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Notation

Through this talk we consider:

@ K: a computable field
e K[[x]]: ring of formal power series over K.

@ Given F a field:

VE(F) = (f, F £, . )F.
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D-finite functions

Definition
Let f € K[[x]]. We say that f is D-finite (or holonomic) if there
exist d € N and polynomials pg(x), ..., pa(x) such that:

pa(x)FD(x) + ... + po(x)f(x) = 0.

We say that d is the order of f.
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Examples

A lot of special functions are D-finite:

@ Exponential function: e*.
e Trigonometric functions: sin(x), cos(x).
o Logarithm function: log(x + 1).

@ Bessel functions: Jp(x).

. , ai,...,a
Hypergeometric functions: qu< S D ;X>-

° by, ..., bg
@ Airy functions: Ai(x), Bi(x).
e Combinatorial generating functions: F(x), C(x),,...
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Non-D-finite examples

There are power series that are not D-finite:

eX

Double exponential: f(x) =e

sin(x)
cos(x) "

Tangent: tan(x) =

Gamma function: f(x) = I'(x + 1).
Partition Generating Function: f(x) = 37,5 p(n)x".

Extending algorithms for D-finite functions



DD-finite

[ lole}

DD-finite Functions

Definition
Let f € K[[x]]. We say that f is D-finite if there exist d € N and
polynomials pg(x), ..., p4(x) such that:

pa(x)F 9 (x) + ... + po(x)f(x) = 0.
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DD-finite Functions

Definition
Let f € K[[x]]. We say that f is DD-finite if there exist d € N and
D-finite elements rp(x), ..., r4(x) such that:

ra(x)F D (x) + ... + ro(x)f(x) = 0.
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SENTES

The set is bigger than the D-finite functions:

f is D-finite = f is DD-finite,
f(x) = e = f'(x) — e¥f(x) =0,
f(x) =tan(x) = cos(x)?f"(x)—2f(x) =0,
F(x) = elo D9 f1(x) — J(x)F(x) =0

K Extending algorithms for D-finite functions



DD-finite

ooe

Differentially Definable Functions

Definition
Let f € K[[x]]. We say that f is DD-finite if there exist d € N and
D-finite elements rp(x), ..., r4(x) such that:

ra(x)F D (x) + ... + ro(x)f(x) = 0.
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Differentially Definable Functions

Definition
Let f € K[[x]] and R C K[[x]] a ring. We say that f is

differentially definable over R if there exist d € N and elements in
R ro(x), ..., rg(x) such that:

ra()F D (x) + ... + ro(x)f(x) = 0.

D(R): differentially definable functions over R.
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Characterization Theorem

The following are equivalent:

f(x) € D(R). |

There are elements ry(x), ..., r4(x) € R and g(x) € D(R) such:

ra(X)FD(x) + ... + ro(x)f(x) = g(x).
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Characterization Theorem

The following are equivalent:

f(x) € D(R). |

There are elements ry(x), ..., r4(x) € R and g(x) € D(R) such:

ra(X)FD(x) + ... + ro(x)f(x) = g(x).

Let F be the field of fractions of R. Then Vg(f) has finite
dimension.
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Closure properties

f(x), g(x) € D(R) of order di, d>.
F the field of fractions of R.
a(x) algebraic over F of degree p.

| Property [ Isin D(R) | Order bound

Addition (f + g) di + d>
Product (fg) dids
Differentiation ! di
Integration [f di+1
Be Algebraic a(x) p
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Closure properties

f(x), g(x) € D(R) of order di, d>.
F the field of fractions of R.
a(x) algebraic over F of degree p.

| Property [ Isin D(R) | Order bound

Addition (f + g) di + ds
Product (fg) dids
Differentiation ! di
Integration [ f di+1
Be Algebraic a(x) p

— Proof by direct formula
— Proof by linear algebra
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Implementation of closure properties
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Vector spaces

Let R C K][[x]], F its field of fractions and Vg(f) the F-vector
space spanned by f and its derivatives.

The Characterization theorem provides

f(x) eD(R) & dim(Ve(f)) < oo
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The ansatz method

Specifications

Input: A power series h(x) (f(x) + g(x), f(x)g(x) or a(x))
Output: An operator A € R[] such that Ah =10
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The ansatz method

Input: A power series h(x) (f(x) + g(x), f(x)g(x) or a(x))
Output: An operator A € R[] such that Ah =10

@ Compute W C K|[[x]] such that dim(W) < oo and
Ve(h) € W.

A
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The ansatz method

Input: A power series h(x) (f(x) + g(x), f(x)g(x) or a(x))
Output: An operator A € R[] such that Ah =10

@ Compute W C K|[[x]] such that dim(W) < oo and
Ve(h) € W.

@ Compute generators ® = {¢1, ..., ¢} of W.

A
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The ansatz method

Input: A power series h(x) (f(x) + g(x), f(x)g(x) or a(x))
Output: An operator A € R[] such that Ah =10

@ Compute W C K|[[x]] such that dim(W) < oo and
Ve(h) € W.

@ Compute generators ® = {¢1, ..., ¢} of W.
@ Fori=0,...,dim(W), compute vectors v; € F" such that:

hO(x) = o vid.

A
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The ansatz method

Input: A power series h(x) (f(x) + g(x), f(x)g(x) or a(x))
Output: An operator A € R[] such that Ah =10

@ Set up the ansatz:

agh(x) + ... + a,h(" = 0.
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The ansatz method

Input: A power series h(x) (f(x) + g(x), f(x)g(x) or a(x))
Output: An operator A € R[] such that Ah =10

@ Set up the ansatz:

agh(x) + ... + a,h(" = 0.

© Solve the induced F-linear system for the variables c.
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The ansatz method

Input: A power series h(x) (f(x) + g(x), f(x)g(x) or a(x))
Output: An operator A € R[] such that Ah =10

@ Set up the ansatz:

agh(x) + ... + a,h(" = 0.

© Solve the induced F-linear system for the variables c.
Q@ Return A= a,0" + ... + 010 + ag.
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The ansatz method

Input: A power series h(x) (f(x) + g(x), f(x)g(x) or a(x))
Output: An operator A € R[] such that Ah =10

@ Compute W C K|[[x]] such that dim(W) < oo and
Ve(h) € W.

@ Compute generators ® = {¢1, ..., ¢} of W.
@ Fori=0,...,dim(W), compute vectors v; € F" such that:

hO(x) = o vidj.

A
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Mathieu: definition

Mathieu functions
Mathieu functions are solutions of the differential equation:

w” (x) + (a — 2q cos(2x))w(x) = 0
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Mathieu: definition

Mathieu functions

Mathieu functions are solutions of the differential equation:

w” (x) + (a — 2q cos(2x))w(x) = 0

4

The sine and cosine

e Cos: wy(x) with wy(0) =1 and wy(0) = 0.
@ Sin: wy(x) with wy(0) = 0 and wj(0) = 1.
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Mathieu: definition

Mathieu functions

Mathieu functions are solutions of the differential equation:

w” (x) + (a — 2q cos(2x))w(x) = 0

4

The sine and cosine

e Cos: wy(x) with wy(0) =1 and wy(0) = 0.
@ Sin: wy(x) with wy(0) = 0 and wj(0) = 1.

wyp w2

/ /
wy WwWp

W= = wy (x)ws(x) — wi(x)wa(x) = 1.
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Mathieu: derivative

Equation for wj(x) and wj(x)

1

(a—2gcos(2x)) vy

~ (4gsin(2x)) ¥/

i <a2 — 4aq cos (2x) + 44 cos (2X)2) y =0
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Mathieu: product

Equation for wi(x)ws(x) and wa(x)wj(x)

Bay™ + B3y + Boy” + 1y’ =0,

Ba
B3
B2

A1

gsin(2x)? — acos(2x) + 2q
—2sin(2x) (2q cos(2x) + a)

—4 (2gsin(2x)? cos(2x) — q(a + 1) cos(2x)?+
+(49? + a%) cos(2x) — 3q(a + 1))

8sin(2x) (g°sin(2x)? — 5aq cos(2x) + 14¢% — %)
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D"-finite functions: iterating the process

Extending algorithms for D-finite functions



D"-finite functions

Given a differential ring R C K|[[x]], the closure properties show
that D(R) is again a ring. Hence we can iterate the construction
with the same algorithms.
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D"-finite functions

Remark

Given a differential ring R C K|[[x]], the closure properties show
that D(R) is again a ring. Hence we can iterate the construction
with the same algorithms.

D"-finite functions

We define the D"-finite functions as the nth iteration over the
polynomials, i.e., D"(K[x]).

N

K[x] € D(K[x]) € D*(K[x]) € ... c D"(K[x]) C ...

D—

K Extending algorithms for D-finite functions



New Properties

f(x) € D"(K|[x]) of order di.
g(x) € D™(K|[x]) of order d>.
a(x) algebraic over D(K|[x]) of degree p.

| Property || Function | Is in | Order bound
Composition fog D""™(K[x]) d1
Alg. subs. foa D""™(K|[x]) pdi
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D" C D™: Iterated exponentials
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Iterated exponentials

K[x] € D(K[x]) € D*(K[x]) C ... C D"(K[x]) C ... |
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Iterated exponentials

K[x] € D(K[x]) € D*(K[x]) C ... C D"(K[x]) C ... |

e* € D(K[x]), e® 1 e D?(K[x])

K Extending algorithms for D-finite functions



D" C DI7+1

=
O@0000

Iterated exponentials

K[x] € D(K[x]) € D*(K[x]) C ... C D"(K[x]) C ... |

e* € D(K[x]), e® 1 e D?(K[x])
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Iterated exponentials

K[x] € D(K[x]) € D*(K[x]) C ... C D"(K[x]) C ... |

e* € D(K[x]), e® 1 e D?(K[x])

Iterated Exponentials

e e(x) =1,
@ &,(x) = [y en(t)dt,
@ ent1(x) = exp(én(x)).
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Increasing chain

Proposition
@ ey(x) € D"(K[x]).
o en(x) ¢ D" L(K[x]).
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Increasing chain

Proposition
@ e,(x) € D"(K[x]).
o en(x) ¢ D" L(K[x]).

First is trivial: e},(x) = ep—1(x)en(x).
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Increasing chain

Proposition
@ ey(x) € D"(K[x]).
® e(x) ¢ D" H(K[x]).

Second: proof using Differential Galois Theory (M. F. Singer)
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Picard-Vessiot

Picard-Vessiot closure

Let (K, 0) be a differential field with constants C. The
Picard-Vessiot closure is the smallest field with same constants
such that all linear differential equation with coefficients in K have
all the C-linearly independent solutions.
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Picard-Vessiot

Picard-Vessiot closure

Let (K, 0) be a differential field with constants C. The
Picard-Vessiot closure is the smallest field with same constants
such that all linear differential equation with coefficients in K have
all the C-linearly independent solutions.

Clx] ¢ D(C[x]) ¢ ... ¢ D"(C[x]) < ... C C[x]]
N N N -

Fo C F C ... C Fn - c C((x))
N N N

Ko C Ki c ... C K, C C Kpy
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Main result

Proposition
Let (K, 0) be a differential field with algebraically closed field of
constants C. Let E be a PV-extension of K. Let u,v € E \ {0}

such that:
! /

u v
— =a€eKk, — =u,
u v

then u is algebraic over K.
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Main result

Proposition
Let (K, 0) be a differential field with algebraically closed field of
constants C. Let E be a PV-extension of K. Let u,v € E \ {0}
such that:

/ /

u v
— =a€eKk, — =u,
u v

then u is algebraic over K.

4

Let c € C* and n € N\ {0}. Then e = exp(cép_1) ¢ Kn_1.

K Extending algorithms for D-finite functions



D" C Dn+1

=
0O0000e

Main result

Clx] ¢ D(C[x]) ¢ ... ¢ D"YC[x]) c c  C[x]
N N N "

Fo C Fi C ... C Fn-1 C ... C C((x)
N N N .

Ko C K Cc ... C Kn_1 C ... C Kpy
en(x)
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Main result

Clx] ¢ D(Cx]) ¢ ... ¢ D"YCx]) ¢ ... ¢ C[]I
N N N

Fo C Fi C ... C Fn-1 C ... C C((x)
N N N '

Ko C K Cc ... C Kn_1 C ... C Kpy

en(x) ¢ Kn—1, and...
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Main result

Clx] ¢ D(Cx]) ¢ ... ¢ D"YCx]) ¢ ... ¢ C[]I
N N N

Fo C Fi C ... C Fn-1 C ... C C((x)
N N N '

Ko C K Cc ... C Kn_1 C ... C Kpy

en(x) ¢ Fn—1, and...
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Main result

Clx] ¢ D(C[x]) ¢ ... ¢ D"}C[x]) c ... ¢ C[X]
N N N

Fo C Fi C ... C Fn-1 C ... C C((x)
N N N '

Ko C K Cc ... C Kn_1 C ... C Kpy

en(x) ¢ D" Y(K[x]), finishing the proof.

K Extending algorithms for D-finite functions



Non linear differential equations

o Diff. definable over R — linear differential equation.
o Diff. algebraic over R — non-linear differential equation.
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Non linear differential equations

o Diff. definable over R — linear differential equation.
o Diff. algebraic over R — non-linear differential equation.

Let f € K[[x]]. If there is n € N with f € D"(R), then f is
differentially algebraic over R.
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Non linear differential equations

o Diff. definable over R — linear differential equation.
o Diff. algebraic over R — non-linear differential equation.

Let f € K[[x]]. If there is n € N with f € D"(R), then f is
differentially algebraic over R.

The proof is constructive and it is implemented.
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Non linear differential equations

@ Double exponential (exp(exp(x) — 1)):

f'(x) — exp(x)f(x) =0 — " (x)f(x) — f/(x)2 — f'(x)f(x) =0
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Non linear differential equations

@ Double exponential (exp(exp(x) — 1)):
f'(x) — exp(x)f(x) =0 — " (x)f(x) — f/(x)2 — f'(x)f(x) =0
@ Mathieu functions:

f(x) — (a— 2qi05(2x))f(x) =0
FO (x)f (x)* = 3FD(x)F (x)f (x)* — 4F"(x )f"(X)f(X)2+
6" (x)f'(x)*f (x )+4f’”( ) (x)® + 6" (x)?F'(x)f(x)
—6F(x)F (x)? — 4F()F (x)F(x)? =

X Extending algorithms for D-finite functions



The reverse is not true

Not all Diff. algebraic functions are D"-finite (M. Van der Put)
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The reverse is not true

Not all Diff. algebraic functions are D"-finite (M. Van der Put)

Key property

Let P(x,y,y’,...,y(M) be a differential polynomial and
A ={f,...,fr} be a finite set of solutions, i.e.,

P(x, fi(x), .., "(x)) = 0

Then A is a algebraically independent set.
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The reverse is not true

Not all Diff. algebraic functions are D"-finite (M. Van der Put)

Key property

Let P(x,y,y’,...,y(M) be a differential polynomial and
A ={f,...,fr} be a finite set of solutions, i.e.,

P(x, fi(x), .., "(x)) = 0

Then A is a algebraically independent set.

The equation y’ = y?(y — 1) has that property.

K Extending algorithms for D-finite functions
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The SAGE package
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SAGE system

@ Open Source computer system based on Python

@ Interfaces to many mathematical tools.
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SAGE system

@ Open Source computer system based on Python

@ Interfaces to many mathematical tools.

Public repository

https://www.dk-compmath.jku.at/Members/antonio/sage-package-
dd_ functions
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SAGE system

@ Open Source computer system based on Python

@ Interfaces to many mathematical tools.

Public repository
https://www.dk-compmath.jku.at/Members/antonio/sage-package-
dd_ functions

Based on package ore_algebra by M. Kauers and M. Mezzarobba
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SAGE system

Features

@ Implementation of D(R) for any ring R.

e Computation of initial values for elements of D(R).
Implementation of closure properties (+, —, *, /, 0).
Possibility to have constant parameters.
Computation of non-linear differential equations.

Library of examples (extracted from DLMF)
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Conclusions and Future work
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Conclusions

@ Extended the framework of D-finite to wider class of
computable functions

Implemented closure properties for DD-finite
Implemented composition of D"-finite functions
Detected limits of the class of differentially definable
Code available for SAGE
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Conclusions

@ Improve performance of the current code

@ Study analytic properties of DD-finite functions

@ Study combinatorial properties of DD-finite functions
@ Study the annalog of DD-finite functions in sequences

@ Multivariate case

@ Generalize for other type of operators (g-shift)
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Thank you!

Contact webpage:
@ https://www.dk-compmath.jku.at/people/antonio
@ https://www.risc.jku.at/home/ajpastor

SAGE code:

@ https://www.dk-compmath.jku.at/Members/antonio/
sage-package—-dd_functions

A Extending algorithms for D-finite functions
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