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Abstract. Given a random walk on a graph, the cover time is the first
time (number of steps) that every vertex has been hit (covered) by the
walk. Define the marking time for the walk as follows. When the walk
reaches vertex v;, a coin is flipped and with probability p; the vertex
is marked (or colored). We study the time that every vertex is marked.
(When all the p;’s are equal to 1, this gives the usual cover time problem.)
General formulas are given for the marking time of a graph. Connections
are made with the generalized coupon collector’s problem. Asymptotics
for small p;’s are given. Techniques used include combinatorics of random
walks, theory of determinants, analysis and probabilistic considerations.

1 Introduction

The following problem was submitted during a supper at the meeting Analysis
of Algorithms in June 1999, at Barcelona:

Conjecture 1 (Supper Conjecture) Imagine m guests around a table, some-
one has the water carafe and decides to pour some water in his glass with prob-
ability p. Then he gives the water carafe randomly to his right or left neighbor.
This one does the same, and so on. Call T(p) the number of carafe moves before
everyone has got some water. What can one say about the average time E(T (p))?
In particular, is it true that pE(T (p)) - mH,, when p — 02 (H,, is the m-th
harmonic number).

One will show that this conjecture is indeed true!

In fact, we will tackle the problem for a slightly more general problem: think
about a dinner where some people are more or less not in speaking terms with
some others and so they give the carafe preferentially to their friends!

The problem we consider was motivated by the game Trivial Pursuit. Players
move pieces around a game board answering questions on various topics (e.g.,
history, sports, etc.). On certain positions in the game board, if a player answers
a question correctly he gets a colored piece. And in our simplified version of the
game, when a player gets all the colored pieces he wins. Assume that for each
topic there is some probability of answering a question correctly. How long will
a typical Trivial Pursuit game take to play?



The reader should be able to see the connection with the following model.
Consider the usual (discrete) random walk on a connected directed graph G
with vertex set V. = {v1,...,v}. When the random walk reaches vertex v;,
that vertex is marked with probability p;, ¢ = 1,...,m. We are interested in
the marking time T ({p1,...,Pm}), the first time that all the vertices have been
marked.

When all the p;’s are equal to 1, this is the usual cover time problem. When
the graph is the complete graph and the random walk moves to any vertex
uniformly at random, the problem reduces to the classical coupon collector’s
problem. (E.g., How many packs of Pokemon cards! should you buy in order to
collect the full set of Pokemon characters?) It is well know that the expected
time to cover a graph with m vertices is mH,,, where Hy, := Zf:l i~1 is the kth
Harmonic number. The generalized coupon collector’s problem asks for the time
to cover the complete graph when the transition probabilities (weights) for the
underlying random walk are not constant (see the survey [2] for a lot of appli-
cations). There are classical results established either by combinatorics (inclu-
sion/exclusion principles [9], shuffle product [5]) or probability (martingales [8],
tails estimates [7]). We also give some references for the coupon collector problem
for arbitrary graphs [4]; some articles deal with asymptotic considerations [3].

Our problem (which involves two levels of randomness!) seems quite new and
of course allows us to rederive/improve previous results (in the peculiar case
p=1). When all the p;’s are equal (say, to p), a nice but finally predictable result is
that pE (T (p)) is a rational number (as usual for Markovian process with rational
transition probabilities). Of course, in principle all the questions concerning the
random walk can be addressed by solving appropriate linear equations using
the transition matrix for the random walk Markov chain but such an approach
quickly becomes infeasible for even small values of m. On the complete graph, in
the case of equal marking probabilities (p; = p for all ), and of probabilities ;
for the coupons, a natural conjecture is that E[T (p)] ~ (m/p)H,, when p — 0.
The reason is because for small p, one would expect the time to mark a particular
vertex to be Geometric with parameter p (and thus mean 1/p). A quick (but
erroneous) probabilistic reasoning consists in seeing the marking probability p as
a change of time-scale and thus one gets (for any graph) E(T'(p)) = E(T'(1))/p.
This is false (even asymptocally)! However, we will show this intuition to be
true for regular graphs and prove a stronger result: For an arbitrary graph G,
one has pE(T(p)) — K as p — 0, where K is the expected cover time for the
generalized coupon collector’s problem where the set of weights is the stationary
distribution for the random walk. This result will be proven in Section 4.

Notation 1 (Graph) Through all the paper, G is a directed connected graph
with vertices v1,...,vm and with a transition matriz A (that is, a;; is the prob-
ability of a transition from v; to v;). The stationary distribution of this graph is
noted 7y, ..., Ty. The probability to mark the vertex v; whenever it is visited is

! In the USA, kids have a great craze for these cards. They trade them and stare at
them a lot... :-)



\\a Linear graph with reflexion at buttoms (m=8)

Cyrclic graph (m—8) Complete graph (m=4)

Linear graph with loops at buttoms (m=8)

Fig. 1. Some of the oriented connected graphs considered in our examples.

noted p; (i =1,...,m), and one sets q; :== 1 — p;. When all the p;’s are equal,

one simply notes p the probability of marking a vertez. Gisa complete graph
with transition matriz A (related in some sense to A, as explained later).

Notation 2 (Random variables) T (resp. T) is the “waiting time” random
variable that represents the first time when all the vertices of the graph G (resp.
G) have been marked. The random variable X; (resp. X;) gives the first time the
i-th vertex of the graph G (resp. G) is marked.

Notation 3 (Operators) One notes [2"]S the coefficient of 2™ in a given se-
ries S. For any subset a of {1,...,m}, |a| stands for the number of elements in
a and one notes

Co the substitution u; < 0 for i € a and u; stays unchanged for i & a,
Oq the substitution u; < q; for i € a and u; < 1 fori &€ a.

The same notation will be used with respect to any other set of formal vari-
ables (for example with ti,...,t,, instead of ui,...,umy). We will also denote
the identity matriz as Id and U as the diagonal matriz with diagonal elements
ULyeooyUm-

Examples. To illustrate the above notations: [22] (1 + 422+ 23) = 4. For m = 4
and a = {1,2,4}, one has {, (3us + urus + u3 + us4) = uj and o4 (3us +urus +
u3 +us) = 3q1 + qig2 + 1+ qa.

In the sequel, all the graphs considered have m vertices (m > 1) and are
directed and irreducible: there is a sequence of connected edges linking any pair
of vertices. First, we establish a combinatorial formula for the marking time in
section 2. One will explain in section 3 a probabilistic intuition which allows us
to simplify the problem and thus to prove the Supper Conjecture in Section 4,
another proof is given in Section 5. The last sections deal with peculiar cases.

2 Marking Time on any Graph

We first give a generating function-based formula (based on finite differences) for
E(T(p)), the expected marking time. For the cover time on the complete graph,
another approach can be found in [5]. We refer the reader to Figure 4 for an
example of our approach on two graphs of size 3.



Theorem 1 (General formula for average marking time)  The average
time for marking all the vertices of an arbitrary graph G is given by

m
E(T({p1,---,pm})) = D _(=1)1*Floa Y ui(ld - AV),
a0 i=1
where A, U, the p;’s, a and the o, ’s are defined as in Notation 1 and 3.
Proof. For the transition matrix A, the entry A7, of A", gives the probabil-
ity of moving from vertex v; to v; in n steps. With the matrix U defined as
in Notation 3, the coefficient of the monomial u’" - .. ukm in (AU)?; gives the

m
probability that the random walk moves from v; to v; in n steps such that vertex
v is visited k; times, ¢ = 1,...,m. Thus the probability generating function for

the walks on the graph (beginning in v;), where z encodes the length of the walk
and the u;’s encode the number of times the walk visits v; is

F(z,u1,...,um) =uw Z Z zk(AU)’f’i =u Z(Id - zAU)fi
i=1 k=0 i=1

Recall that p; (respectively, g; :== 1 — p;) is the probability to mark (respec-
tively, not to mark) the vertex v;.

Taking into account the fact that the walk has visited all the vertices mark-
ing them at least once leads to the substitution u] < 1 — ¢f'. This justi-
fies the introduction of the difference operator A;f(u;) := f(1) — f(g:)- So
Ft := AjA,... A, F gives the probability generating function of the walks
that marked all the vertices and one has in fact

Frz)= Y (=) loaF(z,u1,... ,um),
aC{l,...,m}

i.e., " is the sum of F' evaluated the set o, (defined in Notation 3). There-
fore the probability generating function for T'({pi,...,pm}) is (1 — 2)F*(z2),
S0

9 +
E@({pr.-po) = 57 (L= 2)F*(2).
A change of variable 1 — z = ¢ and a local development in ¢ = 0 gives
0 (1—-2)up 1
— ol == =-0,(Id—-AU),.
8z|z:1g (Id —2AU J ;; % ( Jis

Note that Id — A is never invertible (whereas Id — zA is always invertible),

so one has to deal apart with the substitution oyp. O

Note that setting the p;’s to 1 gives a formula for the coupon collector problem.

3 The Probabilistic Intuition

We restrict here the discussion to the case when all the p;’s are small (equiva-
lently, you can think p small with p := max p;). One argues that the random walk
behaves, for small values of p, like a walk on the complete graph (with loops). We
obtain a new Markov chain that is “equivalent” to the original Markov Chain,
in the sense that they both have the same (limiting) stationary distributions.



Let {m;}™, be the stationary distribution for the random walk on G. Note
that 7; gives the probability that the walk is in vertex v; in stationarity (i.e.,
after a “long time”). When p is small, the time to mark the graph is high. And
the proportion of time n that the walk is in vertex v; will be m;n + O(y/n) for
large n, with probability close to 1. (This can be shown, for instance, by a central
limit theorem for Markov chains, or from results on large deviations.)

Thus, for “long enough” walks over G (when p is small, all walks are “long
enough”), the average length of time to mark all the vertices should be very
nearly the average length of time to mark the vertices of the complete graph (with
loops), but with transition probabilities corresponding to the stationary distrib-
ution for the original graph. Let G denote the complete graph on m vertices with
loops. Define its transition matrix A with the transition probabilities a; ; := =;
(for i,j = 1,...,m). Consider a random walk process for the general marking
problem that begins in the vertex v; with probability ;. For such a process de-
fine X to be the first time that vertex v, is marked. Then the X} are geometric
random variables with parameter m;p; and P(Xy = n) = mppr(l — mepr)™ L
but there are not independent (as X; # X for i # 7).

Observe that T = max(Xy,...,X,,) and T = max()?l,...,)?m). Consider
now a new process on the graph. Instead of one “random walker,” consider m
particles at each of the vertices all moving simultaneously to neighboring vertices
according to the same transition mechanism, but independently of each other.
If we let Y; (and Y;) denote the first time that vertex v; is marked then observe
that the Y; has the same distribution as X; but the Y;’s are independent and
the X;’s are not. Define now Z = max(Y3,...,Y,,) and Z = max(Yy,...,Y,).
Our intuition is as follows: As the )71»’5 and the Y;’s will behave similarly for

small p, one should have that E(Z) ~ E(Z). As simultaneous markings (for
the Y process) occur with probability O(p?), one has that E(Z) ~ E(T). Also
E(Z) ~ E(T) and thus E(T) ~ E(T). Thus the study of the expected marking
time on the graph G should answer our question as to the expected marking

time on the graph G. We make the above rigorous in the next section.

’

4 Algebraic and Combinatorial Proof

Theorem 2 (Closed form formula with stationary distribution) Let G
be a graph with transition probabilities @;; := m;. The expected time E(T) for
marking the whole graph G is 1/p times the time needed for visiting all the
vertices

~ 1 ~
E(T)= ]—QE(coupon collector on G),

and an inclusion-exclusion formula holds
~ 1 (—1)m el
E(T)=- ,
(T) p()% —Co(m + T+ .o+ )

where the (,’s are defined as in Notation 3.




Proof. Consider the m}s, the g;’s, and the p;’s as formal variables, then

Prob(T < n) = {p7°}... {p20}(mipr + migs + -« + T + Tonn)™

where {p;°S} (with S € R[[p1,--.,Pm,q1,- - -,dm]]) stands for the sum of mono-
mials in p; of positive exponent in S. Thus, we have

Prob(T <n)= > (=1)*(Ca(mpr + mia1 + .. + TmPm + Tmm))",
aC{1,...,m}

where the substitutions (, are defined as in Notation 3. Multiplying by z™ and
summing for n > 0, when all the p;’s are equal to p, with the substitutions (,
now taken to act on the 7;’s, leads to

N . (_1)\04
ZProb(Tﬁn)z = Z 1—2(q+pla(mi + T+ .o+ 7))

aC{L,m}

Multiplying by 1 — 2z and differentiating in z = 1 gives the expected time

) = S (=1)l 1
B(T)=3.(-1) p(—14+Cla(m +m+ ...+ 1))
a#0
a
graph G graph G
1/21/2 0 ~ /3/83/81/4
transition matrix A= <1/3 1/3 1/3) A= (3/8 3/8 1/4)
1/41/41/2 3/8 3/81/4
stationary distribution (3/8,3/8,1/4) (3/8, 3/8, 1/4)
U1 00 U1 00
U=<OU20> U:<0U20>
0 0 us 0 0 us
generating matrix of the walks (Id — zAU) ! (Id — zAU) !
expected covering time 95/12 ~ 7.91 29/5 ~ 5.80
expected marking time 435 + 494p + 187p° + 24p° I
(closed form) 75p + 60p? 4+ 9p3 /op
e ot T |B(T®) = 20/5™" +0(1)| BT(p)) = 29/5p!

Fig.2. Example of our approach on a graph of size 3. Most of the results in the
literature are about the (expected) covering time of the G-column (and other higher
moments). In our situation (the G-column), the lack of independence is the main
difficulty. Our paper shows that in order to get the last entries in the G-column, one
can proceed as follow: Consider the first 2 entries of the G-column, then deal with
G-column whose last entries gives the wanted result (for G).



Proposition 1 The marking time T can be approximated by T:
E(T) - E(T)=0(1),  (p—0).
Proof. In order to prove that

> o (=nletie, i ur(ld — AU =Y (-0, i uy (Id — AU = 0(1)

a0 =1 a#0 i=1

where the substitutions are defined in Notation 3, it is sufficient to check that

- N1
[ Yoa (Id - AU) = [p You (1 - AD) = O(1). (1)
ij

In fact, one has (1 — zA4)~! = % + O(1). This is established by writing
A = P + R, which decomposes A as an eigenprojection on the eigensubspace
related to its eigenvector 7, plus the projection R on the supplementary subspace
(as it is well known P" = P = A and PR = RP = 0), thus > 2"(P + R)" =
A+ (Id—zR) ™! where (Id — zR) ! is actually regular in z = 1 (as, by Perron-

Frobenius theory, 1 is an eigenvalue of multiplicity 1), so (1 — zR)™! = O(1).
So this sets the case of the equality (1) when o = {1,...,m} (simply consider
z = 1 — p). Theq other cases appear as a perturbation of two noninvertible

matrices (namely Id — A and Id — A), which gives

A ~ o~
(Id-—A+eB)™ ! = +0(1)=(Id— A +eB)™*
—eX'(0)
where B is A with its i-th column set to 0 whenever i € a (so A —eB = 0, AU),
and where A(e) is the perturbation of the eigenvalue 1, so X'(0) = >, m;.
See [6] for the analicity of the perturbations of projections, eigenvalues, etc. O

For people with probabilistic affinities, we give below another approach which
also proves that E(T) = E(T) + O(1) as p — 0.

5 Analytical and Probabilistic Proof

The following proposition (identical to Proposition 1) is the key point

Proposition 2 (Equivalence of expected times) The marking time for
the graph G and G have the same first order asymptotics, namely

E(T) = E(T) + O(1).
Proof. The main idea is the following
T ~ (T without its tails) ~ (T without its tails ) ~ T,

where &~ means here that the expectations have the same first order asymptotics
as p — 0. Note that

P(T<n)= > po,

)‘:(n17~~~7nm)



where the sum is over all nonnegative m-tuples A\ = (n1,...,n,,) such that
> &Mk = m, px is the probability that the walk takes n steps and visits each
vertex vg ng times, k = 1,...,m, and c) is the probability that all vertices have
been marked by such a tour, that is ¢y = H;nﬂ (1—(1—p)™). Define the “central

interval” I as
I::[ 1 ,|1np|]‘
plInp|” p

Further define the “multidimensional box” B as

m

B:= I—I[mrZ —v/nlnn,nm; ++/nlnn).

i=1
For small p and for large n, by a classic result in large deviation theory, one has
nmj —v/nlnn <n; <nm;j ++/nlnn

(that is, A € B) with probability 1 — exp(—cln®n) (with ¢ > 0, see [1]). As
Prob(T = n) is the probability that a success occurs exactly at the n-th step,
one has

E(T) = (1 —Prob(T < n)).

n>0

This sum can be split as follows (with a lot of abusive but natural notations!)

E=Y+ > + 3 + 3 + 3 (2)

n<I n€lAeB n€lAgB n>I\eB n>I\¢B

where, for example, n < I means for n before the “central interval” I. The first
sum is bounded by the length of the interval of summation, which is o(1/p) as
p — 0, the sums for A ¢ B are bounded by exp(—cln2 n) and so is the remaining
sum for n > I.

One now focuses on the sum over I and B. By a limit theorem on Markov
Chains [1], pa follows a multidimensional Gaussian law g()), thus

ET) =Y (1 -3 g(A)cA) +olp™). (3)

nel AEB

The same scheme can be applied to é, with the same central interval T
and box B since the two random walks have the same stationary distribution.
Thus E(T) = E(T) + o(p~!) = E(T) + O(1), since E(T) and E(T) are rational
fractions in p (see Theorem 1 and 2). O

The Theorem below is the main result of the paper and answers precisely to
the Supper Conjecture. The following “integral formula” is well known (cf. [5],
where it is established for the complete graph by means of shuffle products and
Laplace transform), but we give an alternate derivation here, valid for any graph.



Theorem 3 (First order asymptotics. Integral form) For any graph G

with a stationary distribution (71,...,mTn), the expected marking time is
K > s
E(T)=—=+0(1), where K= / (1 - [ - exp(—m;2))) dz.
p 0 -
Jj=1

Proof. With the same notations as above, the starting point is

m m

or= o = -9 = Tl -7,

j=1 j=1

where p' := —In(1 — p). Thus

E(T) = Z 1- Z g(N) H 1 —exp(—p'n;m;) | +O(1).

nel AEB j=1

In the box B, nj = nm; + €¢j1/nlnn (where |e;| < 1), so

cy = H(l — exp(—p'nm; — p'ejv/nlnn)), and thus
j=1
E(T) = Z 1-— Z g(N) H(l —exp(—p'nm; — p'ej/ninn)) | + O(1).
nel AEB j=1

Now, majoring 3 g()\) by 1 — exp(—cIn®n) yields

E(T) = Z 1-— H 1 —exp(—p'nm; —p'ejv/nlnn) | +0(1) +o(pt).

nel j=1
The sums being for p~*|Inp| < n < p~!|Inp|, this leads to
> exp(—p'(0(n))(1 — exp(—p'o(n))) < »_ (1 — exp(—p'o(n))
<Y po(n) <p'p !Inplo(p | Inp|) = o(p?),
and completing the tails gives

m

E(T) = Z 1- H 1 —exp(—p'nm;) | + O(1) +o(p™?).
nel j=1
= (1 - [I(1 = exp(=p'nmj))) + O(1) + o(p™"). (4)
n>0 j=1

Indeed the first introduced part is < p~1/|Inp| = o(p~!) and the last introduced
part is <30 1)1, 2™ exp(—p'mmin(m;))" = o(p~1).

Set f(z) := 1 —[[;Z, (1 — exp(—p'zm;). As f'(z) has a fast enough decay to
0 near oo, the Euler-Maclaurin formula gives:



S s - [ swre = TOELED 4 [P - o)~ 121 @)z = 0(0).

Applying this to the formula (4) leads to

E(T) = I%f (1- H(l —exp(—m;z))) dz + O(1) when p' — 0.
0 iy
Since p' = p + o(p), one has E(T) = K/p+ O(1). 0

The “integral formula” allows us to compute E(T') to any precision in linear
time (as all the integrated functions have a nice behavior), whereas the formulae
of Theorem 1 and 2 are impracticable because they comprise 2™ summands.

6 What about Balanced or Regular Graphs?

The most common model for random walk on a graph (the unweighted case) is to
suppose that at a particular vertex the walk moves with probability proportional
to the degree of that vertex. It is well known that the stationary distribution
for such a walk is related to the degree of the vertices. Call a graph “balanced”
if the outdegree of each vertex is equal to its indegree and if each outgoing
edge is equally likely. For balanced graphs, there is a simple relation between
the stationary distribution (the left eigenvector associated to eigenvalue 1 of the
transition matrix of the graph) and the degrees of edges:

Proposition 3 (Stationary distribution for balanced graphs) For balanced

graphs, one has m; = Z%—N (N; is the number of incoming edges of vertex v;).
N

Proof. Let N;; be the number of edges from v; to v;, and note N,; the number
of incoming edges to v; and IV;,. the number of outgoing edges from v;. The left
eigenvector (for eigenvalue 1) satisfies

Nll/Nl* Nlm/Nl*
(71, T2y e ey Tm) = (T, T2y« ey Tm);
le/Nm* s Nmm/Nm*

= m;. This equation is indeed satisfied by m; := E%*N when
1

hence ), 75
Ni. = N.. O
Theorem 2 rewrites in these cases:

Corollary 1 (Balanced graphs) For balanced graphs with N := Y N; edges,

one has 1) ol
N —1)m—la
E(T) = ) % (M A Not TN oQ),

[e%

where the substitutions (, operate on the {N;}.

Proof. Direct consequence of Theorem 2 and Proposition 3. O



There are several classes of graphs for which the formula can be simplified.
The more interesting one, the class of regular graphs (graphs whose all vertices
have the same number of incoming and outgoing edges), is the object of the
following corollary.

Corollary 2 (Regular graphs) When all the ;’s are equal (in particular if
G is a regular graph and outgoing edges are chosen uniformly at random), one
has E(T) = 2= 4 O(1).

Proof.
~ = (m 1 mH
ET: —]_7' _— = — Z+l< )_:—m
@) =30 (7 s = B ="
The last equality follows as iteration of forward ﬁmte difference operators and
Euler’s transform. Equivalently, one could use Theorem 3. Here the integral be-
comes [°(1 — [T/~ (1 — exp(—xz/m))) dz, which simplifies to mH,,. A third
proof of this formula is probabilistic and considers the maximum of i.i.d. geo-

metric random variables. Thus when m; = 1/m (for i = 1,...,m), one has
Prob(Z Z Prob(X; = n) H Prob()?j <n)
J#i

=m (p/m(1 = p/m)"~") (1 = (1 = p/m)" )™,
Since E(T) = Dot nProb(T = n), one is interested by the coefficient of the
lowest term in the Laurent development at p = 0 of

_i n—1¢1_ _i n—1lym—1 __ — _1\k k z
ZM(I m) - m) ) _Z( b (m—1> (1—(1—z/m)k+1)*

n>1 k=0

As (1 — (1 —z/m)**1)2 = O(2?) as z — 0, the valuation of the development

in Laurent series of z (1 — (1 — z/m)’”‘l)f2 is —1. Thus the coeflicient of the
lowest term of Fj,,(z) is the sum of the residues of the rational fractions, then

flestz mz U (10 ) G e =i

7 Examples
The formula for the expected time in the coupon collector problem reduces to
w for the cyclic graph C,,, to m? — 2m + 2 for the line graph L,, (with
reflection) and to (m — 1)H,,_1 + 1 for the complete graph without loops K,,.
For L,,, there is an equivalence between the coupon collector problem and
the random walks (with jumps +1, —1) from 0 to m of height < m, the last ones
being linked to continued fraction theory and hence to a quotient of Chebyshev
polynomials.
We apply below the formula of Theorem 1 for all nonisomorphic unoriented
connected graphs without multiplicity having at most 4 vertices. We give for
each graph, the stationary distribution, the average time for the classical coupon



collector problem and, in the last column, the coefficient of p~! (the leading
coefficient) in the asymptotics of the average time for marking the whole graph:

size |graph stationary expected expected
distributions cover time| marking time

m=1| K; (1) 1 1
m=2| K, (1/2,1/2) 2 3
m=3| K; (1/3,1/3,1/3) 4 3H;=11/2
m=3| Ls (1/4,1/2,1/4) 5 19/3
m=4| Ly | (1/6,1/3,1/3,1/6) 10 99/10
m=4| Ks | (1/4,1/4,1/4,1/4) 13/2 4H,=25/3
m=4| Cy | (1/4,1/4,1/4,1/4) 7 4H,=25/3
m=4| Yy | (1/5,2/5,1/5,1/5) 10 110/10
m=4| Ty | (1/8,3/8,1/4,1/4) 163/15 369/35
m=4| Q4 |(3/10,1/5,1/5,3/10)| 69/10 62/7

The graphs K,,, L,, and C,, are defined as above whereas Ty is the triangle
with a tail, Yy is the Y shape, Q4 is the square with one diagonal. We recall
that, as seen in previous sections, for the complete graph with loops, the coupon
collector time is mH,, and the marking time is mH,,p~!. This is finally the
behavior of all regular graphs, those for which the Supper Conjecture holds.
Acknowledgement. The first of the two authors would like to thank
Philippe Flajolet for a lot of helpful remarks and does not resist quoting one
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