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Abstract

Smoothed analysis combines elements over worst-case and average case analysis. For
an instance = the smoothed complexity is the average complexity of an instance obtained
from x by a perturbation. The smoothed complexity of a problem is the worst smoothed
complexity of any instance. Spielman and Teng introduced this notion for continuous
problems. We apply the concept to combinatorial problems and study the smoothed
complexity of three classical discrete problems: quicksort, left-to-right maxima counting,
and shortest paths. This opens a vast field of nice analyses (using for example generating
functions in the discrete case) which should lead to a better understanding of complexity
landscapes of algorithms.

1 Introduction

For most algorithms, there is a discrepancy between the worst case and the average case be-
havior. Both quantities convey very useful informations and lead to different type of analysis.
For combinatorial algorithms, in the Art of Computer Programming [14] Knuth exhaus-
tively illustrated how discrete mathematics and analysis nicely meets computer science to
give incredibly accurate informations, for example leading to full asymptotic expansions for
the complexity of some algorithms. In this article, we concentrate on a new notion, called
“smoothed analysis” (recently introduced by Spielman and Teng [20]) which is intermediate
between average case analysis and worst case analysis and which (we will see) allows to follow
the nice wedding initiated by Knuth. The smoothed complexity of an algorithm is

max Eyep. @) Cy),

where z ranges over all inputs, y is a random instance in a neighborhood of x (whose size
depends on the smoothing parameter €), E denotes expectation, and C(y) is the cost of the
algorithm on input y. In other words, worst-case complexity is smoothed by considering the
expected running time in a neighborhood of an instance instead of the running time at the
instance. If Uc(x) is the entire input space, smoothed analysis becomes average case analysis
(whereas it becomes worst case analysis if Uc(z) is reduced to ). Smoothed analysis gives
information whether instance space contains dense regions of hard instances, see Figure 1.
The smoothed complexity of an algorithm is low if worst-case instances are “isolated events”
in the instance space.
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Figure 1: Instance space is indicated by the lines at the bottom of the figures and the
neighborhood of an instance is simply an interval around the instance. In the situation on
the left, the smoothed complexity will be equal to the worst case complexity (for all small
enough €), and in the situation on the right, the smoothed complexity decreases sharply as a
function of e.

Spielman and Teng [20] showed that the smoothed complexity of the simplex algorithm
(with the shadow-vertex pivot rule) for linear programming is polynomial. Linear program-
ming is a continuous problem. The input is a sequence of real numbers! (a cost vector, a
constraint matrix, a right-hand side). The smoothing operation adds Gaussian noise with pa-
rameter o to each number in the input. The expected running time of the simplex algorithm
for such a perturbed instance is polynomial in 1/0 and the number of input variables. The
other papers on smoothed analysis [2, 7] also discuss continuous problems.

We apply the concept of smoothed analysis to problems defined on sequences and natural
numbers. In both cases we first define a natural model of perturbation and then analyze some
algorithms.

Partial Permutations: Our first model applies to problems defined on sequences. It is
parameterized by a real parameter p with 0 < p < 1 and is defined as follows. Consider
a sequence 81,89, ...,8,. Select each element (independently) with probability p and let m
be the number of selected elements (in average m = pn). Take one of the m! permutations
of m elements (uniformly at random) and let it act on the selected elements. E.g., for
p = 1/2 and n = 7, one might select m = 3 elements (namely, sy, s4, and s7) out of
an input sequence (s1, 32, 3, 34, S5, 86, 57)- Applying the permutation (312) to the selected
elements yields (si,37, s3,32, S5, S6,54). The probability to obtain this sequence in this way
is p?(1 — p)*/3!. We will analyze quicksort (Section 2) and maxima finding (Section 3) under
the partial permutations model.

Partial Bit Randomization: Our second model applies to problems involving natural
numbers. It is parameterized by an integer k (k > 0). For each integer, the last k bits are
randomly modified. This model is a discrete analogue of the model considered by Spielman
and Teng. However, in our model the expectation of the resulting distribution is not necessar-
ily equal to the unperturbed value. We analyze the running time of a shortest path algorithm
under partial bit randomization (Section 4).

2 Quicksort

We analyze quicksort under partial permutations. We assume that quicksort takes the first
element of the list as the pivot and splits the input list with respect to the pivot into two

"By suitable scaling we may assume that all numbers are in [—1,+1].



parts: the elements smaller than the pivot and the elements larger than the pivot. We assume
that the order of elements in the resulting two sublist is unchanged.

Theorem 1 (Quicksort under Limited Randomness) The expected running time (i.e.,
number of comparisons) of quicksort on a partial permutation of n elements is O((n/p)1lnn).

Proof: We utilize a proof, based on randomized incremental constructions [5], for the fully
randomized version of quicksort. We will only count the number of comparisons C. Assume
that we have a permutation of the numbers 1 to n. Let X;; be the indicator variable which is
1 iff 7 and j are compared in a run of quicksort with ¢ being the pivot. Clearly C = Z - Xij.

Fact 1 X;; =1 iff i occurs first among the elements with value between i and j.

Thus for a random permutation prob(X;; = 1) = 1/(j — ¢ + 1) and hence the expected

number of comparisons is
1
Z]—Z-l— <2n Z E§2nlnn.

1#£] 2<k<n
Next we estimate prob(X;; = 1) for partial permutations. Let si, ..., s, be our initial
permutation and let L = (8/p)Inn. If ¢ is among s, ..., sz, or |j —i| < L, we estimate

prob(X;; = 1) for a total contribution of O(n/pInn).

Next assume that there are at least L elements preceding ¢ in the initial permutation and
that |i — j| > L. We split our estimate for prob(X;; = 1) into two parts. For the first part,
we assume that ¢ is selected and for the second part, we assume that 7 is not selected.

So assume first that ¢ is selected and let [ = |i — j|. The probability that at most Ip/2
elements between i (exclusive) and j (inclusive) are selected is less than exp(—Ip/8). If more
than Ip/2 elements are selected, X;; = 1 implies that ¢ is first in the permutation of the
selected elements and hence prob(X;; = 1) < 8/(lp). Together we obtain

prob(X;; = 1) < exp(—Ip/8) +8/(Ip)

and hence

> ) exp(—ip/8) +8/(Ip) = O(n/plnn) .
1<i<n 1>
Assume next that 7 is not selected and let 7 be the k;-th element in the initial sequence.
The probability that less than pk;/2 elements before i are chosen or less than p|j — i|/2
elements between ¢ and j or more than 2pn elements are chosen altogether is less than

exp(—pk;i/8) + exp(—p|j — i|/8) + exp(—pn/2).

We need to sum over 7 and j and obtain:

ZZexp —pk;/8) = ZZeXp —pl/8)

k,i>L j I>L j
=nY_exp(—pL/8) exp(—p/8)’
1>0
= exp(—p/8)’
1>0
PR S
~ 1 —exp(—p/8)
=0(1/p) .



and, by the same argument:
> ) exp(—ip/8) = O(1/p)
i>L 1>

and, since n > k; for all i:

>3 exp(—pn/2) = O(1/p).
i J

So assume that the required number of elements are chosen. If 7 is before 1 + 1 to 7 in the
partial permutation, it must be the case that none of the pl/2 selected (I = |j — i|) elements
between ¢ and j is inserted before 2. The probability for this is less than

<2pn —ip/2

Ip/2 .
Spm > < exp(—ilp/(4n))

Next observe that

' 1
> X eml(ilp/n) £ Y s

1<i<n 1<i<n 1<i<n
8n
- 15i<n P
8nlnn
a p
since 1 —e ¥ >xz/2for 0 <z <1and hence 1/(1 —e *) < 2/z. ]

Remark: When we consider the perturbation of the classical worst-case; we are able to get
closed form formulae for the X;;’s (one has to distinguish 10 subcases, most of them involving
7 nested sums). From these sums (involving binomials), it is possible to get the differential
equation satisfied by their generating functions, and then the Frobenius method allows to get
the full asymptotic scale, which gives a %nlnn complexity. A generating function approach
can also be used for the next section. More details are given in the Appendix.

Pitfalls: The expected running time of quicksort on random permutations can be analyzed
in many different ways. Many of them rely on the fact that the subproblems generated by
recursive calls are again random permutations. This is not true for partial permutations® as
the following example demonstrates.

Consider an input 1,2,3,4 and define ¢ := 1 — p. Assume that 2 is the pivot element and
hence the second subproblem consists of the numbers 3, 4. If 2 is the pivot (first element after
permutation), at least the numbers 1 and 2 are selected. Conditioned on the fact that 1 and
2 are selected and 2 is made the first element we obtain subproblem (3,4) with probability
prob((3,4)) = ¢>+3/2pq+p?/2 and subproblem (4, 3) with probability prob((4,3)) = 1/2pq+
p?/2. Applying partial permutations on input sequence 3, 4 gives prob((3,4)) = ¢>+2pq-+p?/2
and prob((4,3)) = p?/2.

%In the first version of this paper, we fell into this pitfall.



We also point out that the content of the first position, even if it is selected, is not a
random element of the sequence. It is more likely to be the original element than any other
element. The other elements are equally likely. This unbalance results from the fact that if
only one element is selected, the permutation of the selected elements has very little freedom.

The expected maximum recursion depth of quicksort on random permutations is O(Inn).
For partial permutations the expected maximum recursion depth is Q(\/%) We will show
in the next section that the number of left-to-right-maxima in a partial permutation might be
as large as Q(y/n/p). The number of left-to-right-maxima is the number of times the element
n is compared to a pivot element. Thus some elements may take part in as many as Q(1/n/p)
recursive calls. Thus it is not true that every element takes part in O((1/p)Inn) calls with
high probability.

The asymptotics expansion that we got for quicksort shows that this algorithm is already
quite efficient for p > ﬁ; this gives a threshold after which the divide and conquer strategy
of quicksort “wins” (ceases to have a quadratic complexity), even if the inputs is (in one sense)
already almost sorted. We also showed that the perturbation of the worst case for quicksort
is eventually the worst case among all the perturbations: quicksort has a dominant pic, with
a rather sharp transition (cf Figure 1). We will see in the next section that is not always the
case: another simple combinatorial algorithms, like finding a maximum in a list, can reveal
some surprises!

3 Left-to-Right Maxima

The simplest strategy to determine the largest element in a sequence is to scan the sequence
from left to right and to keep track of the largest element seen. The number of changes to the
current maximum is called the number of left-to-right mazima in the sequence. The sequence
1,...,n has n left to right maxima and the expected number of left to right maxima in a
random permutation of n elements is H, =1+ 1/2+4--- 4+ 1/n.

It is somehow surprising that the perturbation of the above mentioned worst case is not the
worst case among all perturbations (when we switch from the classical uniform distribution
model to the partial permutation model):

Theorem 2 (Left-to-Right Maxima under Limited Randomness) Under the partial
permutation model, the smoothed number of left-to-right maxima is

Q(v) and O(\/(nfp) log )
whereas the number of left-to-right mazima of the list (1,...,n) is then

l—-p (1 2(1-p)\1 1
1 RS Y [k S <€A B —
n(pn) + v+ il <2 o - +0(5),

where v = 5772 4s Euler’s constant.

Proof: We first give the two first asymptotic terms for the perturbation of the classical
worst-case (see the appendix for a generating function proof which gives the full asymptotics).

The sequence 1,...,n has n left-to-right maxima. Smoothing decreases the number to
about In(pn) + 2/p as we show next. Let X; be the probability that the i-th position is not



selected and is a maximum and let Y; be the probability that the i-th position is selected and
is a maximum.

Consider first a selected position 7. A selected position contains a maximum iff it is a
maximum among the selected elements. Assume that it is a maximum among the selected
elements. Then its value is at least 7 and hence it is also a maximum when the elements
not selected are considered. Thus ). Y; is simply the number of maxima among the selected
elements. The number of selected elements concentrates around pn and hence

B> _ Y~ log(pn) .

Assume next that 7 is not selected. We start with the observation that X; and X, 11_;
have the same distribution. Consider 7 < n/2. Position 7 stays a maximum if non of the
preceding i — 1 elements move to a position larger than 7. Analogously, position n+1 —1 stays
a maximum if non of the succeeding i — 1 elements move to a position smaller than i + 1 — 4.
We therefore concentrate on i < n/2.

If k1 elements among the first 2 — 1 and ks elements among the last n — ¢ are selected, the
probability that ¢ stays a maximum is

kq!- kol

f(ki, k) = U+ )

The expression for f(kq, ko) is decreasing in both arguments. Namely,

f(kl,kg—l-l) kl!-(kg—i-l)!-(kl—l-kg)! ko +1

f(kl,kg) B (k1+k2+1)!-k1!-k2! _k1+k2+1_ '

We want to compute B[, » X;]. We split the sum into two parts: i < (16/p)logn and
i > (16/p) logn.

For the second part, i > (16/p)logn, we expect to select about pi > 16logn elements
less than i and about p(n — i) > pn/2 elements larger than i. The probability that we select
less than half the stated number in either part is less than exp(—(16/8)logn) = O(n~=2) by
Chernoff bounds. If at least 8 log n elements smaller i are selected and at least pn/4 elements
larger 7 are selected the probability that 7 is a maximum is less than

f(8logn,pn/4) = O(n™?).

Thus prob(X; = 1) = O(n™2).

We turn to the #’s with i < (16/p)logn. If none of the first i — 1 elements is selected i
stays a maximum. If at least one for the first + — 1 elements is chosen, the probability that
i stays a maximum is at most e P*/16 4 4/pn. The first term accounts for the fact that less
pn/4 elements larger i are selected and the second term accounts for the fact that at least
pn/4 elements larger i are selected and none of them is moved to a position before i. Thus

prob(X; =1) < (1 — p)((l —p)i*1 e Pn/16 4 4/pn)

and hence

1—0p 16logn
B Y xl<—Pia-p—2t

(=718 4 4/pm) = L=P (1 4 o(1)) .
i<(16/p)logn p p



We conclude o(1
B[ (X; + ;)] <log(pn) + E—

)

for constant p. In fact, constant p is not required. The argument works as long as log n/(p>n) =
o(1), i.e., for p > y/logn/n.

We now come to the first affirmation of the theorem: the complexity of the worst case
among all perturbations. We show that, for p < 1/2, the smoothed number of left-to-right
maxima in a permutation of n elements may be Q(y/n/p). Consider the sequence

n—kn—k+1,...,n,1,2,....n—k—1 (where k = +/n/p) .

Let a =~ pk and b = p(n — k) be the number of selected elements in the first and second part
of the sequence respectively; the first part consists of the first k elements. For large n, the
probability that a > 2pk or b < pn/2 is exponentially small by Chernoff bounds. So assume
a < 2pk and b > pn/2. The probability that all elements selected in the first part are put
into the second part by the random permutation of the selected elements is at least

b =1)--(b=a+1)
T =@+t -(atb—1)--(b+1)
since the number of choices for the first element is only b out of a + b, the number of choices
for the second elements is only b — 1 out of a + b — 1, and so on. We have

> b—a)" 1 2a_\" e aln |1 2a > e 4a”
=(1- =ex - xp | — .
= \atb ath p atb)) =P\ ux

since In(1 — z) > —2z for 0 < x < 3/4. Using the bounds a < 2pk and b > pn/2 we get

4a? 4(217)2”/17 —32
> — > -] > .
q_exp( a+b>_exp( p’rL/2 ~Z €

We conclude that with constant probability the number of left-to-right maxima in the per-
turbed sequence is at least k —a > k(1 — 2p) = Q(y/n/p) for p < 1/2.

We next show an almost matching upper bound. Let si,...,s, be an arbitrary permu-
tation of the numbers 1 to n, let & = /8(n/p)logn, and let I be the set of indices such
that ¢ > k and s; < n — k. Basically, I ignores the first k£ and the largest k£ elements of the
permutation. We estimate how many s; with ¢ € I are left-to-right maxima in the perturbed
sequence. Then the total number of maxima is at most 2k larger.

Consider a fixed s; with ¢ € I. If s; is selected and is a maximum in the partial permuta-
tion, it must be a maximum among the selected elements. The expected number of left right

maxima among the selected elements is Inpn.

So assume that s; is not selected. With high probability there are at least kp/2 elements
preceding s; among the selected elements, there are at least kp/2 elements larger than s;
among the selected elements, and there are at most 2np selected elements. Therefore the
probability that s; is a maximum in the perturbed sequence is bounded by

2np — kp/2\ FP/? AN 9 1
e A o e <(1-X < - ==
(2o e 2Y T (12 )T < oxpl oy = |

and hence the expected number of left-to-right maxima in the perturbed sequence is

O(v/(n/p)logn). '



4 Single Source Shortest Path Problems

We consider the single source shortest path problem with nonnegative integer edge weights.
As usual, let n and m denote the number of nodes and edges respectively. We assume our edge
weights to be in [0,25 —1], i.e., edge weights are K bit integers. Meyer [16] has shown that the
average complexity of the problem is linear O(n+m). He assumes edge weights to be random
K bit integers and that a certain set of primitive operations on such integers can be performed
in constant time (addition, finding the first bit where two integers differ, ...). The algorithm
can be used for arbitrary graphs. An alternative algorithm was later given by Goldberg [10]
and his work is the starting point for this section. The worst case complexity of his algorithm
is O(m + nK). Algorithms with better worst case behavior are known [1, 3, 18, 12].

Theorem 3 (Shortest Paths under Limited Randomness) Let G be an arbitrary graph,
let c: E v+ [0,...,25 — 1] be an arbitrary cost function, and let k be such that 0 < k < K.
Let € be obtained from ¢ by making the last k bits of each edge cost random. Then the single
source shortest path problem can be solved in expected time O(m + n(K — k)).

With full randomness the expected running time is O(m + n), with no randomness the
running time is O(m + nK). Limited randomness interpolates linearly between the extremes.
Proof:

For a node v, let min_in_cost(v) be the minimum cost of an incoming edge. Goldberg has
shown that the running time of his algorithm is

O(n+m + Z(K — log min_in_cost(v) + 1),

where min_in_cost(v) denotes the minimal cost of an (directed) edge with target node v. Next
observe that min_in_cost(v) is the minimum of indeg(v) numbers of which the last &k bits are
random; here indeg(v) is the indegree of v. For an edge e, let r(e) be the number of leading
zeroes in the random part of e. Then E[r(e)] = 2 and

K —log min_in_cost(v) < K —k+ max{r(e); e € inedges(v)}
< K-k+ Z{T(e) ; e € inedges(v)}
Thus
E[K — logmin_in_cost(v)] < K — k + O(indeg(v))

and the time bound follows.

In our model of limited randomness, the last k& bits of each weight are set randomly.
Alternatively, one might select bits with probability p and set selected bits to random values.
With this definition, the smoothed complexity becomes O(m/p). For an edge e, let r(e) be
the number of leading zeroes in the weight of e. Then E[r(e)] < 2/p and

K —log min_in_cost(v) < max{r(e); e € inedges(v)}

Z{r(e); e € inedges(v)}

IA

Thus
E[K — log min_in_cost(v)] < O(indeg(v)/p)

and the time bound follows. 1



5 Conclusion

We analyzed the smoothed complexity of three combinatorial problems. Smoothed complexity
gives additional information about the distribution of hard instances in instance space. We
believe, that the analysis of further discrete problems is a worthwhile task.

From a technical viewpoint, asymptotic expansions for higher moments (e.g., the variance)
and the limit laws seems to be harder to get for yet, even with the help of computer algebra
systems (some stochastic inequalities could be a way to tackle the distribution problem). Tt
involves a kind of functional equations (see our Quicksort analysis), sparsely encountered
in analysis of algorithms until now, which seems however to have some deep combinatorial
properties. It can be expected that most of these functional equations will in fact behave like
differential equations of the Cauchy-Euler type, which are better understood (see the rather
complete article [4]) but for which to get explicit formulae (or numerical approximations) for
the constants hidden in the big-oh term (and in further asymptotic terms) is sometimes a
real challenge.

From a more theoretical viewpoint, it is natural to raise the question “Is there any relevant
notion of smoothed complexity completeness?”, quite similarly to the Dist N P complete class
defined by Levin [15, 11]. While classical worst-case complete problems are rather well-known,
this average-complete problems were introduced quite recently. A smoothed complexity com-
pleteness would give a valuable criterion for problems on which one could use cryptographic
schemes on a rather wide region of instances. For example, the paper [21] shows that random
knapsack has an almost linear time complexity. Its smoothed analysis approach confirms
something which is sometimes forgotten: the fact that N P-completeness is not the most rel-
evant notion for cryptography (even if this sometimes implies an exponential average case
complexity, like for the permanent); many exponential worst-case algorithms have in fact a
polynomial complexity, independently of P = N P! This also confirms the conjecture that
worst-case NP problems are thought to have an average case polynomial complexity, as soon
as the initial distribution of inputs is “reasonable” (computable in “polynomial time”).

From a practical viewpoint, the thresholds obtained with this smoothed analysis approach
(binding the perturbative parameter with n, and getting the ratio for which there is a jump
of complexity, if any, in the algorithms) could also suggest to use meta-algorithms which test
(if this test is cheap) if one is in a “hot” area of complexity (with respect to a first algorithm)
and then to switch to another algorithm which is known to have a better behavior for this
area.

In conclusion, we really believe that smoothed complexity is a key idea which suggests

us to revisit all the classical algorithms, using some new tricks or some nice mathematics for
their analyses, while allowing us to get a better understanding of the complexity landscapes
of these algorithms.
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6 Appendix

Due to the limitation on the number of pages, we give in this appendix a proof of our assertion
(in Theorem 2) about the perturbation of the classical worst case for left-to-right maxima.

In combinatorics, left-to-right maxima, are often called “records”; a bijection due to Foata
links them to the number of cycles in the permutation (for which a generating function
approach is easy, leading to (1 — z)~™ and thus to the Stirling numbers). This suggests
that generating functions could also be useful for our smoothed analysis. This is indeed the
case (we refer to [9] for an extensive presentation of generating functions and use of complex
analysis for the analysis of algorithms/combinatorial structures):

Theorem 4 The average number of left-to-right mazima in a partial permutation of (1,...,n)

1S
1— 1 2(1-p)\ 1
LR(n) = In(pn) + 7 +2 —2 + (_+¥>_
p p n

1

where v = .5772 is Euler’s constant.

What should we expect? At both ends of the partial permutation, pieces of length 1/p (in
average) are not selected and in the remaining part, one should see about In(pn) left-to-right
maxima, from the selected elements. Here is a rigorous proof of this:

Proof: [Proof via generating functions.] Note LRg(n) (resp. LRps(n)) the average number
of left-to-right maxima arising from selected (resp. nonselected) elements. One now studies
the asymptotic contribution of these two quantities to the sum LR(n) = LRg(n) + LRps(n).

Contribution of selected left-to-right mazima:

n

LRo(n) = BY ¥ = 3 ()40 - 4,
=1

k=0

(with Hy = 0). This formula is obtained by looking at all the configurations with & selected

elements, each left-to-right maximum there is a left-to-right for the whole sequence, and

each selected left-to-right maximum in the whole sequence is a left-to-right maximum in the

subsequence made up of the selected elements, thus in average there is Hj such left-to-right
P

maxima. Set o = g and g := 1 — p, thus

LRs(n) = ¢" ]:0 (Z) o H . (1)

In this sum, one recognizes an Euler transform: the transformation of a sequence f, into a
sequence Y p_, (Z) fr- Tt is easy to check that if F'(z) is the generating function associated to

(=2
fn, then (11_‘;) is the generating function associated to its Euler transform. In our case, the
1
T=az

>=, and its Euler transform is

In
. . k .
generating function of o Hy is

n In —1— In 1=z _
ny k n 1-a;Z; 1 0T (at1)z
Z<Z<k>a> ke l—a==1-2 1—(a+1)z @)

n>0 \k=0
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Taking into account the multiplication by ¢ in (1), one performs the substitution z — ¢z
in (2) and one gets

1—qz
Z LRs(n)2" = M . (3)

1—-=2
n>1
The radius of convergence is 1 < 1/¢ and analysis of singularity gives LRg(n) = H,, + In(p) +
o(C™) (for C < 1), then, using H, = In(n) + v + % - 121nZ + O(#) , one has

1 1
LRs(n) = In(pn) + v + on t 0($) :

Contribution of nonselected left-to-right mazima: The probability to have a non selected
maximum at position ¢ is given by

i—1 n—i . . ek kﬂk&'
rob 1+k2 ,n—ki—ka Tvat ’
P ,62_:0,62_:0 ( > ( >p ! (k1 + k2)!

where g := 1 — p. This formula is obtained by considering the k; selected elements before i
(as i is non selected, the value 7 is at position 7 and all the ki selected elements are < i — 1
which is a left-to-right maximum) and ko selected elements after 4 (m is the “weight” of
the chosen permutation). A nice (conjectural) observation is that prob(X; # 1) is unimodal

(for i = 1,...,n) but we don’t need this fact. One wants to find the asymptotics of

n
LRns(n) = Zprob(Xzz

CEEE ()0t

i om0 \ B (ky + ko)t
In order to get the generating function associated to this triple sum, one can use some basic
transformations, like the (inverse) Borel transform (multiplication or division of the sequence
by n!), the Euler transform, the Hadamard product... All these transformations are closed
in the space of D-finite functions (functions which satisfy a linear differential equations with
polynomial coefficients), and are easily performed with a computer algebra package such as

n(—L_
Gfun [19]. For example, the generating function (3) is given by B! <exp(z) B (1 (1“”)>>

l—az

where B stands for the Borel transform and B~! for the inverse Borel transform. Similar
manipulations for the LR, s(n)’s lead to the generating function

n —qIn(l —2) +¢qIn(1 — gz2) q
DT ) (e ey
As 1 < 1/(1 = p/2) < 1/q, the radius of convergence is 1 for the first log and the last
summand, and m for the second log, so singularity analysis gives (with r := 1;27’):
LRns(n) = 7"( 1 + O( )) —i—?"(nln(g - 1r" 4+ 0(r") + 2q + 2 (L)n
p°n P p rp—2
Summing the contribution of LRys(n) and LRg(n) gives the theorem. ]

This “shows” that the contribution of the subsequent summands begins to be as important
1
as the log part when p T
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