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Abstract
Quantum systems where the position and momentum are in the ring Zd (d is an
odd integer) are considered. Symplectic transformations are studied, and the
order of Sp(2, Zd) is calculated. Quantum tomography is also discussed. It
is shown that measurements (used in the inverse Radon transform) need to be
made on J2(d) lines (where J2(d) is the Jordan totient function).

PACS number: 03.65.Ca

1. Introduction

Finite quantum systems where the position and momentum take values in the ring Zd (the
integers modulo d) have been studied extensively in the literature (reviews with an extensive
list of references have been presented in [1–3]). Related mathematical work is presented in
[4–7].

When d is a prime number so that Zd is a field, these systems have stronger properties,
in comparison to the case where d is a non-prime number and Zd is a ring but not a field.
All phase space methods known from the harmonic oscillator (symplectic transformations,
Wigner and Weyl functions, quantum tomography, etc) can also be applied in the context of
finite quantum systems. Most of these techniques rely on the existence of inverses of the
parameters. In a ring only ϕ(d) (the Euler totient function) of the elements have inverses. For
this reason the results are stronger in the case where Zd is a field, in comparison to the case
where Zd is a ring but not a field.

Related is also the result that the number of mutually unbiased bases [8–15] M(d), which
is known to obey the inequality M(d) � d + 1, takes in the case of a field the maximum value
M(d) = d + 1.

In this communication, we first consider the symplectic group Sp(2, Zd) [16–19] and
calculate its order. We next consider briefly Wigner and Weyl functions [1, 20–24] with
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emphasis on their marginal properties. It is well known that there are differences in the
formalism for odd and even d, and everywhere in this communication we consider the case
of odd d. We use these functions in the context of quantum tomography. We show that
measurements on J2(d) lines give the Weyl function in the full phase space.

In section 2 we discuss the symplectic group and prove proposition 2.1 about its order. In
section 3 we discuss briefly quantum systems with positions and momenta in Zd . In section 4
we discuss quantum tomography and prove proposition 4.1. We conclude in section 5 with a
discussion of our results.

1.1. The Z
∗
d group of reduced residue classes modulo d

We consider the ring Zd . An element α ∈ Zd is invertible if and only if G(α, d) = 1 (where
G denotes the greatest common divisor). The invertible elements of Zd (called units) form
a group with respect to multiplication, which is called the group of reduced residue classes
modulo d, and which we denote as Z

∗
d . The order of this group is |Z∗

d | = ϕ(d).
Let d be an integer, which is factorized in terms of N prime numbers pi as

d =
N∏

i=1

p
ei

i . (1)

The Euler totient function is given by

ϕ(d) = d

N∏
i=1

(
1 − 1

pi

)
. (2)

In the case that d is a prime number p, ϕ(p) = p − 1 and Z
∗
p = Zp − {0}. When d is a power

of a prime number pe, ϕ(pe) = pe − pe−1 and the non-invertible elements are Np where
N = 0, 1, . . . , pe−1 − 1. For odd primes, Z

∗
pe is a cyclic group.

A generalization of the Euler totient function is the Jordan totient function

Jk(d) = dk

N∏
i=1

(
1 − 1

pk
i

)
. (3)

Clearly J1(d) = ϕ(d). For prime numbers, Jk(p) = pk − 1. Below we will use the Jordan
totient function

J2(d) = d2
N∏

i=1

(
1 − 1

p2
i

)
= ϕ(d)ψ(d), (4)

where

ψ(d) = d

N∏
i=1

(
1 +

1

pi

)
(5)

is the Dedekind ψ-function.
All ϕ(d), Jk(d), ψ(d) are multiplicative functions (i.e. f (d1d2) = f (d1)f (d2) for

coprime d1, d2).

2. The Sp(2, Zd) group

In this section we study the Sp(2, Zd) for later use in the context of finite quantum systems.
We consider matrices of the type

g(κ, λ|μ, ν) ≡
(

κ λ

μ ν

)
; det(g) = κν − λμ = 1 (mod d); κ, λ, μ, ν ∈ Zd . (6)
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We can easily verify that the product of two such matrices is a matrix of the same type. Also
the inverse matrix exists and is the g(ν,−λ| − μ, κ). Therefore, these matrices form a group
which is the Sp(2, Zd) group.

Proposition 2.1. Let d be an integer, which is factorized in terms of prime numbers, as in
equation (1). Then

|Sp(2, Zd)| = dJ2(d). (7)

Proof. We first take d = pe and we prove that

|Sp(2, Zd)| = d2ϕ(d)

(
1 +

1

p

)
. (8)

In order to prove this, we give below two non-overlapping subsets of Sp(2, Zd) (where κ ∈ Z
∗
d ,

and κ = Np) and their cardinalities:

S1 = {g(κ, λ|μ, κ−1(1 + λμ)) | κ ∈ Z
∗
pe ; λ,μ ∈ Zd}; |S1| = d2ϕ(d)

S2 =
{
g(Np, λ|μ, ν)|N = 0, 1, . . . ,

d

p
− 1; λ,μ ∈ Z

∗
d; ν ∈ Zd

}
; |S2| = d2ϕ(d)

1

p
.

(9)

In S2 we have λμ = Npν − 1 and this shows that λ,μ are invertible elements and therefore
|S2| = d2ϕ(d) 1

p
. Adding these two cardinalities we prove equation (8).

We next show that v(d) ≡ |Sp(2, Zd)| is a multiplicative function. The proof is based
on the following bijection between Sp(2, Zd) with d = d1d2 where d1, d2 are coprime, and
Sp(2, Zd1) × Sp(2, Zd2):(

κ λ

μ ν

)
�→

((
κ1, λ1

μ1, ν1

)
,

(
κ2, λ2

μ2, ν2

))
(10)

where

κi = κ(mod di); λi = λ(mod di); μi = μ(mod di); νi = ν(mod di). (11)

This is indeed a bijection because the Chinese remainder theorem ensures the uniqueness of κ

in Zd such that κ(mod d1) = κ1 and κ(mod d2) = κ2 (and similarly for λ,μ, ν). Furthermore,
(1Zd1

, 1Zd2
) is mapped to 1Zd

. This gives the bijection between Sp(2, Zd1) × Sp(2, Zd2) and
Sp(2, Zd), and therefore v(d) is a multiplicative function. This together with equation (8)
proves equation (7). �

Similar results also hold for larger matrices (see also [25]):

|SL(m, Zd)| = |GL(m, Zd)|/φ(d) = dM

m∏
k=2

Jk(d); M = m(m − 1)

2
. (12)

3. Quantum systems with positions and momenta in the ring Zd

We consider a quantum system where position and momentum take values in Zd , where d is
an odd integer. The Hilbert space H of this system is d-dimensional. The states |X;m〉 where
m ∈ Zd is an orthonormal basis, which we call position states. Here X is not a variable; it
simply indicates position states.

The Fourier operator is defined as

F = d−1/2
∑

m,n∈Zd

ω(mn)|X;m〉〈X; n|; ω(k) = exp

(
2πk

d

)
; F 4 = 1. (13)
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Acting with the Fourier operator on the position states we get another orthonormal basis:

|P ;m〉 = F |X;m〉 = d−1/2
∑
n∈Zd

ω(mn)|X; n〉. (14)

We call them momentum states. Here P is not a variable but it simply indicates momentum
states.

The position-momentum phase space is the toroidal lattice Zd × Zd . Displacement
operators are defined as

Zα =
∑
n∈Zd

ω(nα)|X; n〉〈X; n| =
∑
n∈Zd

|P ; n + α〉〈P ; n|

Xβ =
∑
n∈Zd

ω(−nβ)|P ; n〉〈P ; n| =
∑
n∈Zd

|X; n + β〉〈X; n|
(15)

where α, β ∈ Zd . They obey the relation

XβZα = ZαXβω(−αβ); Xd = Zd = 1; α, β ∈ Zd . (16)

General displacement operators are given by

D(α, β) = ZαXβω(−2−1αβ); [D(α, β)]† = D(−α,−β)

D(α1, β1)D(α2, β2) = D(α1 + α2, β1 + β2)ω[2−1(α1β2 − α2β1)].
(17)

The operators D(α, β)ω(γ ) form a representation of the Heisenberg–Weyl group.
In the case of odd d which we consider here, the displacement operators obey the marginal

properties [1, 18]
1

d

∑
β

D(α, β) = |P ; 2−1α〉〈P ;−2−1α|

1

d

∑
α

D(α, β) = |X; 2−1β〉〈X;−2−1β|.
(18)

3.1. Symplectic transformations

In this subsection we study a representation of Sp(2, Zd) in these systems. We consider the
unitary transformations

X′ = S(κ, λ|μ, ν)X[S(κ, λ|μ, ν)]† = D(λ, κ)

Z′ = S(κ, λ|μ, ν)Z[S(κ, λ|μ, ν)]† = D(ν,μ)

κν − λμ = 1; κ, λ, μ, ν ∈ Zd .

(19)

The constraint ensures that these transformations preserve equations (16):

(X′)β(Z′)α = (Z′)α(X′)βω(−αβ); (X′)d = (Z′)d = 1; α, β ∈ Zd . (20)

These transformations form a representation of the Sp(2, Zd) group.
S(κ, λ|μ, ν) is a unitary operator which has been given in [1, 18] for the case of a prime

number d (and κ 
= 0 and (1 + λμ) 
= 0):

S(κ, λ|μ, ν) = S(1, 0|ξ1, 1)S(1, ξ2|0, 1)S
(
ξ3, 0|0, ξ−1

3

)
(21)

where

S(1, 0|ξ, 1) =
∑
m

ω(−2−1ξm2)|P ;m〉〈P ;m|

S(1, ξ |0, 1) =
∑
m

ω(2−1ξm2)|X;m〉〈X;m| (22)

S(ξ, 0|0, ξ−1) =
∑

n

|X; ξn〉〈X; n| =
∑

n

|P ; ξ−1n〉〈P ; n|.

4
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and

ξ1 = μκ(1 + λμ)−1

ξ2 = λκ−1(1 + λμ) (23)

ξ3 = κ(1 + λμ)−1.

In the case of a non-prime number d, equation (21) is still valid when κ ∈ Z
∗
d and (1+λμ) ∈ Z

∗
d

(in this case the ξ1, ξ2, ξ3 are well defined). For the general case, the operator S(κ, λ|μ, ν) has
been constructed in [19].

We can prove that

S(κ, λ|μ, ν)D(α, β)[S(κ, λ|μ, ν)]† = D(αν + βλ, αμ + βκ). (24)

The Fourier transform is a symplectic transformation

S(0, 1| − 1, 0) = F. (25)

Below we will use the notation

|X(κ, λ|μ, ν); n〉 ≡ S(κ, λ|μ, ν)|X; n〉; |P(κ, λ|μ, ν); n〉 ≡ S(κ, λ|μ, ν)|P ; n〉. (26)

Using equation (25), we see that

|P(κ, λ|μ, ν); n〉 = S(κ, λ|μ, ν)F |X; n〉 = |X(−λ, κ, | − ν, μ); n〉. (27)

We will also use the projectors �(X; n) ≡ |X; n〉〈X; n| and more generally the projectors

�[X(κ, λ|μ, ν); n] ≡ S(κ, λ|μ, ν)�(x; n)[S(κ, λ|μ, ν)]†. (28)

4. Quantum tomography

4.1. Marginal properties of the displacement and parity operators

In [1, 18] we have presented Radon transforms and quantum tomography for systems where
the position and momentum take values in a field. When we go from fields to rings some
of the steps in this formalism (which rely on the existence of inverses) are not valid. In this
section we present briefly this formalism with emphasis on the steps which are not valid in the
case of a ring. We stress again that d is an odd integer (and 2−1 exists).

The parity operator around the point (α, β) in phase space is defined as

P(α, β) = D(α, β)F 2[D(α, β)]† = D(2α, 2β)F 2 = F 2[D(2α, 2β)]† (29)

and satisfies the relation [P(α, β)]2 = 1. It is related to the displacement operator D(γ, δ)

through a two-dimensional Fourier transform

1

d

∑
α,β

D(α, β)ω(βγ − αδ) = P(γ, δ). (30)

We next act with S(κ, λ|μ, ν) on the left-hand side and with [S(κ, λ|μ, ν)]† on the right-
hand side of equation (18) and use equation (24). We then change variables from α, β to
ε = αν + βλ, ζ = αμ + βκ taking into account the fact that this is a one-to-one map from
Zd × Zd to Zd × Zd (because the matrix g(ν, λ|μ, κ) has an inverse). We prove that

1

d

∑
ε,ζ

D(ε, ζ )δ(κε − λζ, α) = |P(κ, λ|μ, ν); 2−1α〉〈P(κ, λ|μ, ν);−2−1α|

1

d

∑
ε,ζ

D(ε, ζ )δ(−με + νζ, β) = |X(κ, λ|μ, ν); 2−1β〉〈X(κ, λ|μ, ν);−2−1β|.
(31)

5
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These equations are the Radon transform for the displacement operators in our context, in
the sense that we sum over all points that satisfy the linear equations κε − λζ = α and
−με + νζ = β. Equation (27) shows that the two equations in (31) produce the same set of
equations when the parameters vary, and for this reason below we use only one of them.

Acting with P(0, 0) = F 2 on the right-hand side of equation (31), we get the Radon
transform for the parity operators:

1

d

∑
ε,ζ

P (ε, ζ )δ(−με + νζ, β) = �[X(κ, λ|μ, ν);β]. (32)

The Fourier transform of equations (32) using equation (30) leads to the inverse Radon
transform

D(να,μα) =
∑

β

�[X(κ, λ|μ, ν);β]ω(αβ). (33)

Quantum tomography is a direct consequence of this equation and is discussed below.

4.2. Construction of the Weyl function on Zd × Zd

Let ρ be the density matrix of a system with positions and momenta in Zd . It is a d × d

Hermitian matrix with trace equal to 1, and therefore it contains d2 − 1 real independent
parameters. The trace of the product of ρ with the displacement operator gives the Weyl
function

W̃ (α, β) ≡ Tr[ρD(α, β)]; W̃ (−α,−β) = [W̃ (α, β)]∗; W̃ (0, 0) = 1. (34)

The above properties of the Weyl function show that the Weyl function in the whole phase
space Zd × Zd contains d2 − 1 real independent parameters.

The trace of the product of a density matrix ρ with the parity operator gives the Wigner
function

W(α, β) = Tr[ρP (α, β)]. (35)

The results of the previous subsection can be expressed in terms of Wigner and Weyl
functions. For example equation (30) leads to the fact that the Wigner and Weyl functions are
related through the Fourier transform:

1

d

∑
α,β

W̃ (α, β)ω(βγ − αδ) = W(γ, δ). (36)

In a similar way equation (32) leads to the marginal properties of the Wigner function

1

d

∑
ε,ζ

W(ε, ζ )δ(−με + νζ, β) = Tr{ρ�[X(κ, λ|μ, ν);β]}, (37)

and equation (31) leads to the marginal properties of the Weyl function

1

d

∑
ε,ζ

W̃ (ε, ζ )δ(−με + νζ, β) = 〈X(κ, λ|μ, ν);−2−1β|ρ|X(κ, λ|μ, ν); 2−1β〉. (38)

Quantum tomography is based on the following equations which follow from
equation (33):

W̃ (να,μα) =
∑

β

Tr{ρ�[X(κ, λ|μ, ν);β]}ω(αβ). (39)

This is the inverse Radon transform in the present context. The Tr{ρ�[X(κ, λ|μ, ν);α]}
are experimentally measurable quantities and we can construct the right-hand side of

6
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equation (39) for all values of β and for all values of (κ, λ, μ, ν) such that S(κ, λ|μ, ν)

exists (or equivalently, such that the matrix g(κ, λ|μ, ν) exists).
At the origin (0, 0) we have seen that W̃ (0, 0) = 1 and this can also be seen through

equation (39) with α = 0. Below we consider points different from the origin. It is not clear
if equation (39) can give the Weyl function in the whole phase space and we now prove that
this is the case.

Proposition 4.1.

(1) Given non-zero γ, δ ∈ Zd , let ν = γ /G(γ, δ) and μ = δ/G(γ, δ). Then there exist
exactly d matrices g(κ, λ|μ, ν) corresponding to these (μ, ν). W̃ (γ, δ) can be calculated
using any of these matrices and equation (39) with α = G(γ, δ).

(2) The W̃ (γ, 0) can be calculated using equation (39) with α = γ and any of the d matrices
g(1, λ|0, 1), where λ ∈ Zd .

(3) The W̃ (0, δ) can be calculated using equation (39) with α = δ and any of the d matrices
g(κ, −1|1, 0), where κ ∈ Zd .

Proof.

(1) We first prove that there exist at least one pair (κ, λ) such that

κν − λμ = 1 (mod d) (40)

ν, μ are non-zero and coprime and therefore the inverse of ν in Zμ exists. This means
that there exists ν̃ such that νν̃ = 1 + Nμ where N is an integer. We take κ = ν̃ and
λ = N and show that equation (40) is satisfied.

We now prove that there are exactly d pairs (κ, λ) corresponding to a given (ν, μ).
We first consider the case where at least one of the (ν, μ) is an invertible element. If μ is
invertible, then the d pairs have any κ ∈ Zd and λ = (κν − 1)μ−1. If ν is invertible, then
the d pairs have any λ ∈ Zd and κ = (1 + λμ)ν−1. We next consider the case where both
ν, μ are non-invertible elements. If M,N are integers such that μν(N −M) = 0 (mod d)

then we also have

κ ′ν − λ′μ = 1 (mod d); κ ′ = κ + μM; λ′ = λ + νN. (41)

But the equation μν(N − M) = 0 (mod d) has the solutions

N = M +
�d

G(d, νμ)
(42)

where � is an integer. Therefore,

κ ′ = κ + μM; λ′ = λ + νM + α�; α = νd

G(d, νμ)

M = 0, 1, . . . ,
d

G(d, μ)
− 1 N = 0, 1, . . . ,

d

G(d, α)
− 1.

(43)

The values of M,N are determined from the fact that κ ′, λ′ are integers modulo d. This
shows that the number of (κ ′, λ′) pairs is

d

G(d, μ)

d

G(d, α)
= d. (44)

Equation (44) is proved using the relation G(d, νμ) = G(d, ν)G(d, μ) (which holds
because ν, μ are coprime). Then

aG(d, μ) = νd

G(d, ν)
(45)

7



J. Phys. A: Math. Theor. 43 (2010) 042001 Fast Track Communication

and

G(d, μ)G(d, a) = G(dG(d, μ), aG(d, μ))

= G

(
dG(d, μ),

νd

G(d, ν)

)
= dG

(
G(d, μ),

ν

G(d, ν)

)
= d. (46)

The last equality is true because ν, μ are coprime.
We next show that there are no other pairs than those in equation (41). Let us assume

that there exist κ ′′ and λ′′ which are not of the type given in equation (41) and which
satisfy the relation κ ′′ν − λ′′μ = 1 (mod d). Then

(κ ′′ − κ)ν = (λ′′ − λ)μ (mod d). (47)

Since ν, μ are coprime, this implies that ν1 is a divisor of λ′′ − λ and μ1 is a divisor of
κ ′′ − κ . But this contradicts the assumption that κ ′′ and λ′′ are not of the type given in
equation (41). This completes the proof of the first part of the proposition.

(2) The proof here is straightforward.
(3) The proof here is straightforward. �

We have shown that there are exactly d matrices g(κ, λ|μ, ν) corresponding to the same
(ν, μ). They all give the Weyl function in the same ‘line’ (να, μα) (the set of points (να, μα)

with α ∈ Zd and fixed (ν, μ)). From an experimental point of view this leads to unnecessary
duplication of measurements. The significance of the above proposition is to show that
‘economical tomography’ needs to use

|Sp(2, Zd)|
d

= J2(d) (48)

lines.

5. Discussion

We have considered quantum systems, with positions and momenta in Zd (d is an odd integer).
We have studied symplectic transformations and proved that the order of Sp(2, Zd) is given in
equation (7). These transformations have been used in the context of quantum tomography. We
have shown that equation (39) gives the Weyl function and that for ‘economical tomography’
it needs to be used on J2(d) lines.

We note that there are factorizations of finite systems in terms of subsystems [26, 27]. Such
factorizations have been used extensively in fast Fourier transforms. The use of tomography
techniques on the various subsystems is an interesting problem for further work. We also point
out that in a classical tomography context, there is much work on ‘discrete tomography’ [28].
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