1. Limit laws for basic parameters of
lattice paths with unbounded jumps

Cyril Banderier

ABSTRACT: This paper establishes the asymptotics of a class of random walks
on N with regular but unbounded jumps and studies several basic parameters
(returns to zero for meanders, bridges, excursions, final altitude for meanders).
All these results are generic (obtained by the kernel method for the combinatorial
part and by singularity analysis for the asymptotic part).

This paper completes the article [3] which was only dealing with the combina-
torics (enumeration and bijections) of walks with unbounded jumps (the so-called
“factorial walks”), which play an important role for uniform random generation of
some combinatorial objects. We fully parallelize the analytical approach from [4]
which was dealing with walks with bounded jumps only.

1 Introduction

Our main motivation for analyzing a class of walks with unbounded jumps comes
from the fact that several classes of combinatorial objects can be generated via the
so-called “generating trees”. Enumerating these trees (and predicting the number
of nodes at a given depth) allows uniform random generation. The concept of
generating trees has been used from various points of view and has been introduced
in the literature by Chung, Graham, Hoggatt and Kleiman [11] to examine the
reduced Baxter permutations. This technique has been successively applied to
other classes of permutations and the main references on the subject are due to
West [14, 25, 26|, then followed by the Florentine school [6, 7, 16, 19, 20, 22, 23]
and other authors [3, 12, 18]. A generating tree is a rooted labeled tree (labels are
integers) with the property that if v; and ve are any two nodes with the same label
then, for each label ¢, v; and vs have exactly the same number of children with
label £. To specify a generating tree it therefore suffices to specify: 1) the label of
the root; 2) a set of rules explaining how to derive from the label of a parent the
labels of all of its children. Points 1) and 2) define what we call a rewriting rule.
Any random walk in the generating tree can also be seen as a lattice path (random
walk on the integers, with an infinite number of possible jumps). The regularity of
the rewriting rules determines the “solvability” (combinatorially speaking) of the
corresponding random walk process.

Few years ago, Pinzani and al. [6] exhibited several cases of factorial-like
rewriting rules for which the generating functions were algebraic. This was calling
for a general solution of the factorial-like rewriting rules case. This problem was
solved in [3], by establishing a link between the generating trees and families of
lattice paths with unbounded jumps (with respect to a given rewriting rule, the
number of nodes with label k at depth n in the tree is the number of walks of length
n ending at altitude k); then, the corresponding generating functions for walks are
always algebraic and are made explicit via the kernel method (we give more details
in Section 3). The asymptotic properties of such walks were remaining open.

The article [4] and an important part of the PhD thesis [2] are dedicated to
the analysis of several parameters of discrete random walks on Z or N with bounded



6 Cyril Banderier

jumps. For this case (but not for the case of unbounded jumps), a context-free
grammar approach is also possible (as the jumps are bounded and thus can be
encoded by a finite alphabet). However this language theory approach (which
was previously the main one considered in combinatorics) reveals almost nothing
about the shape of the generating function and is even less talkative about the
asymptotics. An orthogonal approach (the kernel method) has the merit of giving
a direct access to the generating functions and their asymptotics.

A natural question is: can the same approach be the winning one for the study
of walks with unbounded jumps? We show here that the answer is clearly: yes,
for a quite general family of walks! What follows is a slightly modified copy/paste
of [4] which gives however some new original results for generating functions and
asymptotics of walks with unbounded jumps.

2 Lattice paths and generating functions

This section presents the varieties of lattice paths to be studied as well as their
companion generating functions (in the same terms as in [4]).

Definition 2.1. Fix a set of vectors of 7. x 7, S = {(z1,y1),...}. (S can be finite
or not). A lattice path or walk relative to S is a sequence v = (v1,...,v,) such
that each v; is in S. The geometric realization of a lattice path v = (vi,...,v,)

—
is the sequence of points (P, Py, ..., P,) such that Py = (0,0) and P;_1P; = v;.
The quantity n is referred to as the size of the path.

In what follows, we focus our attention to a class of infinite sets S and
we shall identify a lattice path with the polygonal line admitting P, ..., P, as
vertices. The elements of S are called steps or jumps, and we also refer to the

vectors Pj_1 P; = v; as the steps of a particular path.

Various constraints will be imposed on paths. In particular we restrict atten-
tion throughout this paper to directed paths defined by the fact that if (7,7) lies
in S, then necessarily one should have ¢ > 0. In other words, a step always entails
progress along the horizontal axis and the geometric realization of the path natu-
rally lives in the half plane N x Z. (This constraint implies that the paths studied
can be treated essentially as 1-dimensional objects.) The following conditionings
are to be considered (Figure 1).

Definition 2.2. A bridge is a path whose end-point P, lies on the x-axis. A
meander is a path that lies in the quarter plane Nx N. An excursion is a path that
is at the same time a meander and a bridge; it thus connects the origin to a point
lying on the x-axis and involves no point with negative y—coordinate.

A family of paths is said to be factorial if each allowed step in S (Defini-
tion 2.1) is of the form (1, —y) for any y > 1 or of the form (1,j) with j € J a
given finite subset of Z. We thus simply note S = {Z <o, J }.

In the factorial case the size of a path coincides with its span along the
horizontal direction, that is, its length. The terminology of bridges, meanders, and
excursions is chosen to be consistent with the standard one adopted in Brownian
motion theory; see, e.g., [24]. A factorial walk is simply a walk for which there
is, at each step, not only a finite amount of “bounded” jumps below or above the
actual position but also the possibility to go anywhere below the actual position.
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Figure 1: The four types of paths with unbounded jumps: walks, bridges, me-
anders, and excursions. We give the corresponding generating functions and the
asymptotics of their coefficients. (N.B.: there is an infinite number of uncon-
strained walks as jumps are unbounded.)

The main objective of this paper is to enumerate exactly as well as asymptoti-
cally paths, bridges, and meanders, this with special attention to factorial families.
Once the set of steps is fixed, we let YW and B denote the set of paths and bridges
respectively (VW being reminiscent of “walk”); we denote by M and & the set of
meanders and excursions.

Given a class C of paths, we let C,, denote the subclass of paths that have
size n, and, whenever appropriate, C,,  C Cy, those that have final vertical abscissa
(also known as “final altitude”) equal to k. With the convention of using standard
fonts to denote cardinalities of the corresponding sets (themselves in calligraphic
style), C,, = card(C,) and C,, = card(Cy, 1), the corresponding (ordinary) gener-
ating functions are then

C(z) := Z Cnz™, C(z,u) = ZCk(z) uk = Z Crpufz™ = Z en(u) 2™

neN kEZ neN,KEZ neN
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This paper is entirely devoted to characterizing these generating functions: they
are either rational functions (W) or algebraic functions (B, M, E)*. As we shall see,
a strong algebraic decomposition prevails which, as opposed to other approaches,
renders the calculation of the generating functions effective. Even more impor-
tantly, the decomposability of generating functions makes it possible to extract
their singular structure, and in turn solve the corresponding asymptotic enumer-
ation problems in a wholly satisfactory fashion.

Weighted paths. For several applications, it is useful to associate weights
to single steps. In this case, the set of steps S is coupled with a system of weights
IT = {w;}icz, with w; > 0 the weight associated to (1,7) € S; the weight of a
path is then defined as the product of the weights of its individual steps. Then the
quantity C,, still referred to as number of paths (of size n), represents the sum of
the weights of all paths of size n. Such weighted paths cover several situations of
interest: (i) combinatorial paths in the standard sense above when each w; = 1;
(7i) paths with coloured steps, e.g., w; = 2 means that the corresponding step
(1,4) has two possible coloured incarnations (say blue and red); (iii) > w; = 1
corresponds to a probabilistic model of paths where, at each stage, step (1,4) is
chosen with probability w;.

3 Functional equation and the kernel method

In this section, we characterize the generating functions of the four types of directed
paths (unconstrained, bridges, meanders, and excursions). It will be seen that a
specific algebraic curve, the “characteristic curve” plays a central role.

Definition 3.1. Let S = {Z <o, J} be a factorial set of jumps, with II = {w; }icz
the corresponding system of weights (w; =1 in the unweighted case). The charac-
teristic series of S is defined as the Laurent series®

Qu) := Z w;ut .

I€EL<oUT

Let b = —min J U {0} and a = maxJ be the two extreme vertical amplitudes of
any jump of J, and assume throughout a > 0,b > 0. We restrict now attention
to the unweighted case (but with possibly coloured jumps in J, see the paragraph
“weighted paths” in Section 2). The characteristic series can be then rewritten as

Q(u) = i u'+P(u) = P(u)—ﬁ, where P(u) := Z pjv’  (pj € N). (1)

1=—00 j:—
So p; can be seen as the multiplicity of the jump (1,7). The kernel is defined by

K(z,u) = (1 —u)u’ — 2(u’(1 — u)P(u) — u’). (2)

1The attentive reader should have understood that this does not stand for the acronym of a
well-known Belgian theorem (Brownian Motion Everywhere)!

400 m
2By Laurent series, we mean objects like Z gkulC (m € Z) or Z gkuk. The reader
k=m k=—o00

can check that our generating functions are holomorphic/meromorphic functions; they can be
expanded at 0 or at infinity, and so they can be seen as belonging either to C[[1]][u] or C] %}[[u]]

u
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The characteristic curve of the lattice paths determined by S is the plane algebraic
curve defined by the kernel equation

1-2Q(u) =0, or equivalently K (z,u) = 0. (3)

As we shall see the characteristic equation plays a central role, the second
form being the entire version (that is, a form without negative powers).

Proposition 3.2. The kernel equation (3) admits a +b+ 1 roots in u : b+ 1
roots ug(z), ..., up(2) finite for z ~ 0 and a large roots vy (2),...,v.(2) infinite for
z~0

Proof :  This polynomial has degree a + b + 1 in u, and hence, admits
a + b + 1 solutions, which are algebraic functions of z. The classical theory of
algebraic functions and the Newton polygon construction enable us to expand
the solutions near any point as Puiseux series (that is, series involving fractional
exponents; see [13]). The a + b+ 1 solutions, expanded around 0, can be classified
as follows:

— the “unit” branch, denoted by ug, is a power series in z with constant term
L;

— b*“small” branches, denoted by w1, ..., u, are power series in z/? whose first
nonzero term is (z'/°, with ¢* +1 = 0;

— a “large” branches, denoted by vy,...,v,, are Laurent series in 2!/ whose
first nonzero term is (z~1/%, with ¢* + 1 = 0.
In particular, all the roots are distinct. a

Formulae (4) and (5) in the following theorem were first derived in [3]:

Theorem 3.3 (Excursions and meanders.). The generating function F(z,u)
for factorial walks starting from 0 is algebraic; it is given by (8), where ug,. .., up
(resp. wvi,...,v,) are the finite (resp. infinite) solutions at z = 0 of the equation
K(z,u) = 0 and the kernel K is defined by (2). In particular, the generating
function for all walks, irrespective of their endpoint, is

b
M) = F(z,1) = = [[0 - w), (@
=0

and the generating function for excursions, i.e., walks ending at 0, is, for b < 0:

_q\b+1 b
E(Z)ZF(Z,O)Z%HUi- (5)

(For b =0, the relation becomes F(z,0) = 1+(1u7—0p0)z)
More generally, the generating function for meanders ending at altitude k is
I vkt
Fi(2) = I (6)
ZPa Zzzl [ 05 —vi
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Proof : The allowed jumps imply that from position & (encoded by u*),
one can go to the position encoded?® by u® + u' + ...+ u*7' + {u2}P(u)u* =
ub —1
u—1
the f,(u)’s (the polynomials encoding the possible walk positions at time n):

Fupr(w) = 22O =500 | s0ypy £, )

u—1

+ {uZ°}P(u)u*, as this is a linear mapping, this leads to the recurrence on

and equivalently to the following equality
F(z,u) = Z fn(u)z"
n>0

142 <F(z, 1i - 5(z,u) + P(u)F(z,u) — {u<0}[P(U)F(Zv“)]> :

Thus, F(z,u) satisfies the following functional equation:

b—1
F(z,u) (1 +3 - - - zP(u)> =1+ 2{%‘2:) Y nWF(z),  (7)
k=0

where 7 (u) is a Laurent polynomials whose exponents belong to [k — b, —1] :

—k-1

ri(u) == {u<"} (P(u)uf) = Z pjul Tk,

j=—b

Now comes the second ingredient, of the proof, the so called “kernel method”. The
right-hand side of (7), once multiplied by u®(1 —u), is

z

b—1
R(z,u) = u’(1 —u) (1 + 1 F(z,1)— 2 Zrk(u)Fk(z)> .
k=0

—Uu

By construction, it is a polynomial in u of degree b + 1 and leading coefficient
—1. Hence, it admits b + 1 roots, which depend on z. Replacing u by the series
Ug, U1, ..., up in Eq. (7) shows that these series are exactly the b+ 1 roots of R, so

that
b

R(z,u) = — H(u — ;).

i=0
Let po := [u®]P(u) be the multiplicity of the largest forward jump.
Then the coefficient of u****! in K(z,u) is p,z, and we can write

b a
K(z,u) = paz H(U — u;) H(U — v;).

i=1

3We make use of the conventional notations for coefficients of entire and Laurent series:
[2"]3,, fnz™ == fn and {uZC}g(u) is the sum of the monomials of g(u) with a nonnegative
exponent.
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Finally, as K (z,u)F(z,u) = R(z,u), we obtain

b
L 1
F(z,u) = Lo =5 - C®
ub(1 —u) + zub — 2zub(1 — u) P(u) Paz [ i (u —v;)
Setting v = 1 and w = 0 gives formulae (4) and (5) and a partial fraction
decomposition of the rightmost part of (8) gives (6). O

The “kernel method” has been part of the folklore of combinatorialists for
some time and is related to the what is known as “the quadratic method” in
enumeration of planar maps [10]. Earlier references (see [17] Ex. 2.2.1.11 for Dyck
paths, [21, Sec. 15.4] for a pebbling game) were dealing with the case of a single
unknown in the right part of (7). The kernel method in its more general version
was developed by Banderier, Bousquet-Mélou, Flajolet, Petkovsek [1, 2, 3, 4, 9].
A somewhat similar idea (involving a reduction to a Riemann-Hilbert problem)
was used in [15] for a queuing theory application.

Theorem 3.4 (Bridges). The bivariate generating function of paths (with z
marking size and u marking final altitude) relative to a simple set of steps S with
characteristic series Q(u) is a rational function. It is given by

1

W = 9
) = T Q

The generating function of bridges is an algebraic function given by

b !
_ Uj (2) _d

B(z) _ngouj(z) —zalog(uo(z)---ub(z)), (10)
where the expressions involve all the small branches g, . .., up of the characteristic

curve (3). Generally, the generating function Wy, of paths terminating at altitude k
is, for —oo < k < b,

b u’;(2) 2 d b e
Wk(Z)ZZZW:—E% D ui(z)* ), (11)
j=0 "/ J=0
and for —a < k < +o00,
=~ v;(2) 2 d [ _
Wk(Z)Z—ZZWZE% D ovi)7F ], (12)
j=1 7 j=1
where vy, ...,v, are the large branches.

(For Wy, the second form in (11) and (12) is to be taken in the limit sense £ — 0.)
Proof :  The proof of an identity similar to (10) for walks with bounded jumps
is given in [4] and holds verbatim for walks with unbounded jumps: Consider
a bridge and let m (with m < 0) be the minimal altitude of any vertex. Any
nonempty bridge # decomposes uniquely into a walk ¢; of size > 1 from 0 to m
that only reaches level m at its right end, followed by an excursion &, followed
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by a path ¢y of size > 0 from m to 0 that only touches level m at its beginning.
By rearrangement, one can write 8 = € - (p2]p1), where the gluing of pa¢; is an
arch (that is, an excursion which reaches 0 only at its beginning and its end) and
the bar keeps track of where the splitting should occur. This links bridges and
excursions:

. . split arches
bridges  excursions ———

Bo) 1= B - (zd%A@)), (13)

as E(z) =1/(1 - A(z)) (A(z) stands for the generating function of arches), this is
equivalent to

B(z) —1=E(z)- zi (1 - E?z)) = zg((j)) ,

using Formula (5) for E(z) gives the identity (10).

This reinforces the discussion of [4] about ubiquitous Spitzer, Andersen-like
relations and here also, this gives the possibility of analysing the number of times a
bridge attains its minimum or maximum value by adapting the decomposition (13).

Set wy, (u) = [2"]W(z,u), the Laurent series that describes the possible al-
titudes and the number of ways to reach them in n steps. We have wq(u) = 1,
wy(u) = Q(u), and wy+1(u) = Q(u)wy(u), so that w,(u) = Q(u)™ for all n. The
determination of W (z,u) in (9) follows from

n.n __ 1
,;Q(“) T T 2QM)

Observe that the resulting series is entire in z but of the Laurent type in u (it
involves arbitrary negative powers of ).

For positive Q(u), the radius of convergence of W (z,u) viewed as a function
of z is exactly 1/Q(u). Also, by the link between E(z) and B(z) (see above),
the radius of convergence of B(z) as a function of z is p = 1/Q(7), the radius of
convergence of E(z) (r > 1, as it is proven in the next section). Consider now
|z| < r, where r := £ and then follow the scheme of the proof from [4]. O

4 Asymptotics

Lemma 4.1. Let Q(u) = P(u) — 1/(1 —u) be the rational series associated to the
jumps a factorial walk. Then, there exists a unique number T, called the structural
constant, such that Q'(t) =0, 7 > 1. The structural radius is by definition the
quantity

1

7T Qm

The following domination amongst the roots holds

lui(2)] <wo(z) <vi(z) < |vj(2)] V|z|<pfori=1,....bandj=2,...,a.
(14)
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Proof : Differentiating twice @ as given in (1), we see that Q”(z) > 0 for
all z > 1. Thus, the real function z — Q(z) is strictly convex on [1, +o0]. Since
it satisfies Q(17) = Q(+00) = +oo, it must have a unique positive minimum
attained at some 7, and Q'(7) = 0.

As @ is aperiodic, a strong version of the triangular inequality gives

Q) = £ = QG| < Qi)

since @ is strictly increasing on the interval [1, +00] and since |v;| > 7 > 1 belongs
to this interval for z € [0, p], one has the three last inequalities of (14); a duality
argument gives the first inequality of (14). O

As one of the referee pointed out, the structural constant 7 is such that the
jumps with law = Q( ) are centered. Similarly, the factoriality assumption results in
steps which can be seen as a mixture of a geometric probability law and a finitely
supported one.

Theorem 4.2. The asymptotics for the number of bridges, meanders, excursions

is given by
BO?/(—)n(1+%+&+ ), Bo:% QQ”((TT))
Mn~uof\}%(1+&+@+ )y po=Ulp) 25,?(%),
En~eof(2;(1+%+%+...), € = U(p)(~1)" 25”3((2,

where U(p) = u1(p) ... up(p) and U(p) = (1 —ui(p)) ... (1 — us(p)).

Proof : Here again, the approach used in [4] is the winning one. A saddle
point method gives

B, = % lu_TQ(u)”%
~ i Te_:eexp< <logQ() ;%I((TT)) (u—1) +O((u—7')3)>) du

QI [T _ne . Q)" Q")
o /_w ¢ W= e T 00

The approximation is valid as Q(7) dominates on the circle of integration (this
can be seen by the Laurent series expression of Q(u)).

Contrary to what is observed for the bounded jumps case, it may happen
that the small roots cross for |z| < p (but their product remains analytic). We
follow the scheme of proof from [4] which uses the link between B(z) and E(z).
One has, by local inversion of the kernel equation,

Q(7)
Q"(1)

1—z/p+--- (z—=p ). (15)
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Then the only possible behaviour compatible with the above asymptotics for B,
is that U(z) := u1(2) ... us(2) is analytical for |z| < p; the same hold for U(z) :=
(T =ui(2)) ... (1 —up(2)).

Singularity analysis on the following expressions then gives the asymptotic
expansions from the theorem

b+l -
B~ 00 T 220 T2,

My~ 00 T 2

1—2z/p.

5 Returns to zero

Theorem 5.1 (Excursions). The number of returns to zero of an excursion with
unbounded jumps is asymptotically the sum of two independent geometric laws.
The average is 2E(p) — 1+ O (L) returns to zero, with a variance 2E(p)(E(p) —

1
n
) +0 ().
Proof :  An excursion is a sequence of arches, so F(z) = ﬁﬂ) and
A(z)=1- % for E(z) and A(z) generating functions of excursions and arches

respectively. We note F'(z,u,t) the generating functions with respect to their
length, final altitude, number of returns to zero. Thus, one has

1

1—t4 1-t(1-1)°

F(2,0,t) =Y faj(0)t/2" =
n,j

where f,;(0) stands for the number of excursions of length n with j returns to
0. Then, all the moments can be made explicit as the m-th derivatives in ¢ of

F(2,0,t) are computable (9j"F(z,0,t) = m!%) and simplify when
t=1:0"F(2,0,1) =m!E(2)(E(z) — 1)™.
Thus, the average number of returns to zero is

_ [2"0F(2,0,1) _ [z"]E(2)? 1=25-1+0 <1>

I = TnlF(,0,1) | [2"]E(2) n

as E(z) = ey —e1y/p— z+ --- and the variance is given by

o ), [RE() 4B’ 42BGP
T gy T e Ere) T

1
:663—8€0+2+Mn—,u%:260(60—1)+O(ﬁ) .
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The number of excursions of length n with j returns to zero is given by

fni(0) = [2"] (1_$> - Ly iz

€o ed

+O0(r—=z).

Consequently, the probability to get asymptotically j returns to zero is m; =

. —1y\j—
fnj(0)/ frn — ](1_56072)1 for n — +o00, and }_,5,m; =1 for any ep. The proba-
0 s

bility generating function is x (% mf and one has so a discrete limit law
- ]

which is asymptotically the sum of two independent geometric laws of parameters
1—1/eg. O

Perhaps it can seem strange than a walk with a infinite negative drift has
such a small average number of returns to zero*, the explanation of this “paradox”
is that most of the walks have much more returns, but their probabilities are very
low, decreasing exponentially (so, like for Zeno’s paradox, the sum is finite).

Theorem 5.2 (Meanders). The average number of returns to zero of a meander
with unbounded jumps follows a discrete limit law of a geometrical type.

Proof :  Equation (8) gives F(z,u), the bivariate generating function for
meanders (length, final altitude). Taking into account the number of returns to
zero (via another variable t) leads to

Femt)= 3 fuwiis" = -

n,j >0

1 F(z,u)
—t(1-1/E(2)) E(z)

This reflects the fact that a meander is a sequence of arches, followed by a prefix
(i.e. a left part) of an arch, so M(z) = mM*(z) and that a prefix of arch

(note M*(z,u) their generating function) times an excursion gives a meander, so
M*(z,u) = F(z,u)/E(z). The number f,;(1) of meanders of length n with j
returns to zero is then given by

fni(1) = [2"](1 = 1/E(2))

E(z)

Notice that
QoyEey Bowl (o L) (-1 g

Multiplying by the behaviour of M(z) = F(z,1) = mg + m1+/p — z around z = p
gives

Fus (1) ~ (mu mo (-2 40-2) (1- i)jl —) V.

. . j—1
S0 fnj(1)/fa(1) = (G +Me8)(1- L)/ —mocd (1 - lo)] for n — +00. Asymp-

mi1 eg ep mieg

totics of moments is also easily computable from
OtF (z,u,1) = F(z,u)(E(z) — 1) and 8} F(z,u,1) = 2(E(z) — 1)?F(z,u) .

Average and variance are O(1). O

4One referee pointed out that a similar result was known in a special case of bridge, cf.
Proposition 2.2 page 101 of [8].
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Theorem 5.3 (Bridges). The number of returns to zero of a bridge with un-
bounded jumps is asymptotically the sum of two independent geometric laws. The
average is 2B(p) — 1+ O (L) returns to zero, with a variance 2B(p)(B(p) — 1) +

1
0(L).
Proof : We can play the same game as above:

1 Wi(z)
1—t(1— 1 ) B(z) ’

B(z)

Wk(zat) =

The number of walks w,,; of length n ending at altitude &£ with j returns to
zero is then given by

wn;(1) = [z")(1 = 1/B(2))’

6 Final altitude of a meander.
The final altitude of a path is the abscissa of its end point. The random variable

associated to finite altitude when taken over the set of all meanders of length n is
denoted by X,,, and it satisfies

o [2MF(z,u)
S F e

We state:

Theorem 6.1 (Meanders). The final altitude of a random meander of size n
admits a discrete limit distribution characterized in terms of the large branches:

nlggo Pr(X, = k) = [u"]@(u), where w(u)= Ei::‘;2 H i::ﬁii
0>2

The limiting distribution admits an explicit form

[Wh@(u) =77 F(co + k) + Y cove(p)F,

>2

for a set of constants c; that can be made explicit by a partial fraction expansion

of w(u).

Proof :  Similarly to [4], one directly shows that the probability generating
function of X,, at u converges pointwise to a limit that precisely equals w(u),
the convergence holding for v € (0,1). By the fundamental continuity theorem
for probability generating functions, this entails convergence in law of the corre-
sponding discrete distributions.
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We now fix a value of u taken arbitrarily in (0,1) and treated as a parameter.
The probability generating function of X, is

[2"]F' (2, u)
[2"]F(2,1)’

where F'(z,u) is given by Theorem 3.3. We know from the proof of Theorem 4.2
that 7 = vy (p) satisfies 7 > 1 while the radius of convergence of F(z, 1) coincides
with the structural radius p. Then, the quantity

V(z,u) = H !

ek ve(2)

is analytic in the closed disk |z| < p: being a symmetric function of the nonprinci-
pal large branches, it has no algebraic singularity there; given the already known
domination relations between the large branches (Lemma, 4.1), the denominators
cannot vanish.

It then suffices to analyse the factor containing the principal large branch v .
This factor has a branch point at p, where

: o +(u—lT)2 QQ(T)M’

u—wv(2) uwu-—7 Q" (1)

as follows directly from (15) and the fact that v, is conjugate to ug at z = p.
Singularity analysis then gives instantly the fact that, for some nonzero constant C,

[2"]F(z,u) ~ Cp~"n"%/2Q(u), where Q(u)= ﬁﬁ(p,u),

and the result follows after normalization by [2"]F(z,1).

7 Variations...

All the above theorems hold with a slightly more general model of walks, for
which all the backward unbounded jumps are coloured (say, there is m colors).
The only modification is that the roots are then the roots of the kernel K (z,u) =
(1 —uw)ub — 2(ub(1 — u)P(u) — mu®). The analysis for the F}s and W/s is more
delicate as it involves a better “individual” knowledge of the small and large roots.

Some more general models of walks were considered in [5], there is still some
algebraic generating functions but their asymptotic properties remain to be estab-
lished, this seems quite difficult as there is no clear simple closed form formula (in
terms of the roots of the kernel) in the general case.
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