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tSmoothed analysis 
ombines elements over worst-
ase and average 
ase analysis. Foran instan
e x the smoothed 
omplexity is the average 
omplexity of an instan
e obtainedfrom x by a perturbation. The smoothed 
omplexity of a problem is the worst smoothed
omplexity of any instan
e. Spielman and Teng introdu
ed this notion for 
ontinuousproblems. We apply the 
on
ept to 
ombinatorial problems and study the smoothed
omplexity of three 
lassi
al dis
rete problems: qui
ksort, left-to-right maxima 
ounting,and shortest paths. This opens a vast �eld of ni
e analyses (using for example generatingfun
tions in the dis
rete 
ase) whi
h should lead to a better understanding of 
omplexitylands
apes of algorithms.1 Introdu
tionFor most algorithms, there is a dis
repan
y between the worst 
ase and the average 
ase be-havior. Both quantities 
onvey very useful informations and lead to di�erent type of analysis.For 
ombinatorial algorithms, in the Art of Computer Programming [14℄ Knuth exhaus-tively illustrated how dis
rete mathemati
s and analysis ni
ely meets 
omputer s
ien
e togive in
redibly a

urate informations, for example leading to full asymptoti
 expansions forthe 
omplexity of some algorithms. In this arti
le, we 
on
entrate on a new notion, 
alled\smoothed analysis" (re
ently introdu
ed by Spielman and Teng [20℄) whi
h is intermediatebetween average 
ase analysis and worst 
ase analysis and whi
h (we will see) allows to followthe ni
e wedding initiated by Knuth. The smoothed 
omplexity of an algorithm ismaxx Ey2U�(x) C(y) ;where x ranges over all inputs, y is a random instan
e in a neighborhood of x (whose sizedepends on the smoothing parameter �), E denotes expe
tation, and C(y) is the 
ost of thealgorithm on input y. In other words, worst-
ase 
omplexity is smoothed by 
onsidering theexpe
ted running time in a neighborhood of an instan
e instead of the running time at theinstan
e. If U�(x) is the entire input spa
e, smoothed analysis be
omes average 
ase analysis(whereas it be
omes worst 
ase analysis if U�(x) is redu
ed to x). Smoothed analysis givesinformation whether instan
e spa
e 
ontains dense regions of hard instan
es, see Figure 1.The smoothed 
omplexity of an algorithm is low if worst-
ase instan
es are \isolated events"in the instan
e spa
e.�Max-Plan
k-Institut f�ur Informatik, Stuhlsatzenhausweg 85, 66123 Saarbr�u
ken (Germany) banderie,rbeier,mehlhorn�mpi-sb.mpg.de,http://www.mpi-sb.mpg.de/units/ag1/people.html; the three authorsare supported by the Future and Emerging Te
hnologies programme of the EU under 
ontra
t number IST-1999-14186 (ALCOM-FT) 1



Figure 1: Instan
e spa
e is indi
ated by the lines at the bottom of the �gures and theneighborhood of an instan
e is simply an interval around the instan
e. In the situation onthe left, the smoothed 
omplexity will be equal to the worst 
ase 
omplexity (for all smallenough �), and in the situation on the right, the smoothed 
omplexity de
reases sharply as afun
tion of �.Spielman and Teng [20℄ showed that the smoothed 
omplexity of the simplex algorithm(with the shadow-vertex pivot rule) for linear programming is polynomial. Linear program-ming is a 
ontinuous problem. The input is a sequen
e of real numbers1 (a 
ost ve
tor, a
onstraint matrix, a right-hand side). The smoothing operation adds Gaussian noise with pa-rameter � to ea
h number in the input. The expe
ted running time of the simplex algorithmfor su
h a perturbed instan
e is polynomial in 1=� and the number of input variables. Theother papers on smoothed analysis [2, 7℄ also dis
uss 
ontinuous problems.We apply the 
on
ept of smoothed analysis to problems de�ned on sequen
es and naturalnumbers. In both 
ases we �rst de�ne a natural model of perturbation and then analyze somealgorithms.Partial Permutations: Our �rst model applies to problems de�ned on sequen
es. It isparameterized by a real parameter p with 0 � p � 1 and is de�ned as follows. Considera sequen
e s1; s2; : : : ; sn. Sele
t ea
h element (independently) with probability p and let mbe the number of sele
ted elements (in average m = pn). Take one of the m! permutationsof m elements (uniformly at random) and let it a
t on the sele
ted elements. E.g., forp = 1=2 and n = 7, one might sele
t m = 3 elements (namely, s2, s4, and s7) out ofan input sequen
e (s1; s2; s3; s4; s5; s6; s7). Applying the permutation (312) to the sele
tedelements yields (s1; s7; s3; s2; s5; s6; s4). The probability to obtain this sequen
e in this wayis p3(1� p)4=3!. We will analyze qui
ksort (Se
tion 2) and maxima �nding (Se
tion 3) underthe partial permutations model.Partial Bit Randomization: Our se
ond model applies to problems involving naturalnumbers. It is parameterized by an integer k (k � 0). For ea
h integer, the last k bits arerandomly modi�ed. This model is a dis
rete analogue of the model 
onsidered by Spielmanand Teng. However, in our model the expe
tation of the resulting distribution is not ne
essar-ily equal to the unperturbed value. We analyze the running time of a shortest path algorithmunder partial bit randomization (Se
tion 4).2 Qui
ksortWe analyze qui
ksort under partial permutations. We assume that qui
ksort takes the �rstelement of the list as the pivot and splits the input list with respe
t to the pivot into two1By suitable s
aling we may assume that all numbers are in [�1;+1℄.2



parts: the elements smaller than the pivot and the elements larger than the pivot. We assumethat the order of elements in the resulting two sublist is un
hanged.Theorem 1 (Qui
ksort under Limited Randomness) The expe
ted running time (i.e.,number of 
omparisons) of qui
ksort on a partial permutation of n elements is O((n=p) lnn).Proof: We utilize a proof, based on randomized in
remental 
onstru
tions [5℄, for the fullyrandomized version of qui
ksort. We will only 
ount the number of 
omparisons C. Assumethat we have a permutation of the numbers 1 to n. Let Xij be the indi
ator variable whi
h is1 i� i and j are 
ompared in a run of qui
ksort with i being the pivot. Clearly C =Pi;jXij .Fa
t 1 Xij = 1 i� i o

urs �rst among the elements with value between i and j.Thus for a random permutation prob(Xij = 1) = 1=(j � i + 1) and hen
e the expe
tednumber of 
omparisons is Xi 6=j 1j � i+ 1 � 2n X2�k�n 1k � 2n lnn :Next we estimate prob(Xij = 1) for partial permutations. Let s1, . . . , sn be our initialpermutation and let L = (8=p) lnn. If i is among s1, . . . , sL, or jj � ij � L, we estimateprob(Xij = 1) for a total 
ontribution of O(n=p lnn).Next assume that there are at least L elements pre
eding i in the initial permutation andthat ji � jj > L. We split our estimate for prob(Xij = 1) into two parts. For the �rst part,we assume that i is sele
ted and for the se
ond part, we assume that i is not sele
ted.So assume �rst that i is sele
ted and let l = ji � jj. The probability that at most lp=2elements between i (ex
lusive) and j (in
lusive) are sele
ted is less than exp(�lp=8). If morethan lp=2 elements are sele
ted, Xij = 1 implies that i is �rst in the permutation of thesele
ted elements and hen
e prob(Xij = 1) � 8=(lp). Together we obtainprob(Xij = 1) � exp(�lp=8) + 8=(lp)and hen
e X1�i�nXl�L exp(�lp=8) + 8=(lp) = O(n=p lnn) :Assume next that i is not sele
ted and let i be the ki-th element in the initial sequen
e.The probability that less than pki=2 elements before i are 
hosen or less than pjj � ij=2elements between i and j or more than 2pn elements are 
hosen altogether is less thanexp(�pki=8) + exp(�pjj � ij=8) + exp(�pn=2):We need to sum over i and j and obtain:Xki�LXj exp(�pki=8) =Xl�LXj exp(�pl=8)= nXl�0 exp(�pL=8) exp(�p=8)l=Xl�0 exp(�p=8)l� 11� exp(�p=8)= O(1=p) :3



and, by the same argument: Xi�LXl�L exp(�lp=8) = O(1=p)and, sin
e n � ki for all i: Xi Xj exp(�pn=2) = O(1=p):So assume that the required number of elements are 
hosen. If i is before i+1 to j in thepartial permutation, it must be the 
ase that none of the pl=2 sele
ted (l = jj � ij) elementsbetween i and j is inserted before i. The probability for this is less than�2pn� ip=22pn �lp=2 � exp(�ilp=(4n))Next observe that X1�i�n X1�l�n exp(�ilp=(4n)) � X1�i�n 11� exp(�ip=(4n))� X1�i�n 8nip� 8n lnnpsin
e 1� e�x � x=2 for 0 � x � 1 and hen
e 1=(1 � e�x) � 2=x.Remark: When we 
onsider the perturbation of the 
lassi
al worst-
ase; we are able to get
losed form formulae for the Xij 's (one has to distinguish 10 sub
ases, most of them involving7 nested sums). From these sums (involving binomials), it is possible to get the di�erentialequation satis�ed by their generating fun
tions, and then the Frobenius method allows to getthe full asymptoti
 s
ale, whi
h gives a 2pn lnn 
omplexity. A generating fun
tion approa
h
an also be used for the next se
tion. More details are given in the Appendix.Pitfalls: The expe
ted running time of qui
ksort on random permutations 
an be analyzedin many di�erent ways. Many of them rely on the fa
t that the subproblems generated byre
ursive 
alls are again random permutations. This is not true for partial permutations2 asthe following example demonstrates.Consider an input 1; 2; 3; 4 and de�ne q := 1� p. Assume that 2 is the pivot element andhen
e the se
ond subproblem 
onsists of the numbers 3; 4. If 2 is the pivot (�rst element afterpermutation), at least the numbers 1 and 2 are sele
ted. Conditioned on the fa
t that 1 and2 are sele
ted and 2 is made the �rst element we obtain subproblem (3; 4) with probabilityprob((3; 4)) = q2+3=2pq+p2=2 and subproblem (4; 3) with probability prob((4; 3)) = 1=2pq+p2=2. Applying partial permutations on input sequen
e 3; 4 gives prob((3; 4)) = q2+2pq+p2=2and prob((4; 3)) = p2=2.2In the �rst version of this paper, we fell into this pitfall.4



We also point out that the 
ontent of the �rst position, even if it is sele
ted, is not arandom element of the sequen
e. It is more likely to be the original element than any otherelement. The other elements are equally likely. This unbalan
e results from the fa
t that ifonly one element is sele
ted, the permutation of the sele
ted elements has very little freedom.The expe
ted maximum re
ursion depth of qui
ksort on random permutations is O(lnn).For partial permutations the expe
ted maximum re
ursion depth is 
(pn=p). We will showin the next se
tion that the number of left-to-right-maxima in a partial permutation might beas large as 
(pn=p). The number of left-to-right-maxima is the number of times the elementn is 
ompared to a pivot element. Thus some elements may take part in as many as 
(pn=p)re
ursive 
alls. Thus it is not true that every element takes part in O((1=p) lnn) 
alls withhigh probability.The asymptoti
s expansion that we got for qui
ksort shows that this algorithm is alreadyquite eÆ
ient for p� 1n lnn ; this gives a threshold after whi
h the divide and 
onquer strategyof qui
ksort \wins" (
eases to have a quadrati
 
omplexity), even if the inputs is (in one sense)already almost sorted. We also showed that the perturbation of the worst 
ase for qui
ksortis eventually the worst 
ase among all the perturbations: qui
ksort has a dominant pi
, witha rather sharp transition (
f Figure 1). We will see in the next se
tion that is not always the
ase: another simple 
ombinatorial algorithms, like �nding a maximum in a list, 
an revealsome surprises!3 Left-to-Right MaximaThe simplest strategy to determine the largest element in a sequen
e is to s
an the sequen
efrom left to right and to keep tra
k of the largest element seen. The number of 
hanges to the
urrent maximum is 
alled the number of left-to-right maxima in the sequen
e. The sequen
e1; : : : ; n has n left to right maxima and the expe
ted number of left to right maxima in arandom permutation of n elements is Hn = 1 + 1=2 + � � � + 1=n.It is somehow surprising that the perturbation of the above mentioned worst 
ase is not theworst 
ase among all perturbations (when we swit
h from the 
lassi
al uniform distributionmodel to the partial permutation model):Theorem 2 (Left-to-Right Maxima under Limited Randomness) Under the partialpermutation model, the smoothed number of left-to-right maxima is
(pn) and O(p(n=p) log n)whereas the number of left-to-right maxima of the list (1; : : : ; n) is thenln(pn) + 
 + 2 1� pp +�12 + 2 (1� p)p2 � 1n +O( 1n2 ) ;where 
 � :5772 is Euler's 
onstant.Proof: We �rst give the two �rst asymptoti
 terms for the perturbation of the 
lassi
alworst-
ase (see the appendix for a generating fun
tion proof whi
h gives the full asymptoti
s).The sequen
e 1; : : : ; n has n left-to-right maxima. Smoothing de
reases the number toabout ln(pn) + 2=p as we show next. Let Xi be the probability that the i-th position is not5



sele
ted and is a maximum and let Yi be the probability that the i-th position is sele
ted andis a maximum.Consider �rst a sele
ted position i. A sele
ted position 
ontains a maximum i� it is amaximum among the sele
ted elements. Assume that it is a maximum among the sele
tedelements. Then its value is at least i and hen
e it is also a maximum when the elementsnot sele
ted are 
onsidered. ThusPi Yi is simply the number of maxima among the sele
tedelements. The number of sele
ted elements 
on
entrates around pn and hen
eE[Xi Yi℄ � log(pn) :Assume next that i is not sele
ted. We start with the observation that Xi and Xn+1�ihave the same distribution. Consider i < n=2. Position i stays a maximum if non of thepre
eding i�1 elements move to a position larger than i. Analogously, position n+1� i staysa maximum if non of the su

eeding i� 1 elements move to a position smaller than i+1� i.We therefore 
on
entrate on i � n=2.If k1 elements among the �rst i� 1 and k2 elements among the last n� i are sele
ted, theprobability that i stays a maximum isf(k1; k2) = k1! � k2!(k1 + k2)! :The expression for f(k1; k2) is de
reasing in both arguments. Namely,f(k1; k2 + 1)f(k1; k2) = k1! � (k2 + 1)! � (k1 + k2)!(k1 + k2 + 1)! � k1! � k2! = k2 + 1k1 + k2 + 1 � 1 :We want to 
ompute E[Pi�n=2Xi℄. We split the sum into two parts: i � (16=p) log n andi � (16=p) log n.For the se
ond part, i � (16=p) log n, we expe
t to sele
t about pi � 16 log n elementsless than i and about p(n� i) � pn=2 elements larger than i. The probability that we sele
tless than half the stated number in either part is less than exp(�(16=8) log n) = O(n�2) byCherno� bounds. If at least 8 log n elements smaller i are sele
ted and at least pn=4 elementslarger i are sele
ted the probability that i is a maximum is less thanf(8 log n; pn=4) = O(n�2):Thus prob(Xi = 1) = O(n�2).We turn to the i's with i � (16=p) log n. If none of the �rst i � 1 elements is sele
ted istays a maximum. If at least one for the �rst i � 1 elements is 
hosen, the probability thati stays a maximum is at most e�pn=16 + 4=pn. The �rst term a

ounts for the fa
t that lesspn=4 elements larger i are sele
ted and the se
ond term a

ounts for the fa
t that at leastpn=4 elements larger i are sele
ted and none of them is moved to a position before i. Thusprob(Xi = 1) � (1� p)�(1� p)i�1 + e�pn=16 + 4=pn�and hen
eE[ Xi�(16=p) log nXi℄ � 1� pp + (1� p)16 log np (e�pn=16 + 4=pn) = 1� pp (1 + o(1)) :6



We 
on
lude E[Xi (Xi + Yi)℄ � log(pn) + 2(1� p)p + o(1)for 
onstant p. In fa
t, 
onstant p is not required. The argument works as long as log n=(p2n) =o(1), i.e., for p�plogn=n.We now 
ome to the �rst aÆrmation of the theorem: the 
omplexity of the worst 
aseamong all perturbations. We show that, for p < 1=2, the smoothed number of left-to-rightmaxima in a permutation of n elements may be 
(pn=p). Consider the sequen
en� k; n� k + 1; : : : ; n; 1; 2; : : : ; n� k � 1 (where k =pn=p) :Let a � pk and b � p(n� k) be the number of sele
ted elements in the �rst and se
ond partof the sequen
e respe
tively; the �rst part 
onsists of the �rst k elements. For large n, theprobability that a > 2pk or b < pn=2 is exponentially small by Cherno� bounds. So assumea � 2pk and b � pn=2. The probability that all elements sele
ted in the �rst part are putinto the se
ond part by the random permutation of the sele
ted elements is at leastq := b � (b� 1) � � � (b� a+ 1)(a+ b) � (a+ b� 1) � � � (b+ 1)sin
e the number of 
hoi
es for the �rst element is only b out of a+ b, the number of 
hoi
esfor the se
ond elements is only b� 1 out of a+ b� 1, and so on. We haveq � �b� aa+ b�a = �1� 2aa+ b�a = exp�a ln�1� 2aa+ b�� � exp�� 4a2a+ b� :sin
e ln(1� x) � �2x for 0 � x � 3=4. Using the bounds a � 2pk and b � pn=2 we getq � exp�� 4a2a+ b� � exp��4(2p)2n=ppn=2 � � e�32 :We 
on
lude that with 
onstant probability the number of left-to-right maxima in the per-turbed sequen
e is at least k � a � k(1� 2p) = 
(pn=p) for p < 1=2.We next show an almost mat
hing upper bound. Let s1; : : : ; sn be an arbitrary permu-tation of the numbers 1 to n, let k = p8(n=p) log n, and let I be the set of indi
es su
hthat i � k and si � n � k. Basi
ally, I ignores the �rst k and the largest k elements of thepermutation. We estimate how many si with i 2 I are left-to-right maxima in the perturbedsequen
e. Then the total number of maxima is at most 2k larger.Consider a �xed si with i 2 I. If si is sele
ted and is a maximum in the partial permuta-tion, it must be a maximum among the sele
ted elements. The expe
ted number of left rightmaxima among the sele
ted elements is ln pn.So assume that si is not sele
ted. With high probability there are at least kp=2 elementspre
eding si among the sele
ted elements, there are at least kp=2 elements larger than siamong the sele
ted elements, and there are at most 2np sele
ted elements. Therefore theprobability that si is a maximum in the perturbed sequen
e is bounded by�2np� kp=22np �kp=2 � �1� k4n�kp=2 � exp(�k2p=(8n)) = 1nand hen
e the expe
ted number of left-to-right maxima in the perturbed sequen
e isO(p(n=p) log n) :7



4 Single Sour
e Shortest Path ProblemsWe 
onsider the single sour
e shortest path problem with nonnegative integer edge weights.As usual, let n andm denote the number of nodes and edges respe
tively. We assume our edgeweights to be in [0; 2K�1℄, i.e., edge weights areK bit integers. Meyer [16℄ has shown that theaverage 
omplexity of the problem is linear O(n+m). He assumes edge weights to be randomK bit integers and that a 
ertain set of primitive operations on su
h integers 
an be performedin 
onstant time (addition, �nding the �rst bit where two integers di�er, . . . ). The algorithm
an be used for arbitrary graphs. An alternative algorithm was later given by Goldberg [10℄and his work is the starting point for this se
tion. The worst 
ase 
omplexity of his algorithmis O(m+ nK). Algorithms with better worst 
ase behavior are known [1, 3, 18, 12℄.Theorem 3 (Shortest Paths under Limited Randomness) Let G be an arbitrary graph,let 
 : E 7! [0; : : : ; 2K � 1℄ be an arbitrary 
ost fun
tion, and let k be su
h that 0 � k � K.Let 
 be obtained from 
 by making the last k bits of ea
h edge 
ost random. Then the singlesour
e shortest path problem 
an be solved in expe
ted time O(m+ n(K � k)).With full randomness the expe
ted running time is O(m + n), with no randomness therunning time is O(m+nK). Limited randomness interpolates linearly between the extremes.Proof:For a node v, let min in 
ost(v) be the minimum 
ost of an in
oming edge. Goldberg hasshown that the running time of his algorithm isO(n+m+Xv (K � logmin in 
ost(v) + 1);where min in 
ost(v) denotes the minimal 
ost of an (dire
ted) edge with target node v. Nextobserve that min in 
ost(v) is the minimum of indeg(v) numbers of whi
h the last k bits arerandom; here indeg(v) is the indegree of v. For an edge e, let r(e) be the number of leadingzeroes in the random part of e. Then E[r(e)℄ = 2 andK � logmin in 
ost(v) � K � k +maxfr(e) ; e 2 inedges(v)g� K � k +Xfr(e) ; e 2 inedges(v)gThus E[K � logmin in 
ost(v)℄ � K � k +O(indeg(v))and the time bound follows.In our model of limited randomness, the last k bits of ea
h weight are set randomly.Alternatively, one might sele
t bits with probability p and set sele
ted bits to random values.With this de�nition, the smoothed 
omplexity be
omes O(m=p). For an edge e, let r(e) bethe number of leading zeroes in the weight of e. Then E[r(e)℄ � 2=p andK � logmin in 
ost(v) � maxfr(e) ; e 2 inedges(v)g� Xfr(e) ; e 2 inedges(v)gThus E[K � logmin in 
ost(v)℄ � O(indeg(v)=p)and the time bound follows. 8



5 Con
lusionWe analyzed the smoothed 
omplexity of three 
ombinatorial problems. Smoothed 
omplexitygives additional information about the distribution of hard instan
es in instan
e spa
e. Webelieve, that the analysis of further dis
rete problems is a worthwhile task.From a te
hni
al viewpoint, asymptoti
 expansions for higher moments (e.g., the varian
e)and the limit laws seems to be harder to get for yet, even with the help of 
omputer algebrasystems (some sto
hasti
 inequalities 
ould be a way to ta
kle the distribution problem). Itinvolves a kind of fun
tional equations (see our Qui
ksort analysis), sparsely en
ounteredin analysis of algorithms until now, whi
h seems however to have some deep 
ombinatorialproperties. It 
an be expe
ted that most of these fun
tional equations will in fa
t behave likedi�erential equations of the Cau
hy{Euler type, whi
h are better understood (see the rather
omplete arti
le [4℄) but for whi
h to get expli
it formulae (or numeri
al approximations) forthe 
onstants hidden in the big-oh term (and in further asymptoti
 terms) is sometimes areal 
hallenge.From a more theoreti
al viewpoint, it is natural to raise the question \Is there any relevantnotion of smoothed 
omplexity 
ompleteness?", quite similarly to the DistNP 
omplete 
lassde�ned by Levin [15, 11℄. While 
lassi
al worst-
ase 
omplete problems are rather well-known,this average-
omplete problems were introdu
ed quite re
ently. A smoothed 
omplexity 
om-pleteness would give a valuable 
riterion for problems on whi
h one 
ould use 
ryptographi
s
hemes on a rather wide region of instan
es. For example, the paper [21℄ shows that randomknapsa
k has an almost linear time 
omplexity. Its smoothed analysis approa
h 
on�rmssomething whi
h is sometimes forgotten: the fa
t that NP -
ompleteness is not the most rel-evant notion for 
ryptography (even if this sometimes implies an exponential average 
ase
omplexity, like for the permanent); many exponential worst-
ase algorithms have in fa
t apolynomial 
omplexity, independently of P 6= NP ! This also 
on�rms the 
onje
ture thatworst-
ase NP problems are thought to have an average 
ase polynomial 
omplexity, as soonas the initial distribution of inputs is \reasonable" (
omputable in \polynomial time").From a pra
ti
al viewpoint, the thresholds obtained with this smoothed analysis approa
h(binding the perturbative parameter with n, and getting the ratio for whi
h there is a jumpof 
omplexity, if any, in the algorithms) 
ould also suggest to use meta-algorithms whi
h test(if this test is 
heap) if one is in a \hot" area of 
omplexity (with respe
t to a �rst algorithm)and then to swit
h to another algorithm whi
h is known to have a better behavior for thisarea.In 
on
lusion, we really believe that smoothed 
omplexity is a key idea whi
h suggestsus to revisit all the 
lassi
al algorithms, using some new tri
ks or some ni
e mathemati
s fortheir analyses, while allowing us to get a better understanding of the 
omplexity lands
apesof these algorithms.A
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6 AppendixDue to the limitation on the number of pages, we give in this appendix a proof of our assertion(in Theorem 2) about the perturbation of the 
lassi
al worst 
ase for left-to-right maxima.In 
ombinatori
s, left-to-right maxima are often 
alled \re
ords"; a bije
tion due to Foatalinks them to the number of 
y
les in the permutation (for whi
h a generating fun
tionapproa
h is easy, leading to (1 � z)�u and thus to the Stirling numbers). This suggeststhat generating fun
tions 
ould also be useful for our smoothed analysis. This is indeed the
ase (we refer to [9℄ for an extensive presentation of generating fun
tions and use of 
omplexanalysis for the analysis of algorithms/
ombinatorial stru
tures):Theorem 4 The average number of left-to-right maxima in a partial permutation of (1; : : : ; n)is LR(n) = ln(pn) + 
 + 2 1� pp +�12 + 2 (1� p)p2 � 1n +O( 1n2 ) ;where 
 � :5772 is Euler's 
onstant.What should we expe
t? At both ends of the partial permutation, pie
es of length 1=p (inaverage) are not sele
ted and in the remaining part, one should see about ln(pn) left-to-rightmaxima from the sele
ted elements. Here is a rigorous proof of this:Proof: [Proof via generating fun
tions.℄ Note LRs(n) (resp. LRns(n)) the average numberof left-to-right maxima arising from sele
ted (resp. nonsele
ted) elements. One now studiesthe asymptoti
 
ontribution of these two quantities to the sum LR(n) = LRs(n) + LRns(n).Contribution of sele
ted left-to-right maxima:LRs(n) = E[ nXi=1 Yi℄ = nXk=0�nk�pk(1� p)n�kHk ;(with H0 = 0). This formula is obtained by looking at all the 
on�gurations with k sele
tedelements, ea
h left-to-right maximum there is a left-to-right for the whole sequen
e, andea
h sele
ted left-to-right maximum in the whole sequen
e is a left-to-right maximum in thesubsequen
e made up of the sele
ted elements, thus in average there is Hk su
h left-to-rightmaxima. Set � = p1�p and q := 1� p, thusLRs(n) = qn nXk=0�nk��kHk : (1)In this sum, one re
ognizes an Euler transform: the transformation of a sequen
e fn into asequen
e Pnk=0 �nk�fk. It is easy to 
he
k that if F (z) is the generating fun
tion asso
iated tofn, then F ( z1�z )1�z is the generating fun
tion asso
iated to its Euler transform. In our 
ase, thegenerating fun
tion of �kHk is ln 11��z1��z , and its Euler transform isXn�0 nXk=0�nk��k!Hk zn = ln 11�� z1�z1� � z1�z 11� z = ln 1�z1�(�+1)z1� (�+ 1)z : (2)
12



Taking into a

ount the multipli
ation by qn in (1), one performs the substitution z 7! qzin (2) and one gets Xn�1LRs(n)zn = ln(1�qz1�z )1� z : (3)The radius of 
onvergen
e is 1 < 1=q and analysis of singularity gives LRs(n) = Hn+ ln(p) +o(Cn) (for C < 1), then, using Hn = ln(n) + 
 + 12n � 112n2 +O( 1n3 ) , one hasLRs(n) = ln(pn) + 
 + 12n +O( 1n2 ) :Contribution of nonsele
ted left-to-right maxima: The probability to have a non sele
tedmaximum at position i is given byprob(Xi = 1) = i�1Xk1=0 n�iXk2=0�i� 1k1 ��n� ik2 �pk1+k2qn�k1�k2 k1!k2!(k1 + k2)! ;where q := 1 � p. This formula is obtained by 
onsidering the k1 sele
ted elements before i(as i is non sele
ted, the value i is at position i and all the k1 sele
ted elements are � i � 1whi
h is a left-to-right maximum) and k2 sele
ted elements after i ( 1(k1+k2)! is the \weight" ofthe 
hosen permutation). A ni
e (
onje
tural) observation is that prob(Xi 6= 1) is unimodal(for i = 1; : : : ; n) but we don't need this fa
t. One wants to �nd the asymptoti
s ofLRns(n) = nXi=1 prob(Xi = 1)= nXi=1 i�1Xk1=0 n�iXk2=0�i� 1k1 ��n� ik2 �pk1+k2qn�k1�k2 k1!k2!(k1 + k2)! :In order to get the generating fun
tion asso
iated to this triple sum, one 
an use some basi
transformations, like the (inverse) Borel transform (multipli
ation or division of the sequen
eby n!), the Euler transform, the Hadamard produ
t... All these transformations are 
losedin the spa
e of D-�nite fun
tions (fun
tions whi
h satisfy a linear di�erential equations withpolynomial 
oeÆ
ients), and are easily performed with a 
omputer algebra pa
kage su
h asGfun [19℄. For example, the generating fun
tion (3) is given by B�1�exp(z) B� ln( 11��z )1��z ��where B stands for the Borel transform and B�1 for the inverse Borel transform. Similarmanipulations for the LRns(n)'s lead to the generating fun
tionXn�1LRns(n)zn = �q ln(1� z) + q ln(1� qz)2(1� z(1� p2 ))2 + q(1� z)(1 � z(1� p2 )) :As 1 < 1=(1 � p=2) < 1=q, the radius of 
onvergen
e is 1 for the �rst log and the lastsummand, and 11�p=2 for the se
ond log, so singularity analysis gives (with r := 1�p2 ):LRns(n) = r� 4p2n +O( 1n2 )�+ r�n ln(2p � 1)rn +O(rn)�+ 2qp + qr ( pp� 2)nSumming the 
ontribution of LRns(n) and LRs(n) gives the theorem.This \shows" that the 
ontribution of the subsequent summands begins to be as importantas the log part when p � 1pn lnn . 13


