
1. Limit laws for basi
 parameters oflatti
e paths with unbounded jumpsCyril BanderierABSTRACT: This paper establishes the asymptoti
s of a 
lass of random walkson N with regular but unbounded jumps and studies several basi
 parameters(returns to zero for meanders, bridges, ex
ursions, �nal altitude for meanders).All these results are generi
 (obtained by the kernel method for the 
ombinatorialpart and by singularity analysis for the asymptoti
 part).This paper 
ompletes the arti
le [3℄ whi
h was only dealing with the 
ombina-tori
s (enumeration and bije
tions) of walks with unbounded jumps (the so-
alled�fa
torial walks�), whi
h play an important r�le for uniform random generation ofsome 
ombinatorial obje
ts. We fully parallelize the analyti
al approa
h from [4℄whi
h was dealing with walks with bounded jumps only.1 Introdu
tionOur main motivation for analyzing a 
lass of walks with unbounded jumps 
omesfrom the fa
t that several 
lasses of 
ombinatorial obje
ts 
an be generated via theso-
alled �generating trees�. Enumerating these trees (and predi
ting the numberof nodes at a given depth) allows uniform random generation. The 
on
ept ofgenerating trees has been used from various points of view and has been introdu
edin the literature by Chung, Graham, Hoggatt and Kleiman [11℄ to examine theredu
ed Baxter permutations. This te
hnique has been su

essively applied toother 
lasses of permutations and the main referen
es on the subje
t are due toWest [14, 25, 26℄, then followed by the Florentine s
hool [6, 7, 16, 19, 20, 22, 23℄and other authors [3, 12, 18℄. A generating tree is a rooted labeled tree (labels areintegers) with the property that if v1 and v2 are any two nodes with the same labelthen, for ea
h label `, v1 and v2 have exa
tly the same number of 
hildren withlabel `. To spe
ify a generating tree it therefore su�
es to spe
ify: 1) the label ofthe root; 2) a set of rules explaining how to derive from the label of a parent thelabels of all of its 
hildren. Points 1) and 2) de�ne what we 
all a rewriting rule.Any random walk in the generating tree 
an also be seen as a latti
e path (randomwalk on the integers, with an in�nite number of possible jumps). The regularity ofthe rewriting rules determines the �solvability� (
ombinatorially speaking) of the
orresponding random walk pro
ess.Few years ago, Pinzani and al. [6℄ exhibited several 
ases of fa
torial-likerewriting rules for whi
h the generating fun
tions were algebrai
. This was 
allingfor a general solution of the fa
torial-like rewriting rules 
ase. This problem wassolved in [3℄, by establishing a link between the generating trees and families oflatti
e paths with unbounded jumps (with respe
t to a given rewriting rule, thenumber of nodes with label k at depth n in the tree is the number of walks of lengthn ending at altitude k); then, the 
orresponding generating fun
tions for walks arealways algebrai
 and are made expli
it via the kernel method (we give more detailsin Se
tion 3). The asymptoti
 properties of su
h walks were remaining open.The arti
le [4℄ and an important part of the PhD thesis [2℄ are dedi
ated tothe analysis of several parameters of dis
rete random walks on Z or N with bounded



6 Cyril Banderierjumps. For this 
ase (but not for the 
ase of unbounded jumps), a 
ontext-freegrammar approa
h is also possible (as the jumps are bounded and thus 
an been
oded by a �nite alphabet). However this language theory approa
h (whi
hwas previously the main one 
onsidered in 
ombinatori
s) reveals almost nothingabout the shape of the generating fun
tion and is even less talkative about theasymptoti
s. An orthogonal approa
h (the kernel method) has the merit of givinga dire
t a

ess to the generating fun
tions and their asymptoti
s.A natural question is: 
an the same approa
h be the winning one for the studyof walks with unbounded jumps? We show here that the answer is 
learly: yes,for a quite general family of walks! What follows is a slightly modi�ed 
opy/pasteof [4℄ whi
h gives however some new original results for generating fun
tions andasymptoti
s of walks with unbounded jumps.2 Latti
e paths and generating fun
tionsThis se
tion presents the varieties of latti
e paths to be studied as well as their
ompanion generating fun
tions (in the same terms as in [4℄).De�nition 2.1. Fix a set of ve
tors of Z�Z, S = f(x1; y1); : : :g. (S 
an be �niteor not). A latti
e path or walk relative to S is a sequen
e v = (v1; : : : ; vn) su
hthat ea
h vj is in S. The geometri
 realization of a latti
e path v = (v1; : : : ; vn)is the sequen
e of points (P0; P1; : : : ; Pn) su
h that P0 = (0; 0) and ����!Pj�1Pj = vj .The quantity n is referred to as the size of the path.In what follows, we fo
us our attention to a 
lass of in�nite sets S andwe shall identify a latti
e path with the polygonal line admitting P0; : : : ; Pn asverti
es. The elements of S are 
alled steps or jumps, and we also refer to theve
tors ����!Pj�1Pj = vj as the steps of a parti
ular path.Various 
onstraints will be imposed on paths. In parti
ular we restri
t atten-tion throughout this paper to dire
ted paths de�ned by the fa
t that if (i; j) liesin S, then ne
essarily one should have i > 0. In other words, a step always entailsprogress along the horizontal axis and the geometri
 realization of the path natu-rally lives in the half plane N �Z. (This 
onstraint implies that the paths studied
an be treated essentially as 1-dimensional obje
ts.) The following 
onditioningsare to be 
onsidered (Figure 1).De�nition 2.2. A bridge is a path whose end-point Pn lies on the x-axis. Ameander is a path that lies in the quarter plane N�N . An ex
ursion is a path thatis at the same time a meander and a bridge; it thus 
onne
ts the origin to a pointlying on the x-axis and involves no point with negative y�
oordinate.A family of paths is said to be fa
torial if ea
h allowed step in S (De�ni-tion 2.1) is of the form (1;�y) for any y � 1 or of the form (1; j) with j 2 J agiven �nite subset of Z. We thus simply note S = fZ<0 ;J g.In the fa
torial 
ase the size of a path 
oin
ides with its span along thehorizontal dire
tion, that is, its length. The terminology of bridges, meanders, andex
ursions is 
hosen to be 
onsistent with the standard one adopted in Brownianmotion theory; see, e.g., [24℄. A fa
torial walk is simply a walk for whi
h thereis, at ea
h step, not only a �nite amount of �bounded� jumps below or above thea
tual position but also the possibility to go anywhere below the a
tual position.



Walks with unbounded jumps 7walks ending anywhere ending in 0
un
onstrained(on Z) walk (W)W (z; u) �Xk2ZWk(z)uk= 11� z Q(u)Wn = +1 bridge (B)B(z) �W0(z) = z bXi=0 u0i(z)ui(z)Bn � �0Q(� )np2�n

onstrained(on N) meander (M)M(z) �Xk�0Fk(z)= �1z bYi=0 (1� ui(z))Mn � �0 Q(� )n2p�n3

ex
ursion (E)E(z) � F0(z) = (�1)b+1zp�b bYi=0ui(z)En � �0 Q(� )n2p�n3Figure 1: The four types of paths with unbounded jumps: walks, bridges, me-anders, and ex
ursions. We give the 
orresponding generating fun
tions and theasymptoti
s of their 
oe�
ients. (N.B.: there is an in�nite number of un
on-strained walks as jumps are unbounded.)The main obje
tive of this paper is to enumerate exa
tly as well as asymptoti-
ally paths, bridges, and meanders, this with spe
ial attention to fa
torial families.On
e the set of steps is �xed, we let W and B denote the set of paths and bridgesrespe
tively (W being reminis
ent of �walk�); we denote by M and E the set ofmeanders and ex
ursions.Given a 
lass C of paths, we let Cn denote the sub
lass of paths that havesize n, and, whenever appropriate, Cn;k � Cn those that have �nal verti
al abs
issa(also known as ��nal altitude�) equal to k. With the 
onvention of using standardfonts to denote 
ardinalities of the 
orresponding sets (themselves in 
alligraphi
style), Cn = 
ard(Cn) and Cn;k = 
ard(Cn;k), the 
orresponding (ordinary) gener-ating fun
tions are thenC(z) := Xn2NCnzn; C(z; u) =Xk2ZCk(z)uk = Xn2N;k2ZCn;k ukzn =Xn2N 
n(u) zn:



8 Cyril BanderierThis paper is entirely devoted to 
hara
terizing these generating fun
tions: theyare either rational fun
tions (W ) or algebrai
 fun
tions (B;M;E)1. As we shall see,a strong algebrai
 de
omposition prevails whi
h, as opposed to other approa
hes,renders the 
al
ulation of the generating fun
tions e�e
tive. Even more impor-tantly, the de
omposability of generating fun
tions makes it possible to extra
ttheir singular stru
ture, and in turn solve the 
orresponding asymptoti
 enumer-ation problems in a wholly satisfa
tory fashion.Weighted paths. For several appli
ations, it is useful to asso
iate weightsto single steps. In this 
ase, the set of steps S is 
oupled with a system of weights� = fwigi2Z, with wi > 0 the weight asso
iated to (1; i) 2 S; the weight of apath is then de�ned as the produ
t of the weights of its individual steps. Then thequantity Cn, still referred to as number of paths (of size n), represents the sum ofthe weights of all paths of size n. Su
h weighted paths 
over several situations ofinterest: (i) 
ombinatorial paths in the standard sense above when ea
h wi = 1;(ii) paths with 
oloured steps, e.g., wi = 2 means that the 
orresponding step(1; i) has two possible 
oloured in
arnations (say blue and red); (iii) Pwi = 1
orresponds to a probabilisti
 model of paths where, at ea
h stage, step (1; i) is
hosen with probability wi.3 Fun
tional equation and the kernel methodIn this se
tion, we 
hara
terize the generating fun
tions of the four types of dire
tedpaths (un
onstrained, bridges, meanders, and ex
ursions). It will be seen that aspe
i�
 algebrai
 
urve, the �
hara
teristi
 
urve� plays a 
entral r�le.De�nition 3.1. Let S = fZ<0;J g be a fa
torial set of jumps, with � = fwigi2Zthe 
orresponding system of weights (wi � 1 in the unweighted 
ase). The 
hara
-teristi
 series of S is de�ned as the Laurent series2Q(u) := Xi2Z<0[J wi ui :Let b = �minJ [ f0g and a = maxJ be the two extreme verti
al amplitudes ofany jump of J , and assume throughout a > 0; b � 0. We restri
t now attentionto the unweighted 
ase (but with possibly 
oloured jumps in J , see the paragraph�weighted paths� in Se
tion 2). The 
hara
teristi
 series 
an be then rewritten asQ(u) = �1Xi=�1ui+P (u) � P (u)� 11� u ; where P (u) := aXj=�b pjuj (pj 2 N): (1)So pj 
an be seen as the multipli
ity of the jump (1; j). The kernel is de�ned byK(z; u) := (1� u)ub � z(ub(1� u)P (u)� ub) : (2)1The attentive reader should have understood that this does not stand for the a
ronym of awell-known Belgian theorem (Brownian Motion Everywhere)!2By Laurent series, we mean obje
ts like +1Xk=m gkuk (m 2 Z) or mXk=�1 gkuk. The reader
an 
he
k that our generating fun
tions are holomorphi
/meromorphi
 fun
tions; they 
an beexpanded at 0 or at in�nity, and so they 
an be seen as belonging either to C [[ 1u ℄℄[u℄ or C [ 1u ℄[[u℄℄.



Walks with unbounded jumps 9The 
hara
teristi
 
urve of the latti
e paths determined by S is the plane algebrai

urve de�ned by the kernel equation1� z Q(u) = 0; or equivalently K(z; u) = 0: (3)As we shall see the 
hara
teristi
 equation plays a 
entral r�le, the se
ondform being the entire version (that is, a form without negative powers).Proposition 3.2. The kernel equation (3) admits a + b + 1 roots in u : b + 1roots u0(z); : : : ; ub(z) �nite for z � 0 and a large roots v1(z); : : : ; va(z) in�nite forz � 0.Proof : This polynomial has degree a + b + 1 in u, and hen
e, admitsa + b + 1 solutions, whi
h are algebrai
 fun
tions of z. The 
lassi
al theory ofalgebrai
 fun
tions and the Newton polygon 
onstru
tion enable us to expandthe solutions near any point as Puiseux series (that is, series involving fra
tionalexponents; see [13℄). The a+ b+1 solutions, expanded around 0, 
an be 
lassi�edas follows:� the �unit� bran
h, denoted by u0, is a power series in z with 
onstant term1;� b �small� bran
hes, denoted by u1; : : : ; ub, are power series in z1=b whose �rstnonzero term is �z1=b, with �b + 1 = 0;� a �large� bran
hes, denoted by v1; : : : ; va, are Laurent series in z1=a whose�rst nonzero term is �z�1=a, with �a + 1 = 0.In parti
ular, all the roots are distin
t. �Formulae (4) and (5) in the following theorem were �rst derived in [3℄:Theorem 3.3 (Ex
ursions and meanders.). The generating fun
tion F (z; u)for fa
torial walks starting from 0 is algebrai
; it is given by (8), where u0; : : : ; ub(resp. v1; : : : ; va) are the �nite (resp. in�nite) solutions at z = 0 of the equationK(z; u) = 0 and the kernel K is de�ned by (2). In parti
ular, the generatingfun
tion for all walks, irrespe
tive of their endpoint, isM(z) = F (z; 1) = �1z bYi=0(1� ui); (4)and the generating fun
tion for ex
ursions, i.e., walks ending at 0, is, for b < 0:E(z) = F (z; 0) = (�1)b+1zp�b bYi=0ui : (5)(For b = 0, the relation be
omes F (z; 0) = u01+(1�p0)z .)More generally, the generating fun
tion for meanders ending at altitude k isFk(z) = 1zpa aXi=1 v�k�1iQj 6=i vj � vi : (6)



10 Cyril BanderierProof : The allowed jumps imply that from position k (en
oded by uk),one 
an go to the position en
oded3 by u0 + u1 + : : : + uk�1 + fu�0gP (u)uk =uk � 1u� 1 +fu�0gP (u)uk, as this is a linear mapping, this leads to the re
urren
e onthe fn(u)'s (the polynomials en
oding the possible walk positions at time n):fn+1(u) = fn(u)� fn(1)u� 1 + fu�0gP (u)fn(u)and equivalently to the following equalityF (z; u) = Xn�0 fn(u)zn= 1 + z�F (z; 1)� F (z; u)1� u + P (u)F (z; u)� fu<0g[P (u)F (z; u)℄� :Thus, F (z; u) satis�es the following fun
tional equation:F (z; u)�1 + z1� u � zP (u)� = 1 + zF (z; 1)1� u � z b�1Xk=0 rk(u)Fk(z) ; (7)where rk(u) is a Laurent polynomials whose exponents belong to [k � b;�1℄ :rk(u) := fu<0g �P (u)uk� � �k�1Xj=�b pjuj+k:Now 
omes the se
ond ingredient of the proof, the so 
alled �kernel method�. Theright-hand side of (7), on
e multiplied by ub(1� u), isR(z; u) = ub(1� u) 1 + z1� uF (z; 1)� z b�1Xk=0 rk(u)Fk(z)! :By 
onstru
tion, it is a polynomial in u of degree b + 1 and leading 
oe�
ient�1. Hen
e, it admits b + 1 roots, whi
h depend on z. Repla
ing u by the seriesu0; u1; : : : ; ub in Eq. (7) shows that these series are exa
tly the b+1 roots of R, sothat R(z; u) = � bYi=0(u� ui):Let pa := [ua℄P (u) be the multipli
ity of the largest forward jump.Then the 
oe�
ient of ua+b+1 in K(z; u) is paz, and we 
an writeK(z; u) = paz bYi=0(u� ui) aYi=1(u� vi):3We make use of the 
onventional notations for 
oe�
ients of entire and Laurent series:[zn℄Pn fnzn := fn and fu�0gg(u) is the sum of the monomials of g(u) with a nonnegativeexponent.



Walks with unbounded jumps 11Finally, as K(z; u)F (z; u) = R(z; u), we obtainF (z; u) = �Qbi=0(u� ui)ub(1� u) + zub � zub(1� u)P (u) = � 1pazQai=1(u� vi) : (8)Setting u = 1 and u = 0 gives formulae (4) and (5) and a partial fra
tionde
omposition of the rightmost part of (8) gives (6). �The �kernel method� has been part of the folklore of 
ombinatorialists forsome time and is related to the what is known as �the quadrati
 method� inenumeration of planar maps [10℄. Earlier referen
es (see [17℄ Ex. 2.2.1.11 for Dy
kpaths, [21, Se
. 15.4℄ for a pebbling game) were dealing with the 
ase of a singleunknown in the right part of (7). The kernel method in its more general versionwas developed by Banderier, Bousquet-Mélou, Flajolet, Petkov²ek [1, 2, 3, 4, 9℄.A somewhat similar idea (involving a redu
tion to a Riemann�Hilbert problem)was used in [15℄ for a queuing theory appli
ation.Theorem 3.4 (Bridges). The bivariate generating fun
tion of paths (with zmarking size and u marking �nal altitude) relative to a simple set of steps S with
hara
teristi
 series Q(u) is a rational fun
tion. It is given byW (z; u) = 11� zQ(u) : (9)The generating fun
tion of bridges is an algebrai
 fun
tion given byB(z) = z bXj=0 u0j(z)uj(z) = z ddz log (u0(z) � � �ub(z)) ; (10)where the expressions involve all the small bran
hes u0; : : : ; ub of the 
hara
teristi

urve (3). Generally, the generating fun
tionWk of paths terminating at altitude kis, for �1 < k < b,Wk(z) = z bXj=0 u0j(z)uj(z)k+1 = � zk ddz 0� bXj=0 uj(z)�k1A ; (11)and for �a < k < +1,Wk(z) = �z aXj=1 v0j(z)vj(z)k+1 = zk ddz 0� aXj=1 vj(z)�k1A ; (12)where v1; : : : ; va are the large bran
hes.(For W0, the se
ond form in (11) and (12) is to be taken in the limit sense k ! 0.)Proof : The proof of an identity similar to (10) for walks with bounded jumpsis given in [4℄ and holds verbatim for walks with unbounded jumps: Considera bridge and let m (with m � 0) be the minimal altitude of any vertex. Anynonempty bridge � de
omposes uniquely into a walk '1 of size � 1 from 0 to mthat only rea
hes level m at its right end, followed by an ex
ursion ", followed



12 Cyril Banderierby a path '2 of size � 0 from m to 0 that only tou
hes level m at its beginning.By rearrangement, one 
an write � = " � ('2j'1), where the gluing of '2'1 is anar
h (that is, an ex
ursion whi
h rea
hes 0 only at its beginning and its end) andthe bar keeps tra
k of where the splitting should o

ur. This links bridges andex
ursions: bridgesz }| {B(z)� 1 = ex
ursionsz }| {E(z) � split ar
hesz }| {�z ddzA(z)�; (13)as E(z) = 1=(1�A(z)) (A(z) stands for the generating fun
tion of ar
hes), this isequivalent to B(z)� 1 = E(z) � z ddz �1� 1E(z)� = zE0(z)E(z) ;using Formula (5) for E(z) gives the identity (10).This reinfor
es the dis
ussion of [4℄ about ubiquitous Spitzer, Andersen-likerelations and here also, this gives the possibility of analysing the number of times abridge attains its minimum or maximum value by adapting the de
omposition (13).Set wn(u) = [zn℄W (z; u), the Laurent series that des
ribes the possible al-titudes and the number of ways to rea
h them in n steps. We have w0(u) = 1,w1(u) = Q(u), and wn+1(u) = Q(u)wn(u), so that wn(u) = Q(u)n for all n. Thedetermination of W (z; u) in (9) follows fromXn�0Q(u)nzn = 11� zQ(u) :Observe that the resulting series is entire in z but of the Laurent type in u (itinvolves arbitrary negative powers of u).For positive Q(u), the radius of 
onvergen
e of W (z; u) viewed as a fun
tionof z is exa
tly 1=Q(u). Also, by the link between E(z) and B(z) (see above),the radius of 
onvergen
e of B(z) as a fun
tion of z is � = 1=Q(�), the radius of
onvergen
e of E(z) (� > 1, as it is proven in the next se
tion). Consider nowjzj < r, where r := �2 and then follow the s
heme of the proof from [4℄. �4 Asymptoti
sLemma 4.1. Let Q(u) = P (u)� 1=(1�u) be the rational series asso
iated to thejumps a fa
torial walk. Then, there exists a unique number � , 
alled the stru
tural
onstant, su
h that Q0(�) = 0; � > 1. The stru
tural radius is by de�nition thequantity � := 1Q(�) :The following domination amongst the roots holdsjui(z)j < u0(z) � v1(z) < jvj(z)j 8jzj � � for i = 1; : : : ; b and j = 2; : : : ; a :(14)



Walks with unbounded jumps 13Proof : Di�erentiating twi
e Q as given in (1), we see that Q00(x) > 0 forall x > 1. Thus, the real fun
tion x 7! Q(x) is stri
tly 
onvex on [1;+1℄. Sin
eit satis�es Q(1+) = Q(+1) = +1, it must have a unique positive minimumattained at some � , and Q0(�) = 0.As Q is aperiodi
, a strong version of the triangular inequality givesQ(v1) = 1z = jQ(vi)j < Q(jvij)sin
e Q is stri
tly in
reasing on the interval [1;+1℄ and sin
e jvij > � > 1 belongsto this interval for z 2 [0; �℄, one has the three last inequalities of (14); a dualityargument gives the �rst inequality of (14). �As one of the referee pointed out, the stru
tural 
onstant � is su
h that thejumps with law wj�jQ(�) are 
entered. Similarly, the fa
toriality assumption results insteps whi
h 
an be seen as a mixture of a geometri
 probability law and a �nitelysupported one.Theorem 4.2. The asymptoti
s for the number of bridges, meanders, ex
ursionsis given by Bn � �0Q(�)np2�n (1 + �1n + �2n2 + : : :) ; �0 = 1�s Q(�)Q00(�) ;Mn � �0 Q(�)n2p�n3 (1 + �1n + �2n2 + : : :) ; �0 = eU(�)s2Q3(�)Q00(�) ;En � �0 Q(�)n2p�n3 (1 + �1n + �2n2 + : : :) ; �0 = U(�)(�1)bs2Q3(�)Q00(�) ;where U(�) = u1(�) : : : ub(�) and eU(�) = (1� u1(�)) : : : (1� ub(�)).Proof : Here again, the approa
h used in [4℄ is the winning one. A saddlepoint method givesBn = 12i� Zjuj=� Q(u)n duu� 12i� Z �e+i��e�i� exp�n�logQ(�) + 12Q00(�)Q(�) (u� �)2 +O((u� �)3)�� duu� Q(�)n2�� Z +1�1 e�nht2=2 dt = Q(�)n�p2�nh; h = Q00(�)Q(�) :The approximation is valid as Q(�) dominates on the 
ir
le of integration (this
an be seen by the Laurent series expression of Q(u)).Contrary to what is observed for the bounded jumps 
ase, it may happenthat the small roots 
ross for jzj < � (but their produ
t remains analyti
). Wefollow the s
heme of proof from [4℄ whi
h uses the link between B(z) and E(z).One has, by lo
al inversion of the kernel equation,u0(z) = � �s2 Q(�)Q00(�)p1� z=�+ � � � (z ! ��): (15)



14 Cyril BanderierThen the only possible behaviour 
ompatible with the above asymptoti
s for Bnis that U(z) := u1(z) : : : ub(z) is analyti
al for jzj < �; the same hold for eU(z) :=(1� u1(z)) : : : (1� ub(z)).Singularity analysis on the following expressions then gives the asymptoti
expansions from the theoremEn � [zn℄U(�) (�1)b+1z s2 Q(�)Q00(�)p1� z=� ;Mn � [zn℄eU(�)�1z s2 Q(�)Q00(�)p1� z=� : �5 Returns to zeroTheorem 5.1 (Ex
ursions). The number of returns to zero of an ex
ursion withunbounded jumps is asymptoti
ally the sum of two independent geometri
 laws.The average is 2E(�)� 1 + O � 1n� returns to zero, with a varian
e 2E(�)(E(�) �1) +O � 1n�.Proof : An ex
ursion is a sequen
e of ar
hes, so E(z) = 11�A(z) andA(z) = 1� 1E(z) for E(z) and A(z) generating fun
tions of ex
ursions and ar
hesrespe
tively. We note F (z; u; t) the generating fun
tions with respe
t to theirlength, �nal altitude, number of returns to zero. Thus, one hasF (z; 0; t) =Xn;j fnj(0)tjzn = 11� tA = 11� t�1� 1E � ;where fnj(0) stands for the number of ex
ursions of length n with j returns to0. Then, all the moments 
an be made expli
it as the m-th derivatives in t ofF (z; 0; t) are 
omputable (�mt F (z; 0; t) = m! (1�E�1)m(1�t(1�E�1))m+1 ) and simplify whent = 1 : �mt F (z; 0; 1) = m!E(z)(E(z)� 1)m.Thus, the average number of returns to zero is�n = [zn℄�tF (z; 0; 1)[zn℄F (z; 0; 1) = [zn℄E(z)2[zn℄E(z) � 1 = 2e0 � 1 +O� 1n�as E(z) = e0 � e1p�� z + � � � and the varian
e is given by�2n = f 00n (1)fn(1) + �n � �2n = [zn℄2E(z)� 4E(z)2 + 2E(z)3[zn℄E(z) + �n � �2n= 6e20 � 8e0 + 2 + �n � �2n = 2e0(e0 � 1) +O� 1n� :



Walks with unbounded jumps 15The number of ex
ursions of length n with j returns to zero is given byfnj(0) = [zn℄�1� 1E(z)�j = [zn℄(1� 1e0 )j � e1j(1� e�10 )j�1pr � ze20 +O(r � z) :Consequently, the probability to get asymptoti
ally j returns to zero is �j =fnj(0)=fn ! j(1�e�10 )j�1e20 for n ! +1, and Pj�0 �j = 1 for any e0. The proba-bility generating fun
tion is x ( 1e0 11�x(1�e�10 ) )2 and one has so a dis
rete limit lawwhi
h is asymptoti
ally the sum of two independent geometri
 laws of parameters1� 1=e0. �Perhaps it 
an seem strange than a walk with a in�nite negative drift hassu
h a small average number of returns to zero4, the explanation of this �paradox�is that most of the walks have mu
h more returns, but their probabilities are verylow, de
reasing exponentially (so, like for Zeno's paradox, the sum is �nite).Theorem 5.2 (Meanders). The average number of returns to zero of a meanderwith unbounded jumps follows a dis
rete limit law of a geometri
al type.Proof : Equation (8) gives F (z; u), the bivariate generating fun
tion formeanders (length, �nal altitude). Taking into a

ount the number of returns tozero (via another variable t) leads toF (z; u; t) = Xn;j�0 fnj(u)tjzn = 11� t(1� 1=E(z)) F (z; u)E(z) :This re�e
ts the fa
t that a meander is a sequen
e of ar
hes, followed by a pre�x(i.e. a left part) of an ar
h, so M(z) = 11�A(z)M+(z) and that a pre�x of ar
h(note M+(z; u) their generating fun
tion) times an ex
ursion gives a meander, soM+(z; u) = F (z; u)=E(z). The number fnj(1) of meanders of length n with jreturns to zero is then given byfnj(1) = [zn℄(1� 1=E(z))jM(z)E(z) :Noti
e that(1� 1=E(z))jE(z) � (1� 1e0 )je0 +�� je0 + (1� 1e0 )��1� 1e0�j�1 e1e20p�� z + : : :Multiplying by the behaviour of M(z) = F (z; 1) = m0 +m1p�� z around z = �givesfnj(1) �  m1 (1� 1e0 )je0 +m0�� je0 + (1� 1e0 )��1� 1e0�j�1 e1e20! [zn℄p�� z:So fnj(1)=fn(1)! ( 1e0 +m0m1 e1e20 )(1� 1e0 )j�m0e1jm1e30 �1� 1e0�j�1 for n! +1. Asymp-toti
s of moments is also easily 
omputable from�tF (z; u; 1) = F (z; u)(E(z)� 1) and �2t F (z; u; 1) = 2(E(z)� 1)2F (z; u) :Average and varian
e are O(1). �4One referee pointed out that a similar result was known in a spe
ial 
ase of bridge, 
f.Proposition 2.2 page 101 of [8℄.



16 Cyril BanderierTheorem 5.3 (Bridges). The number of returns to zero of a bridge with un-bounded jumps is asymptoti
ally the sum of two independent geometri
 laws. Theaverage is 2B(�)� 1 +O � 1n� returns to zero, with a varian
e 2B(�)(B(�) � 1) +O � 1n�.Proof : We 
an play the same game as above:Wk(z; t) = 11� t �1� 1B(z)�Wk(z)B(z) ;The number of walks wnj of length n ending at altitude k with j returns tozero is then given by wnj(1) = [zn℄(1� 1=B(z))jWk(z)B(z) : �6 Final altitude of a meander.The �nal altitude of a path is the abs
issa of its end point. The random variableasso
iated to �nite altitude when taken over the set of all meanders of length n isdenoted by Xn, and it satis�esPr(Xn = k) = [znuk℄F (z; u)[zn℄F (z; 1) :We state:Theorem 6.1 (Meanders). The �nal altitude of a random meander of size nadmits a dis
rete limit distribution 
hara
terized in terms of the large bran
hes:limn!1Pr(Xn = k) = [uk℄$(u); where $(u) = (1� �)2(u� �)2 Ỳ�2 1� v`(�)u� v`(�) :The limiting distribution admits an expli
it form[uk℄$(u) = ��k(
0 + 
1k) + X̀�2 
`v`(�)�k;for a set of 
onstants 
j that 
an be made expli
it by a partial fra
tion expansionof $(u).Proof : Similarly to [4℄, one dire
tly shows that the probability generatingfun
tion of Xn at u 
onverges pointwise to a limit that pre
isely equals $(u),the 
onvergen
e holding for u 2 (0; 1). By the fundamental 
ontinuity theoremfor probability generating fun
tions, this entails 
onvergen
e in law of the 
orre-sponding dis
rete distributions.



Walks with unbounded jumps 17We now �x a value of u taken arbitrarily in (0; 1) and treated as a parameter.The probability generating fun
tion of Xn is[zn℄F (z; u)[zn℄F (z; 1) ;where F (z; u) is given by Theorem 3.3. We know from the proof of Theorem 4.2that � = v1(�) satis�es � > 1 while the radius of 
onvergen
e of F (z; 1) 
oin
ideswith the stru
tural radius �. Then, the quantityeV (z; u) = aỲ�2 1u� v`(z)is analyti
 in the 
losed disk jzj � �: being a symmetri
 fun
tion of the nonprin
i-pal large bran
hes, it has no algebrai
 singularity there; given the already knowndomination relations between the large bran
hes (Lemma 4.1), the denominators
annot vanish.It then su�
es to analyse the fa
tor 
ontaining the prin
ipal large bran
h v1.This fa
tor has a bran
h point at �, where1u� v1(z) � 1u� � + 1(u� �)2s2 Q(�)Q00(�)p1� z=�;as follows dire
tly from (15) and the fa
t that v1 is 
onjugate to u0 at z = �.Singularity analysis then gives instantly the fa
t that, for some nonzero 
onstant C,[zn℄F (z; u) � C��nn�3=2
(u); where 
(u) = 1(u� �)2 eV (�; u);and the result follows after normalization by [zn℄F (z; 1). �7 Variations...All the above theorems hold with a slightly more general model of walks, forwhi
h all the ba
kward unbounded jumps are 
oloured (say, there is m 
olors).The only modi�
ation is that the roots are then the roots of the kernel K(z; u) =(1 � u)ub � z(ub(1 � u)P (u) �mub). The analysis for the F 0ks and W 0ks is moredeli
ate as it involves a better �individual� knowledge of the small and large roots.Some more general models of walks were 
onsidered in [5℄, there is still somealgebrai
 generating fun
tions but their asymptoti
 properties remain to be estab-lished, this seems quite di�
ult as there is no 
lear simple 
losed form formula (interms of the roots of the kernel) in the general 
ase.A
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