 {nonsep. M4(z)� z nonsep. simple M5(z) z(1 +M) {nonsep. M4(z)=z � 2 3-connected M6(z) M z + 2M2=(1 +M)bipartite, B1(z) bip. simple, B2(z) z(1 +M) {bipartite, B1(z) bip. bridgeless, B3(z) z=(1� z(1 +M))2 z(1 +M)2bipartite, B1(z) bip. nonsep., B4(z) z(1 +M)2 {bip. nonsep., B4(z) bip. ns. smpl, B5(z) z(1 +M) {singular tri., T1(z) triang., z + zT2(z) z(1 +M)3 {triangulations, T2(z) irreducible tri., T3(z) z(1 +M)2 {



RANDOM MAPS AND AIRY PHENOMENA 31schema has then the form M = C � H+D;meaning that a map of M either has a core of C in which some substituents ofH are attached, or has no core. In particular the bivariate generating function ofmaps with respect to the size of the core is thenM(z; u) = C(uH(z)) +D(z):Let us now describe more speci�cally these schemas. Recall that maps are rep-resented in the plane with the unbounded face on the right of the root; the insideof a cycle is then de�ned with respect to the unbounded face.� The loopless core of maps is obtained by detaching all maximal loops and theirinterior (maximalmeans not contained within any other loop). Unless the rootis a loop (this case gives D(z)), a loopless core is obtained. Conversely, ateach of the 2k corners of a loopless map of size k, a sequence (1=(1 � ?)) ofloops with a map inside (z(1 +M)) can be attached.� The bridgeless core of maps is obtained by detaching all closest bridges (abridge is closest if there are no other bridge between it and the root). Unlessthe root is a bridge a bridgeless core is obtained. Conversely, at each corner ofa bridgeless map, a sequence of bridge leading to a submap can be attached.(This decomposition is dual to the previous one.)� The simple core of maps is obtained by contracting all maximal cycles oflength two into single edges. Conversely each edge of a simple core may beexpanded into a cycle of length two containing a submap ((1 +M)).� The nonsingular core of singular triangulations is just the simple core ofsingular triangulations so that the schema is essentially the previous one.The di�erence of H(z) is only due to the di�erent de�nition of size (size nmeans here n+ 2 vertices, thus 2n faces and 3n edges).� The nonseparable core of maps was already discussed for general maps andworks identically for bipartite maps.� The 3-connected core of maps is obtained cutting all maximal 2-separatorsand replacing the removed components by edges. This composition schemais described in [48].The last schema, irreducible core of triangulations , is obtained by emptying allmaximal 3-cycles and is described in [7]. It leads to a variant of the compositionschema: the bivariate generating function isM(z; u) = (1 +M(z))C(uH(z)):However this modi�cation does not alter the applicability of our methods.Core-size. From the expansions of Table 2, it is mechanically veri�ed that, foreach schema M = C(H) +D, the dominant singularity of C(z) is precisely H(�),where � is the dominant singularity of both M(z) and H(z). Thus all the com-position schemas listed are critical and the analysis of Section 4 applies directly.(The last schema involves a slight adaptation but clearly resorts to a similar analy-sis.) In addition, as shown by Table 2, all families of Table 1 obey the Lagrangeanframework, Equation (4), and are thus amenable to the saddle point methods ofSections 2, 3 as well.Theorem 6 (Airy law for varieties of maps). Consider any schema of Table 4 withparameters �0, c and p`. The probability Pr(Xn = k) that a map of size n has a



32 C. BANDERIER, P. FLAJOLET, G. SCHAEFFER, AND M. SORIAcore of size k admits a local limit law of the map{Airy type with centring constant�0, scaling parameter c, and weight p`: uniformly for x in a bounded intervalPr�Xn = b�0n+ xn2=3c� = p` � cA(cx)n2=3 �1 +O(n�1=3(logn)4)� :5.2. The size of the largest component. It was observed in [7, 27] that thesize of the core is probabilistically related to the size of the \largest component"in random maps. Largest components are to some extent de�ned on a case bycase basis, except for important situation where the cores under consideration arenonseparable, as we now explain. Indeed the set of nonseparable components of amap is uniquely de�ned by the following procedure: as long as a component containsa separating vertex, cut this vertex into two. This decomposition does not dependon the order in which separating vertices are cut; in particular it can be obtainedby extracting the core, as illustrated by Figure 2, and recursively applying the samedecomposition to each submap. The core of a map is thus one of its components.All schemas of Table 3 lead to similar notions of C-components in M-maps(see [27] for details). The aim of this section is then to characterize the size X�nof the largest C-components in randomM-maps of size n taken under the uniformdistribution.Theorem 7 (Largest components and Airy law). Consider any schema of Table 4with parameters �0 and c. Let X�n be the size of the largest C-component in a randomM-map of size n with uniform distribution. ThenPr�X�n = b�0n+ xn2=3c� = cA(cx)n2=3 �1 + O(n�1=3(logn)4))� :uniformly for x in any bounded interval.Theorem 7 is proven in Appendix D. It extends precisely results of Bender etal. [7, 27] who proved that the largest component is with high probability concen-trated near �0n. To wit:Pr�jX�n � �0nj < �(n)n2=3� �!n!+1 1;(63)where �(n) is any function going to in�nity with n. The following propositioncompletes Theorem 7, and immediately follows from [27, Lemma 4].Table 4. Parameters of the composition schemas of Table 3.maps cores �0 c p`general, M1 bridge/loopless, M2 2/3 3=2 2/3loopless, M2 simple, M3 2/3 34=3=4 2/3general, M1 nonseparable, M4 1/3 3=42=3 1/3nonsep., M4 nonsep. simple, M5 4/5 155=3=36 4/5nonsep., M4 3-connected, M6 1/3 34=3=4 16/81bipartite, B1 bip. simple, B2 5/9 38=3=20 5/9bipartite, B1 bip. bridgeless, B3 3/5 (15=2)5=3=18 3/5bipartite, B1 bip. nonsep., B4 5/13 (13=6)5=3 � 3=10 5/13bip. nonsep., B4 bip. nonsep. simple, B5 5/17 (17=3)5=3 � 3=20 5/17singular tri., T1 triangulations, T2 1/2 (3=2)1=3 1/2triangulations, T2 irreducible tri., T3 1/2 62=3=3 729/2048



RANDOM MAPS AND AIRY PHENOMENA 33Proposition 5. The second largest C-component of a random M-map of size nhas almost surely size O(n2=3).Theorem 7 and Proposition 5 provide an appealing interpretation of the bimodalbehaviour of the core. Indeed, it can be rephrased as follows for nonseparable com-ponents of random maps: A random map m has almost surely a largest nonseparablecomponent of size that is map-Airy distributed and centred around n=3.Now choose a new root r for m among its n edges. There are two possibilities:(i) with probability 1=3, r belongs to the largest component and the core has sizethat is map-Airy distributed and centred around n=3; (ii) with probability 2=3,r misses the largest component and the core is a small component of size almostsurely at most O(n2=3). The two modes of the distributionXn correspond preciselyto these two cases.Finally similar estimates involving the Airy distribution apply to unrooted maps:Theorem 8 (Unrooted maps). The Airy law for largest components (Theorem 7)and the estimates of second largest components (Proposition 5) hold for randomunrooted maps.The fact that unrooting does not a�ect asymptotic distributional properties usu-ally holds true for a parameter of random maps whose de�nition does not dependon the root. Indeed the number of distinct rootings of an unrooted map with nedges is equal to 2n unless the map has a symmetry. But the probability thata random unrooted map has a symmetry is exponentially small in all families ofTable 2, a fact that follows from the elegant analysis of Richmond and Wormaldin [42]. The proof is then easily completed by following [42].5.3. Random sampling algorithms. Random sampling algorithms for variousfamilies of maps have been described by Schae�er in [43, 44]. Here, we show that allclasses of maps described in Section 5.1 are amenable to e�cient random generationand that the Airy distribution plays a rôle in the �ne tuning of the correspondingalgorithms.First, there are four classes of maps which bene�t of bijective equivalence withsimpler combinatorial objects and, consequently, can be generated directly: generalmaps (M1), nonseparable maps (M4), bipartite maps (B1), and singular triangu-lations (T1). For these, one has available an algorithm, hereafter called Map, thatrelies on conjugacy classes of trees ; see [43, 44] and also [11] for some new families.Given an integer n, Map outputs in linear time a map of size n, taken uniformly atrandom. For the purposes of the present article we take the algorithm Map (in itsfour variants) as granted.Next, the algorithm, hereafter called Core, is a probabilistic algorithm based onthe extraction/rejection method. This algorithm is described in Figure 10. Forany composition schema (of the type C-components in M-maps), given an integerk, Core calls the algorithm Map as a black box and, by extracting cores till the\right" size k is encountered, it produces uniformly an element of Ck. The Corealgorithm applies directly to the classes of Tables 3 and 4 that appear as coresof M1;M4;B1; T4, namely, M2;M5;M6;B2;B3;B4; T2. The remaining classes,M3;B5; T3 are \cores of cores": for these, one observes that critical compositionschemas are closed under composition (with the parameters �0 and p` that are thento be composed multiplicatively), so that \cores of cores" are eventually amenableto the Core algorithm.



34 C. BANDERIER, P. FLAJOLET, G. SCHAEFFER, AND M. SORIAProbabilistic algorithm Core(k) with control function f(k)repeat1. Call Map(n) to generate a random map m 2Mn of size n = f(k);2. extract the core c of m with respect to the schema;until c has size k;output c; fc is uniform in the core class Ckg.Figure 10. The extraction/rejection algorithm Core.We now examine complexity issues related to the rejection principle of Core.The expected number of iterations `k made by Core satis�es the exact relation`k = Pr(Xn = k)�1. The choice f(k) = k=�0 that was proposed in [44] yields forinstance `k � 1p`cA(0) (k=�0)2=3:However, the cost gets improved if one maximizes Pr(Xn = k) for a given value k. Inparticular, it proves advantageous to make use of the peak of the Airy distribution.We also note that a simple variation, Largest, of the algorithm Core consistsin extracting at Step 2 the largest component instead of the core. The Largestalgorithm is only almost-uniform (i.e., uniform safe for a set of asymptoticallynegligible measure, corresponding to maps with nonunique largest components). Inthe analysis of the number of iterations, the probability Pr(Xn = k) has then to bereplaced by Pr(X�n = k). We have:Theorem 9 (Exact-size random sampling). For all core classes of Table 4, thechoice f(k) = k=�0 yields a uniform random generator Core(k) whose averagenumber of iterations satis�es `k � 1p`cA(0) (k=�0)2=3:Let x0 � 0:44322 be the position of the peak of the map-Airy density function ((1�4x30)Ai(x20)+4x20Ai0(x20) = 0). Then the optimal choice bf(k) = k=�0� x0�0c (k=�0)2=3reduces further the expected number of iterations tob̀k � 1p`cA(x0) (k=�0)2=3;hence eliminating on average 1�A(0)=A(x0) � 30% of iterations.Similar results hold for the almost-uniform random generator Largest, whosecomplexity is smaller by a factor � p`.As explained in [43, 44], a call of the algorithm Map and the extraction of thecore or of the largest component for the schemas of Table 3 take linear time. Thisproves that the extraction/rejection algorithms have overall complexity O(k5=3).The complexity can be further reduced by allowing some tolerance on the sizeof the map generated. In these variants, the algorithm is terminated as soon as amap of size k �� = [k ��; k +�] is obtained.
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30000 32000 34000 36000kFigure 11. Core-size: Experimental results in the central regionfor n = 2; 000 (left) and n = 100; 000 (right), against �rst andsecond order approximations given by Theorems 6 and For-mula (43).Theorem 10 (Approximate-size random sampling). The number of iterations ofthe algorithm Core(k��) satis�es`k(�) = O�k2=3� �+ 1:In particular, this algorithm, as well as its companion Largest(k � �), becomeslinear as soon as � > � k2=3 for some constant �.Regarding unrooted maps, both Map and Core give rise to almost uniform randomgenerators because the number of maps with a symmetry is exponentially small [42].5.4. Experimental results. The random sampling algorithm Map has linear com-plexity and is thus very e�cient: on a standard PC the generation speed is about100,000 edges per second. Full decomposition in nonseparable components is linearas well and increases the cost of generation by a factor at most 2. This speed allowsto produce very easily experimental observations of the results of the paper.Figure 3 presents the observed frequencies of core-sizes for a sample of 50,000maps with 2,000 edges. The theoretical curve as given by Theorem 4 �ts perfectlythe data on the full range k � 10, and upon using exact values for Ck, k = 1 : : : 9,the �t is complete.Figure 11 presents a region of width n2=3 around k = �0n for two samples: 50,000maps with 2,000 edges on the left hand side; 50,000 maps with 100,000 edges (withfrequencies averaged over intervals of 20) on the right hand side. On each sampletwo theoretical curves are given, namely the local approximation of Theorem 6 andthe second order approximation, Formula (43). While the second order curves �tperfectly the experimental data, the �rst order curve on the left hand side clearlydisplays an expected discrepancy of about n�1=3 = 8% for n = 2; 000.Figure 12 illustrates the result of Theorem 7: the size of the largest componentin random maps. Again the sample has 50,000 maps with 2,000 edges and the �twith the theoretical curve is perfect, in a range much larger than expected (uponusing again second order approximations). It is very interesting to note that theexperimental curve presents a non regular point at k � 400 and starts decreasingmuch faster. This phenomenon probably occurs when the second largest componentbecomes almost as large as the �rst with high probability.
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uence of singularities.A tangible sign is the occurrence of probability distributions and asymptotic esti-mates that involve the Airy function.Despite the successes of the method of coalescing saddle points developed byapplied mathematicians since the 1950's, we are only aware of scanty traces ofthe method being used in combinatorial enumerations. A special mention musthowever be made of Prellberg's paper [41] that provides an analysis of the area-perimeter generating function of staircase polygons in a \tri-critical region". (Atechnically di�cult double inversion would still be required in order to transformPrellberg's estimates into enumerative or probabilistic results.) Roughly, two majororbits of problems seem to resort to a precise analysis of coalescence in saddle pointlandscapes.(i) Large assemblies in critical regions must, under suitable singular conditions(Section 4, Appendix A), lead to an Airy law of the map type (and moregenerally to stable densities). There, the density is, as we saw, directly ex-pressible in terms of the Airy function.(ii) Brownian excursion area involves a di�erent type of Airy law, of the \areatype", of which the moments are generated by the logarithmic derivativeAi0(z)=Ai(z); see for instance [21] for an analytic discussion. As it is sug-gested by [41], it would be of great interest to develop a purely analyticconnection between coalescing saddle points and the various combinatorial



RANDOM MAPS AND AIRY PHENOMENA 37models that lead to the Airy law of the \area type", like the ones consideredby Spencer in [46]. Candidates already mentioned in the introduction includedisplacement in parking allocations and hashing, path length in trees, as wellas area under walks and polyominoes.The Airy distribution of the area type also intervenes in the study of connectivityin random graphs and, from the recent work [24], it is at least known that an ana-lytic approach based on coalescing saddle points can provide nontrivial quantitativeestimates.Appendix A. Powers, Compositions, and Stable LawsThis section builds upon the technology introduced in Section 4 and more specif-ically on the proof of Theorem 5. We will see here that a mild extension of themethod gives access to the analysis of powers of generating functions with algebraic{logarithmic singularities. This models large assemblies of combinatorial objects. Animmediate consequence is the analysis of the size of the \core" in a compositionC�H as soon as the associated generating functions are algebraic{logarithmic. Whatappears systematically in this context is a collection of functions closely related tostable laws that are well-known in probability theory to arise as limit distributionsof sums of independent random variables.In what follows, we consider a generating function H(z) that has nonnegativecoe�cients and a unique isolated singularity at its radius of convergence �, so thatit satis�es the �rst two conditions of Equation (46) (with � = rH ). We shall relaxthe third condition of Equation (46) and consider more generally functions with asingular exponent � 62 N , which corresponds to a dominant singular term of theform (1� z=�)� in the local singular expansion. The discussion is focussed on thethree ranges of �: (0; 1), (1; 2), and (2;+1).Theorem 11. For any parameter � 2 (0; 2), de�ne the entire functionG(x; �) := 8>>><>>>: 1�Xk>1(�1)k�1xk �(1 + �k)�(1 + k) sin(�k�) (0 < � < 1)1�xXk>1(�1)k�1xk �(1 + k=�)�(1 + k) sin(�k=�) (1 < � < 2)(64)The coe�cient of zn in a large power H(z)k of a �xed algebraic{logarithmic functionH(z) with singular exponent � admits the following asymptotic estimates.(i) For 0 < � < 1, that is, H(z) = � � h�(1 � z=�)� + O(1 � z=�), and whenk = xn�, with x = O(1) in any compact subinterval of (0;+1), there holds[zn]Hk(z) � �k��n 1n G�xh�� ; �� :(65)(ii) For 1 < � < 2, that is, H(z) = ��h1(1�z=�)+h�(1�z=�)�+O((1�z=�)2),when k = �h1n + xn1=�, with x = O(1) in any compact subinterval of (�1;+1),there holds [zn]Hk(z) � �k��n 1n1=� (h1=h�)1=�G xh1+1=�1�h1=�� ; �! :(66)(iii) For � > 2, a Gaussian approximation holds. In particular, for 2 < � < 3,that is, H(z) = � � h1(1 � z=�) + h2(1 � z=�)2 � h�(1 � z=�)� + O((1 � z=�)3) ;



38 C. BANDERIER, P. FLAJOLET, G. SCHAEFFER, AND M. SORIAwhen k = �h1 n + xpn, with x = O(1) in any compact subinterval of (�1;+1),there holds[zn]Hk(z) � �k��n 1pn �=h1ap2� e�x2=2a2 with a = 2(h2h1 � h12� )�2=h21.(67)Proof. The proofs are similar to the proof of Theorem 5, Case (ii), and just require asuitable adjustment of the geometry of the Hankel contour and of the correspondingscaling.Case (i). A classical Hankel contour, with the change of variable z = �(1� t=n),yields the approximation[zn]Hk(z) � ��k��n2i�n Z et�h�x� t� dtThe integral is then simply estimated by expanding exp(�h�x� t�) and integratingtermwise [zn]Hk(z) � ��k��nn Xk>1 (�x)kk! �h�� �k 1�(��k) ;(68)which is equivalent to Equation (65), by virtue of the complement formula for theGamma function.Case (ii). When 1 < � < 2, the contour of integration in the z-plane is chosen tobe a positively oriented loop, made of two rays of angle �=(2�) and ��=(2�) thatintersect on the real axis at a distance 1=n1=� left of the singularity. The coe�cientintegral of Hk is rescaled by setting z = �(1� t=n1=�), and one has[zn]Hk(z) � � �k��n2i�n1=� Z eh�h1 t�e� xh1� t dt:There, the contour of integration in the t-plane comprises two rays of angle �=�and ��=�, intersecting at �1. Setting u = t�h�=h1, the contour transforms into aclassical Hankel contour, starting from �1 over the real axis, winding about theorigin, and returning to �1. So, with � = 1=�, one has[zn]Hk(z) � ��k��n2i�n� � �h1h��� Z eu e� xh�+11�h�� u� u��1 du :Expanding the exponential, integrating termwise, and appealing to the complementformula for the Gamma function �nally reduces this last form to (66).Case (iii). When 2 < � < 3, the angle � of the contour of integration in thez{plane is chosen to be �=2, and the scaling is pn: under the change of variablez = �(1� t=pn), the contour is transformed into two rays of angle �=2 and ��=2(i.e., a vertical line), intersecting at �1, and[zn]Hk(z) � ��k��n2i�pn Z ept2�h1x� t dt ;with p = h2h1 � h12� . Complementing the square, and letting u = t� h1x2p� , we get[zn]Hk(z) � ��k��n2i�pne� h214p�2 x2 Z epu2 du ;which gives Equation (67). By similar means, such a Gaussian approximation canbe shown to hold for any non-integral singular exponent � > 2.
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40 C. BANDERIER, P. FLAJOLET, G. SCHAEFFER, AND M. SORIAgenerating functions with a square-root singularity. This includes the varieties ofsimple trees introduced by Meir and Moon in [37]. Then, one hasG(x; 12) = x2p� exp(�x2=4); [zn]Hk(z) � �k��nn G(xh�� ; 12):The law with density proportional to xe�x2=4 is known as the Rayleigh law: ithas been detected in simple trees by Meir and Moon who base their analysis ona Lagrangean change of variable and on the saddle point method. A consequenceof [37] and of Theorem 11 is then: The pro�le of a large tree in a simple familyobeys a Rayleigh law in the asymptotic limit. Similar results apply to T (z), theCayley tree function (T = zeT ) that enumerates rooted labelled nonplanar trees.(c) The case � = 3=2 that appears in maps is the one that motivated the presentpaper, the law being precisely of the Airy type in this case. Equivalently, the es-timates involve the stable law of index 32 . The singular exponent 32 is generallyexpected in unrooted trees since there is a ratio of about n between the numbersof rooted and unrooted trees. The recent book of Kolchin [34] discusses the enu-meration of forests of unrooted labelled trees by number of components: what ishere at stake is the estimation of coe�cients [zn]U(z)k where U(z) is the exponen-tial generating function of unrooted trees, i.e., U = T � T 2=2 where T = zeT isthe Cayley tree function. Consequently, an Airy density is expected to surface inthe asymptotic estimates: see Theorem 1.4.2 of [34] for an illustration. (Kolchin'smethod is based on characteristic functions and is equivalent to integrating alongthe circle of convergence rather than going outside.) Next, the \giant paper on thegiant component" [32] analyses the random graph in its \critical" region where the(unrooted) tree components play an essential rôle. The analysis involves functionsclosely related to Airy functions. It is interesting to note that the proof of a majorlemma, Lemma 3 of [32], does rely on a contour of the same type as ours. (Theseven page proof in [32] is justi�ed by the need there to develop uniform estimatesvalid in a wide region as well as to cope with a singular multiplier.) Finally, asimilar situation is encountered in [20, p. 182{183] where the paper deals with theappearance of the �rst cycles in random graphs.Combinatorial compositions. The results of Theorem 11 provide useful infor-mation on composition schemas of the formM(z; u) = C(uH(z));provided C and H are algebraic-logarithmic in the sense above. Combinatorially,this represents a substitution between structures, M = C � H, and the coe�cient[znuk]M(z; u) counts the number of M-structures of size n whose C-core has sizek. Then the probability distribution of core-size Xn in M-structures of size n isgiven by Pr(Xn = k) = [zk]C(z)[zn]C(H(z)) [zn]H(z)k:



RANDOM MAPS AND AIRY PHENOMENA 41The case where the schema is critical9, in the sense that H(rH ) = rC with rH ; rCthe radii of convergence of H;C, follows as a direct consequence of Theorem 11.What comes out is the following informally stated general principle (details wouldclosely mimic the statement of Theorem 11 and are omitted).Theorem 12 (General composition schema). In a composition schema C(uH(z))where H and C have singular exponents �; �0 (with �0 6 �):(i) for 0 < � < 1, the normalized core-size Xn=n� is spread over (0;+1) and itsatis�es a local limit law whose density involves the stable law of index �;(ii) for 1 < � < 2, the distribution of Xn is bimodal and the \large" regionXn = cn+ xn1=� leads to a stable law of index �;(iii) for 2 < �, the standardized version of Xn admits a local limit law that is ofGaussian type.Similar phenomena occur when �0 > �, but with a greater preponderance of the\small" region.Many instances have already appeared scattered in the literature. especially inconnection with rooted trees. For instance, the Rayleigh law (� = 12 ) appears asthe distribution of cyclic points in random mappings; see [14] for this fact and manyother occurrences of this law. Naturally, the case � = 3=2 present in maps is of theone that has motivated the present study.Appendix B. The Airy distributionIn this appendix, we summarize a few properties of the Airy distribution, namely,integral representations, series expansions, and integral transforms.(i) Integral representations. The Airy distribution appears �rst through localexpansions of nearby saddle points (Section 2 and proof of Theorem 3), asA(x) = 1i� Z 1ei�1e�i� exp�13u3 � xu2� u du; � 2 (�6 ; �3 ):(69)This form clearly shows its origin as an exponential-cubic approximation. In thecontext of singularity analysis (Section 4 and Appendix A), what arises is theintegral representationA(x) = 12i� Z 1ei�01e�i�0 exp�13 t3=2 � xt� dt; �0 2 (�3 ; 2�3 );(70)which is trivially equivalent to (69) via the change of variable u = t2. A translationu = v + x transforms the integral of (69) intoA(x) = e�2x3=3 1i� Z 1ei�1e�i� exp�13v3 � vx2� (v + x) dv:(71)This last form is equivalent (modulo the rotation v = �iw) to the de�nition we gave(De�nition 1) of the Airy distribution by way of the Airy function, itself de�ned bythe integral representation (1). As asymptotic expansions of the Airy function at9Noncritical cases follow from standard methods. In the subcritical case H(rH) < rC , core-size is O(1) with high probability and its law is directly induced from the initial coe�cients of C.(This results from direct singularity analysis.) In the supercritical case H(rH) > rC core-size istypically about O(n) and obeys a Gaussian law in the limit. (This results from standard singularityperturbation techniques as developed in [4, 25, 31].)



42 C. BANDERIER, P. FLAJOLET, G. SCHAEFFER, AND M. SORIA�1 have long been tabulated, one additionally obtains from the Airy connectionthe tail estimates expressed by (3).(ii) Series expansions. The expression of the Airy distribution in terms of theAiry function is itself a series expansion in disguise. A direct expansion is obtainedby starting from (70), expanding into power series the exponential exp(�xt), andintegrating termwise. The process is the one also used in a general context inAppendix A. The net result is the formA(x) = 1�xXn>1(�x32=3)n�((2n+ 3)=3)n! sin(�2n�=3):(72)Naturally, this means that the Airy density is reducible to hypergeometric functions.(iii) Mellin transforms. The Mellin transform of a function f(x) that exists on(0;+1) is classically de�ned asf?(s) =M(f(x) ; s) := Z 10 f(x)xs�1 dx:Knowledge of the Mellin transform (at s) of a probability density supported on(0;+1) is thus equivalent to knowledge of a fractional moment (of order s� 1) ofthe density. For the Airy distributions, we de�ne separatelyA+(x) := if x > 0 then A(x) else 0; A�(x) := if x < 0 then A(�x) else 0:The corresponding Mellin transforms are then written as A?+(s) and A?�(s). Inthe case at hand, there are two possible approaches to the determination of thetransform: one is based on the integral representations (69) or (70) and the generaltransform of multiplicative convolution integrals,M�Z
 a(u)b(xu)du ; s� = b?(s) Z
 a(u)u�s du(this results from an interchange of integrals; see [52, p. 151]); the other is based onthe series expansion (72) and the general Mellin-Lindel�of-Ramanujan representation1Xn=1�(n) (�x)nn! = 12i� Z �1=2+i1�1=2�i1 �(�s)�(s)x�s ds;or, equivalently, �(�s)�(s) =M 1Xn=1�(n) (�x)nn! ; s!(this results from a residue calculation and from the Mellin inversion formula;see [30, Ch. XI]).For the Airy distributions either method is applicable and one �nds (after routinemanipulations)A?+(s) = 2 3� 2s+13 �(s)� � 2s+13 � ; 0 < <(s) <1(73) A?�(s) = 3� 2s+13 �(s)� � 2s+13 � 1cos �3 (s� 1) ; 0 < <(s) < 52 :(74)In particular, one has A+(1) = 23 , A�(1) = 13 . This veri�es that A(x) is a probabil-ity density and that two thirds of the probability mass are assigned to the positive



RANDOM MAPS AND AIRY PHENOMENA 43region. Also, A+(2) = A�(2) = 3�2=3=�(2=3), which implies that the mean ofthe Airy distribution equals 0. Generally, formul� (73) and (74) can be used toevaluate explicitly any fractional moment of the Airy law, for instance,Z 1�1pjxjA(x) dx = 16p��(23)�32=3 + 37=6� :Appendix C. Conformality of z(t) and coalescent saddlesIn this section, we take k = �0n+�n, with � �xed and the notations of Section 3are used. We prove that there exists indeed a change of variable z ! t, with�d = ��, that satis�es (44) and is a conformal mapping of the disc D onto adomain D�. The strategy consists in constructing �rst a mapping z ! t that iscontinuous and one-to-one between D and some domain D�, then checking that itis conformal.C.1. A one-to-one continuous mapping. The mapping z ! u = K(z) is con-tinuous for z 2 D and so is the mapping t! u = f(t) for t 2 C . The problem is thatthey are not one-to-one. However we shall provide a partition of the whole complexplane C = S6i=1 Ci such that each f jCi is one-to-one, another partitionD = S6i=1Disuch that each restriction KjDi is one-to-one, and such that K(Di) � f(Ci).This will allow us to de�ne for each i a continuous one-to-one mapping z ! tfrom Di onto C 0i � Ci; we shall choose the Di so that it follows immediately thatthe resulting six mappings coherently de�ne a one-to-one mapping of D onto adomain D�.Let H+, H� and H0 denote respectively the half planes fu j =u > 0g, fu j =u 60g and imaginary u-axis. The partition of C is readily obtained by considering theinverse image of H0 by f , i.e., the curveC0 = ft j =f(t) = 0g = R [ ft = x+ iy j 3s2 � 3x2 + y2g:The three smooth components of this curve partition the t-plane into six regionsCi, as de�ned for � < 0, � = 0 and � > 0 by Figure 15. More precisely we takeeach Ci to include its border, so that its image is H+ for i = 1; 3; 5 and H� fori = 2; 4; 6. In particular each Ci \ Cj is either empty or a smooth segment of thecurve C0.In each of the two regions C1; C4, one easily veri�es that <f 0(t) has a constantnonzero sign. In each of the other four regions, =f 0(t) has a constant nonzerosign. Hence in each region Ci, the mapping t ! f(t) is one-to-one (and of coursecontinuous).The construction is exactly the same for the mapping z ! K(z), except thatthe region of interest is restricted to D. From the technical point of view, one hasto study the curveD0 = fz j =K(z) = 0g= R [ fz j 2 arg((3� z)(1 + z)3=z) + 3� arg(z(3� z)2) = 0g;and prove that inside the disc D, it behaves qualitatively like C0. This analysis isdone in view of the derivativeK 0(z) = (z � �)(z � � 0) 3� + 2z(1 + z)(3� z)
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Figure 14. The landscape of =f(t), for � < 0, � = 0 and � > 0.
–3

–2

–1

0

1

2

3

y

–2 –1 0 1 2 3
x

+ξ −ξ

C 4

C 5

C 6

C 1

C 2

C 3

–3

–2

–1

0

1

2

3

y

–2 –1 0 1 2 3
x

C 1

C 6

C 5

C 4

C 3

C 2

–3

–2

–1

0

1

2

3

y

–2 –1 0 1 2 3
x

−ξ +ξ

C 4

C 5

C 6

C 1

C 2

C 3

Figure 15. Partition of the t-plane, for � < 0, � = 0 and � > 0.
0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

–0.4

–0.2

0

0.2

0.4

y

–0.03

–0.02

–0.01

0

0.01

0.02

0.03

0.6 0.8 1 1.2 1.4

x

–0.4

–0.2

0

0.2

0.4

y

–0.03

–0.02

–0.01

0

0.01

0.02

0.03

0.6 0.8 1 1.2 1.4

x

–0.4

–0.2

0

0.2

0.4

y

–0.03

–0.02

–0.01

0

0.01

0.02

0.03

Figure 16. The landscape of =K(z), for � < 0, � = 0 and � > 0.
–0.4

–0.2

0

0.2

0.4

y

0.6 0.8 1 1.2 1.4
x

D6

D5

τ 

D1

τ ’

D4

D3

D2

–0.4

–0.2

0

0.2

0.4

y

0.6 0.8 1 1.2 1.4
x

D5

D6

D1

D2

D3

D4

τ 

–0.4

–0.2

0

0.2

0.4

y

0.6 0.8 1 1.2 1.4
x

D1

 ’

D

D

τ

D

τ

4

D3

D26

5

Figure 17. Partition of the z-plane, for � < 0, � = 0 and � > 0.



RANDOM MAPS AND AIRY PHENOMENA 45that depends linearly on �. As illustrated by Figure 16 and 17 the landscape of=K(z) leads to a partition Di in agreement with the partition Ci of Figure 15.Once this is done, the local mappings can be composed to give six local mappingz ! t. These local mappings are coherent since the local mappings are identicalon the intersection Di \ Dj and Ci \ Cj . Thus, a continuous one-to-one mappingfrom D to a domain D� has been de�ned and we let z(t) be the inverse mapping.C.2. A study of _z(t). In order for the constructed mapping z ! t to be conformal,it remains to check the necessary condition that _z(t) is �nite and nonzero. But, bydi�erentiation of (44), one has_z(t)K 0(z) = � �t2 � �2� ;(75)so that _z(t) is seen to satisfy_z(t) = t� �z � � t+ �z � � 0 (3� z)(1 + z)z2 + 3� :(76)Hence in D, there may only be problems at z = � and z = � 0. But letting t go to� or �� this provides_z(�)2 = ��� 0 � � (3� �)(1 + �)�2 + 3� and _z(��)2 = �� 0 � � (3� � 0)(1 + � 0)� 02 + 3� :Finally the sign is seen to be positive by considering a point other than �� on thereal axis. This yields_z(�) =s 4�3� and _z(��) =s 4�3� (1 + 3�)(1� 3�=2)(1 + 3�=2)3 :(77)These values are involved in the computation of a1.Appendix D. Largest components (proof of Theorem 7)Let us �rst prove Theorem 7 in the case of nonseparable cores of maps. RecallthatMn;k is the number of maps of size n with a core of size k, and set the followingnotations: M�n;k is the number of maps of size n with a largest component of sizek; Bn;k is the number of maps of size n with a core of size k that is not the largestcomponent. Then, the following relation holds:2nMn;k = 2kM�n;k + 2nBn;k:(78)This relation is proven in two steps. First of all, amongst the 2nMn;k maps of sizen with a core of size k and a secondary root, exactly 2nBn;k have a core which isnot the largest component. Second of all, the remaining maps have a core whichis the largest component and, upon exchanging the rôle of the two roots, they areidenti�ed with the 2kM�n;k maps that have a largest component of size k and asecondary root chosen in the largest component.The following lemma next allows us to dispose of the Bn;k term.Lemma 1. Under the uniform distribution on maps with size n and core-size k =b�0n+ xn2=3c for some x, the core is almost surely the largest component.More precisely, there exists A < 1 such thatPr(X�n > Xn j Xn = k) = Bn;kMn;k = O(An);with k = b�0n+ xn2=3c, uniformly for x in a bounded interval.



46 C. BANDERIER, P. FLAJOLET, G. SCHAEFFER, AND M. SORIAProof. Let m be a map of size n with a core c of size k and a largest component l ofsize h > k. The largest component l is contained in one of the pending submap n inthe core decomposition of m. Let m0 be obtained from m by detaching n. Then mcan be uniquely reconstructed from m0, m and the position in the core of m0 wheren is to be attached. The number Bn;k of maps m is thus bounded from above bythe number of such triples: with ` representing the size of n,Bn;k � Xk<h<`<n�kMn�`;k �M �̀;h � 2k � 2k Xk<h<`<n�k h̀Mn�`;kM`;h;where the second inequality follows from (78). Hence the probability satis�esBn;kMn;k � 2k Xk<h<`<n�k h̀ Mn�`;kMn�` M`;hM` MnMn;k M`Mn�`MnTheorem 5 allows us to bound the ratios: the rough upper bound M`;h=M` =O(h�2=3) is valid for all `; h; Mn;k=Mn = �(n�2=3) since k = �0n + xn2=3 withx bounded; �nally k=(n � `) � �01��0 > �0, so that there exists A0 < 1 such thatMn�`;k=Mn�` = O(Ak0). This ensures the existence of some A1 < 1 such thatBn;kMn;k � C1n Xk<h<`<n�k h̀ �Ak0h�2=3n2=3 n5=2`5=2(n� `)5=2 � C2An1 ;hence the statement of the lemma.Finally, Lemma 1 and Relation (78) combine to yieldM�n;k = nk Mn;k (1 +O(An)) = 1�0 Mn;k (1� x�0n�1=3 +O(n�2=3))for k = n=3+xn2=3, uniformly for x in a bounded interval. Together with �0 = p`,this concludes the proof of Theorem 7 for nonseparable components of maps.The proof extends verbatim for all schemas with �0 = p`. For the two remain-ing ones a di�erence arises from the fact that some edges are shared by di�erentcomponents (e.g., the edges of separating 3-cycles get duplicated in the decomposi-tion of triangulations into irreducible triangulations). The same di�erence surfacesin [7, 27] in the proof given there of our Equation (63). The adaptation givenin [7, 27] of the general argument to the case of irreducible cores of triangulationsand 3-connected cores of nonseparable maps works equally well in our case.Acknowledgements. This work was supported in part by the IST Programme of theEU under contract number IST-1999-14186 (ALCOM-FT).References[1] Abramowitz, M., and Stegun, I. A. Handbook of Mathematical Functions. Dover, 1973. Areprint of the tenth National Bureau of Standards edition, 1964.[2] Banderier, C., Flajolet, P., Schaeffer, G., and Soria, M. Planar maps and Airy phe-nomena. In Automata, Languages, and Programming (2000), E. W. U. Montanari, J. Rolim,Ed., no. 1853 in Lecture Notes in Computer Science, pp. 388{402. Proceedings of the 27thICALP Conference, Geneva, July 2000.[3] Bender, C. M., and Orszag, S. A. Advanced mathematical methods for scientists andengineers. I. Springer-Verlag, New York, 1999. Asymptotic methods and perturbation theory,Reprint of the 1978 original.[4] Bender, E. A. Central and local limit theorems applied to asymptotic enumeration. Journalof Combinatorial Theory 15 (1973), 91{111.
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