Y &

Some applications of the method of
moments in the analysis of algorithms

Alois Panholzer

Institute of Discrete Mathematics and Geometry
Vienna University of Technology
Alois.Panholzer@tuwien.ac.at

Universite de Paris-Nord, 16.2.2010

1/64



The Method of Moments Example | Example Il Example Il Counterexample
00000000000 00000000000 000000000000 0000

Outline

The Method of Moments

Example |
Total displacement in linear probing hashing

Example Il
Subtree varieties in recursive trees

Example 111
Total costs of UNION-FIND-algorithms

Counterexample



The Method of Moments

The Method of Moments

3/64



The Method of Moments Example | Example Il Example 11 Counterexample

66000000000 66000000000 6000000000000000
The Method of Moments
Motivation
Average-case analysis of Analysis of average behaviour of
algorithms parameters in random structures
procedure

Quicksort(A:array)

end

E.g., Quicksort
input string: random

permutation of size n E.g., random binary search tree of
» number of comparisons size n
to sort elements » number of leaves in tree
» number of recursive calls > depth of j-th smallest node in

to sort elements tree
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The Method of Moments

Motivation

Average-case analysis:

Xpn: parameter (i.e., random variable) under consideration for
random size-n instance

» Expectation (= mean value) E(X,)

» Concentration results, Variance V(Xj,)

» Limiting distribution results

(d)

X —> X X, converges in distribution to r.v. X

Y

» Tail estimates ( “bounds on rare events")
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The Method of Moments

Showing limiting distribution results

Basis: Theorem of Fréchet and Shohat

(Second central limit theorem)
If

(7) all positive r-th integer moments of X, converge to the r-th
moments of a r.v. X:

E(X,) — E(X"), forallr>1
(i) the distribution of X is uniquely defined by its moments

d
then X, (—)—> X, i.e., X, converges in distribution to X
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The Method of Moments

Showing limiting distribution results

This means: the distribution function F,(x) = P{X, < x} of X,

converges pointwise for every x € R to the distribution function
F(x) =P{X < x} of X.

Consider X,, = 27:1 Yni, Yn,i independent identically distr. as Y/,
P{y =1} =P{Y =-1} = 1.
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The Method of Moments

Showing limiting distribution results

This means: the distribution function F,(x) = P{X, < x} of X,
converges pointwise for every x € R to the distribution function
F(x) =P{X < x} of X.

Consider X,, = 27:1 Yni, Yn,i independent identically distr. as Y/,
P{y =1} =P{Y =-1} = 1.

0.8

0.6




The Method of Moments Example | Example Il Example 11 Counterexample
00000000000 00000000000 000000000000 0000

The Method of Moments

Showing limiting distribution results

This means: the distribution function F,(x) = P{X, < x} of X,
converges pointwise for every x € R to the distribution function
F(x) =P{X < x} of X.

Consider X,, = 27:1 Yni, Yn,i independent identically distr. as Y/,
P{y =1} =P{Y =-1} = 1.

0.8

0.6




The Method of Moments Example | Example Il Example 11 Counterexample
00000000000 00000000000 000000000000 0000

The Method of Moments

Showing limiting distribution results

This means: the distribution function F,(x) = P{X, < x} of X,
converges pointwise for every x € R to the distribution function
F(x) =P{X < x} of X.

Consider X,, = 27:1 Yni, Yn,i independent identically distr. as Y/,
P{y =1} =P{Y =-1} = 1.

0.8

0.6




The Method of Moments Example | Example Il Example 11 Counterexample
00000000000 00000000000 000000000000 0000

The Method of Moments

Showing limiting distribution results
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The Method of Moments
Showing limiting distribution results

This means: the distribution function F,(x) = P{X, < x} of X,
converges pointwise for every x € R to the distribution function
F(x) =P{X < x} of X.

Consider X,, = 27:1 Yni, Yn,i independent identically distr. as Y/,
P{y =1} =P{Y =-1} = 1.
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The Method of Moments
Showing limiting distribution results

This means: the distribution function F,(x) = P{X, < x} of X,
converges pointwise for every x € R to the distribution function
F(x) =P{X < x} of X.

Consider X,, = 27:1 Yni, Yn,i independent identically distr. as Y/,
P{y =1} =P{Y =-1} = 1.
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The Method of Moments
Showing limiting distribution results

This means: the distribution function F,(x) = P{X, < x} of X,
converges pointwise for every x € R to the distribution function
F(x) =P{X < x} of X.

Consider X,, = 27:1 Yni, Yn,i independent identically distr. as Y/,
P{y =1} =P{Y =-1} = 1.

0.8

0.6

n = 640:
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The Method of Moments

Showing limiting distribution results

Point (if) is satisfied under growth conditions of moments E(X")

Carleman criterion:
If

;\/W -

then X is uniquely defined by its sequence of moments.
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The Method of Moments

Applications in average-case analysis

Analysis of Algorithms and random structures:

» Often: one obtains distributional recurrences for parameters of
interest

» In many cases: difficult to treat distributional recurrences
directly

» But: recurrences for moments usually simpler
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The Method of Moments

Applications in average-case analysis

A “typical situation”:

» Recurrences for E(X]) are linear
» They differ only in the inhomogeneous part

» Inhomogeneous part contains lower moments
E(X3),- .- E(X571)

If method applicable:

one can pump out successively all moments (at least
asymptotically)

10 /64
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Example I: Total displacement in
linear probing hashing
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Total displacement in linear probing hashing

Problem description
Linear probing hashing

» Table of length m
» Hash function h maps keys to [1...m] of table addresses
» Sequences of n < m elements entering sequentially into table

» Each element x is placed at first unoccupied location starting
from h(x) in cyclic order:

h(x),h(x)+1,...,m 1,2 ... h(x)—1

12 /64



The Method of Moments Example | Example Il Example 11
0O@000000000 00000000000 000000000000 0000

Total displacement in linear probing hashing
Problem description

Example of constructing a hash table:

1112 1 >
10 3
98 54

/ 6

Counterexample
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Total displacement in linear probing hashing
Problem description

Example of constructing a hash table:
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Problem description

Example of constructing a hash table:
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Total displacement in linear probing hashing
Problem description

Example of constructing a hash table:

SRR VDS
A/E/-\
SO

I
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Problem description

Example of constructing a hash table:

monN®mx>
>
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Total displacement in linear probing hashing

Problem description

Example of constructing a hash table:

A.. h(A)=3
B...h(B)=9
C...h(C)=4
D...h(D)=3
E...h(E)=71
F...h(F)=12

13 /64
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Total displacement in linear probing hashing

Problem description

Example of constructing a hash table:

AamMmMoNn®m >
/\Aﬂi/—\/—\
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Problem description

Example of constructing a hash table:

AamMmMoNn®m >
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Total displacement in linear probing hashing

Problem description

Example of constructing a hash table:

A.. h(A)=3
B...h(B)=9
C...h(C)=4
D...h(D)=3
E...h(E)=71
F...h(F)=12
G...h(G)=9
H...h(H) =4
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Problem description
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Problem description
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Total displacement in linear probing hashing

Problem description

Displacement d(x) of element x placed at location y:

circular distance between h(x) and y:

d(x) = {y — h(x), if h(x) <y,

m+ h(x) —y, otherwise
= Costs of inserting x and searching x in table

Total displacement of sequence of n hashed values:
sum of the individual displacements

= Construction costs of the table

Counterexample
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Total displacement in linear probing hashing

Problem description

Assumption:
all m" hash sequences are equally likely

Dm,n: Random variable counting the total displacement of a table
of length m with n keys hashed

» Full table: n=m
» Almost full table: n=m—1
» Sparse tables: n = am, load factor 0 < o < 1

15 /64
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Total displacement in linear probing hashing

Results
Theorem [Flajolet, Poblete and Viola, 1998]:

Resylt for almost full tables: the scaled random variable
(%)ED,,,,,_l converges in distribution to an Airy distributed

random variable: 5 3
(;)EDn,nfl _(i)_’ D,

where D is determined by its moments:

R .
R R

and the constants C, satisfy the following recurrence:

r—1
2Cr = (3r — 4)rCr—]_ + Z <;> qu_j, fOI’ r Z ]_, CO = —]_
j=1

16 /64
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Total displacement in linear probing hashing

Proof idea

Basic decomposition of almost full tables:

» Table length n+ 1 with n elements inserted
» Before last element is inserted: Two empty cells at position
k+1land n+1

» Assumption (circular symmetry): free cell remains at n+ 1
= last element to be inserted has any address in [1...k + 1]
= displacement is any value € {0,1,... k}.

/

17 /64
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Total displacement in linear probing hashing

Proof idea

Decomposition leads to recursive description:

Fn,k: number of ways of creating an almost full table with n
elements and total displacement k

Generating function: Fo(q) := 3", <0 Frkq"

Recurrence: a

n—1

n—1

Fa(a) =) ( B >Fk(q)(1 +q+-+ ) Fa1-4(q)
k=0

Bivariate generating function: F(z,q) :=>_ 5 Fn(q)i—';

Functional equation:

F(z,q) — qF(qz,q)

1—q

18 /64
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Total displacement in linear probing hashing

Proof idea

Pumping out all moments:

Generating function of r-th factorial moments:

r

oq”

fi(z) = 5 -F(z,9)

qg=1
f,(z) satisfy following linear differential equation:

r@0 - T@) - 1) T DT R (e),

where the inhomogeneous part R,(z) contains the functions
fo(z), f(z),...,f—1(z) and T(z) is the tree function:
T(z) =ze™)

Counterexample
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Total displacement in linear probing hashing
Proof idea
General solution:
eT(2) z -
= —_— - (U)
f(z) l—T(z)/o R.(u)e du
1

Asymptotic behaviour around dominant singularity z = e™:

Cr
(2(1 _ ez))3r/2—1/2 ’

zf(z) ~

where constants C, satisfy the following recurrence:

r—1
2Cr = (3r — 4)rCr—]_ + Z <;> qu_j, fOI’ r 2 ]_’ CO = —]_
Jj=1
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Counterexample

Total displacement in linear probing hashing

Proof idea

Singularity analysis of generating functions
[Flajolet and Odlyzko, 1990]:

=- asymptotic equivalent of the r-th factorial and ordinary
moments:

Nlw

2 r 2vn
2 EGn) = e oy &

21 /64
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Total displacement in linear probing hashing
Airy distribution

Airy distribution appears in various contexts:

Number of inversions in trees

Path length in trees

Area under directed lattice paths
Counting problems for polygon models

Number of connected graphs with n vertices and k edges

vV vV vV V. VY

Additive parameters in context-free grammars

“Similar” functional equations are occurring

Counterexample
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Example |l: Subtree varieties in
recursive trees
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Subtree varieties in recursive trees

Problem description

Subtree varieties in rooted trees:

» Given: family 7 of rooted trees
» Consider: random rooted tree T of size n of family 7

» Question: how many subtrees of T have size k = k(n) ?

24 /64
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Subtree varieties in recursive trees

Problem description

Typical situation for random tree of size n
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Subtree varieties in recursive trees

Problem description

Typical situation for random tree of size n

many subtrees of fixed size: size 1 (= leaves)

25 /64
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Subtree varieties in recursive trees

Problem description

Typical situation for random tree of size n

many subtrees of fixed size: size 2

25 /64
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Subtree varieties in recursive trees

Problem description

Typical situation for random tree of size n

many subtrees of fixed size: size 3
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Subtree varieties in recursive trees

Problem description

Typical situation for random tree of size n

few subtrees of “large” size: size n/3
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Subtree varieties in recursive trees

Problem description

Typical situation for random tree of size n

few subtrees of “large” size: size n/2
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Subtree varieties in recursive trees

Recursive trees

Recursive trees:
important tree family with many applications

» models spread of epidemics

v

model for pyramid schemes

v

model for the family trees of preserved copies of ancient texts

related to the Bolthausen-Sznitman coalescence model

v

26 / 64
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Subtree varieties in recursive trees

Recursive trees

Combinatorial description of a recursive tree:

» non-plane labelled rooted tree
» size-n tree labelled with labels 1,2,...,n

» labels along path from root to arbitrary node v are increasing
sequence

Random recursive trees:
all (n — 1)! recursive trees of size n appear with equal probability
@
@ @ ®
TO O

© O
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Subtree varieties in recursive trees

Recursive trees

Simple growth rule for generating random recursive trees:

» Step 1: start with root labelled by 1

» Step j: node with label j is attached to any previous node
with equal probability 1/(j — 1)

@
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Subtree varieties in recursive trees

Recursive trees

Simple growth rule for generating random recursive trees:

» Step 1: start with root labelled by 1

» Step j: node with label j is attached to any previous node
with equal probability 1/(j — 1)

Jo=
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Subtree varieties in recursive trees

Recursive trees

Simple growth rule for generating random recursive trees:

» Step 1: start with root labelled by 1

» Step j: node with label j is attached to any previous node
with equal probability 1/(j — 1)
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Subtree varieties in recursive trees

Recursive trees

Simple growth rule for generating random recursive trees:

» Step 1: start with root labelled by 1

» Step j: node with label j is attached to any previous node
with equal probability 1/(j — 1)
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Subtree varieties in recursive trees

Recursive trees

Simple growth rule for generating random recursive trees:

» Step 1: start with root labelled by 1

» Step j: node with label j is attached to any previous node
with equal probability 1/(j — 1)
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Subtree varieties in recursive trees

Recursive trees

Simple growth rule for generating random recursive trees:

» Step 1: start with root labelled by 1

» Step j: node with label j is attached to any previous node
with equal probability 1/(j — 1)
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The Method of Moments
00000000000

Subtree varieties in recursive trees
Recursive trees

Simple growth rule for generating random recursive trees:

» Step 1: start with root labelled by 1
» Step j: node with label j is attached to any previous node

with equal probability 1/(j — 1)

©O-®
@
®
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Recursive trees

Simple growth rule for generating random recursive trees:

» Step 1: start with root labelled by 1

» Step j: node with label j is attached to any previous node
with equal probability 1/(j — 1)
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Subtree varieties in recursive trees

Recursive trees

Simple growth rule for generating random recursive trees:

» Step 1: start with root labelled by 1

» Step j: node with label j is attached to any previous node
with equal probability 1/(j — 1)

-
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Subtree varieties in recursive trees

Recursive trees

Simple growth rule for generating random recursive trees:

» Step 1: start with root labelled by 1

» Step j: node with label j is attached to any previous node
with equal probability 1/(j — 1)
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Subtree varieties in recursive trees

Results

Xn k: number of subtrees of size k in random recursive tree of
size n
Theorem [Feng, Mahmoud and Pan, 2006+]:

there are three phases for behaviour of X, , depending on the
growth of k = k(n)

» subcritical case: k/y/n — 0
» critical case: k/y/n—c >0

» supercritical case: k/\/n — oo

29 /64
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Subtree varieties in recursive trees

Results
» subcritical case: k/y/n — 0:

normalized r. v. asympt. Gaussian distributed

Xn K — _n
L KD 9, wr(o,1)
(2k2—1)n
KkF12(2k+1)

» critical case: k/\/n— ¢ > 0:
Xn k asymp. Poisson-distributed
Xnk ), Poisson(%)
» supercritical case: k/y/n — oc:
Xnk asymp. denenerate

Xk D X, with P{X =0} = 1

30 /64
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Subtree varieties in recursive trees

Proof idea

Decomposition of recursive trees according root degree:

T=0 x ({E}UTQ 120 T+TUL/3-T+T+T U )
= @O x exp(7)

Generating functions: Mi(z,v) :== 3" 51> o P{Xok = mYZym

n!

Differential equation:

;ZMI((Z, V) = exp (/\//k(z, V)) + (V _ 1)Zk_1

31/64
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Subtree varieties in recursive trees

Proof idea
Explicit solution of generating function:

(v—1)zF 1

T +log | ———— _—

1—[e * dt
0

Exact solution for factorial moments:

n—kr—1
; [n>kr+1]n < -1
E(X;,) = - > ; x

(=1

D S A ey

it tig=r
Jg=1, 1<q<t

Counterexample
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Subtree varieties in recursive trees

Proof idea
Critical case: = Asymptotically Poisson distribed

n/k> =X — E(X;,) =\

Subcritical case: = Dealing with cancellations
H v, o Xn,ka(Xn,k)
Normalized r.v. X, ) := V)

= Asymptotically Gaussian distributed
X,k \2d (2d)!
Ef(——— for d >
(( u(k)n) >_>d!2d’ or d >0,

X,k \2d+1
E|l|l——— — 0, for d>0
<(vy(k)") >

33 /64
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Subtree varieties in recursive trees
Remarks

Application of method of moments to asympt. Gaussian r.v.:

» heavy cancellations = high computational effort

» method usually only “last weapon”

34 /64
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Subtree varieties in recursive trees

Remarks

Application of method of moments to asympt. Gaussian r.v.:

» heavy cancellations = high computational effort

» method usually only “last weapon”

One might try first:

» analytic methods (saddle point method, continuity theorem of
Levy, quasi-power theorem)

» central limit theorems for sums of independent or weakly
dependent r.v.

» Stein's method
» contraction method
» martingale description

34 /64
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Total costs in UNION-FIND-algorithms

Problem description

UNION-FIND-problem

» Maintaining representation of equivalence classes
(= partitions of a finite set)

» Two basic operations:

» UNION: merge two different equivalence classes s and t into a
single equivalence class
» FIND: find equivalence class that contains a given element x

Problem arises naturally in applications in computer science
(e.g., minimum-cost spanning tree algorithms)
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Total costs in UNION-FIND-algorithms

Problem description

Data structure for Union-Find problem, Aho et al [1974]:
» consider partition P(S) of finite set S

» for every element x € S: store in R[x] name of the
equivalence class containing x

» for every equivalence class s € P(S):

» store in N[s] the number of elements of s
> store in L[s] the elements of s in a linked list

37/64
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Total costs in UNION-FIND-algorithms

Problem description

Basic algorithm for operation UNION, Yao [1976]:

“Quick Find Weighted” (QFW):
if we merge different equivalence classes s and t then we update
the class with less elements:

» if N[s] < N[t]: > otherwise
set R[x] :=t for all x in L[s] set R[x] := s for all x in L[t]
append L[s] to L[t], append L[t] to L[s]
set N[t] := N[t] + N[s] set N[s] := N[s] + N[t]
call new equivalence class t call new equivalence class s
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Total costs in UNION-FIND-algorithms

Problem description

Cost of UNION-operation:

» Costs when merging equivalence classes s and t:
measured by number of updated elements, i.e., the number of
allocations R[x] :=s or R[x] :=t

» QFW: cost of merging step is given by minimum of the class
sizes min(N([s], N[t])
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Total costs in UNION-FIND-algorithms

Problem description

Basic model for sequences of UNION-operations, Yao [1976]:

Random spanning tree model:
» deal with set S of size n

> at the beginning all elements x € S are forming equivalence
class {x}

» n equivalence classes will be merged into larger and larger
classes by carrying out UNION-operations according following
Merging rule
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Total costs in UNION-FIND-algorithms

Problem description

Merging rule:
» choose at random a spanning tree of complete graph with
vertex set S

» choose a random ordering of the edges of this spanning tree
by enumerating it from 1 to n—1

> leads to sequence of edges e; = (x1,y1), & = (x2,y2), .-
en—1= (Xn—1,¥n-1), With x;,y; € S

» gives then sequence of UNION-operations
UNION(R[x1], R[y1]), UNION(R[x2], R[y2]), ..., UNION(R[xn—1], R[yn-1])

» = all n""2(n — 1)! possible sequence of UNION-operations of
that kind are equally likely
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Total costs in UNION-FIND-algorithms

Problem description

Total cost of algorithm QFW:
Average performance of QFW described by total costs:

» sum of cost of every merging step when merging the elements
of a set S of size n

> at beginning all elements are in different equivalence classes

» merge all elements into one equivalence class (containing all
elements of S)

> carrying out sequence of n — 1 UNION-operations according to
merging rules under random spanning tree model

» = X,: random variable depending only on size n of set S

Example Il Example Il Counterexample
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Total costs in UNION-FIND-algorithms

Problem description

Example of algorithm QFW:

a b
fe °C
e d
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Counterexample

Total costs in UNION-FIND-algorithms
Problem description

Example of algorithm QFW:

a b UNION({c},{e}) = Cost =1
* . UNIoN({a}, {b}) = Cost =1
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Counterexample

Total costs in UNION-FIND-algorithms
Problem description

Example of algorithm QFW:

a b UNION({c},{e}) = Cost =1
UNIoN({a}, {b}) = Cost =1
UNION({c},{d}) = Cost =1
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Total costs in UNION-FIND-algorithms
Problem description

Example of algorithm QFW:

a b UNION({c},{e}) = Cost =1

UNIoN({a}, {b}) = Cost =1

UNION({c},{d}) = Cost =1
( )

fe c
/ Unton({b}, {c}) = Cost = 2
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Total costs in UNION-FIND-algorithms

Problem description

Example of algorithm QFW:

a b UNION({c},{e}) = Cost =1
UNIoN({a}, {b}) = Cost =1

fo c UNION({c},{d}) = Cost =1
UNION({ b}, {c}) = Cost =2

e d UNION({b}, {b}) = Cost = 1

43 /64
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Total costs in UNION-FIND-algorithms

Problem description

Example of algorithm QFW:

a b UNION({c},{e}) = Cost =1
UNIoN({a}, {b}) = Cost =1

f c UNION({c},{d}) = Cost =1
UNION({ b}, {c}) = Cost =2

e d UNION({b}, {b}) = Cost = 1

Total costs = 6
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Total costs in UNION-FIND-algorithms
Results

Theorem [Kuba and Pan, 2007]: The expectation E(X;) of the
total costs of the UNION-FIND-algorithm under the random
spanning tree model has for n — oo the following asymptotic
expansion:

1
E(X,) = —nlogn+ Cn + O(n?),

where the constant C =~ 0.6315is given as follows:

c—1F2082 5 L[, Ry H D Rot)-2].

ZOn+1 — (k+2)! T
with
n—1 k _ n k—1
Z min(k, n — k).

k=1 kl (n—k
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Total costs in UNION-FIND-algorithms

Results
Theorem [Kuba and Pan, 2007]: The suitably shifted and
scaled r.v. X, converges in distribution to a r.v. X, which can be
characterized by its r-th integer moments:

X, — Lnl -C
ROBNT EN U X with E(XT) = m,,

n
where m, is given recursively as follows:

rr—1) r
r= 5 ==, 1\ § r, My Ir r,r; f > 27
m 2/Al(r—1) <f1,f2,f3>m2m3 b s

2/ n+n+rn=r,
r,r3<r

with initial values mg =1 and m; = 0 and

1
1 r
|- :/O (;(x log x+(1—x) log(1—x))+min(x, l—x)) 1szf%(lfx)f%%dx.
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Total costs in UNION-FIND-algorithms

Proof idea

The reverse process: destroying a tree

>
>
>
>

v

Start with a random spanning tree of size n
Remove successively edges at random from remaining edges
In every step split a connected component into two parts

Cost of a cut is the size of the smaller part after the splitting
step

Stop when all nodes are isolated
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Proof idea

Example of destroying a tree:

a b

Example Il
0000000000 0e0000

Counterexample
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Total costs in UNION-FIND-algorithms

Proof idea

Example of destroying a tree:

a b

Cost =1
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Total costs in UNION-FIND-algorithms

Proof idea

Example of destroying a tree:

a b

Cost =1
Cost =2
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Total costs in UNION-FIND-algorithms

Proof idea

Example of destroying a tree:

a b

Cost =1
Cost =2

f o C Cost =1
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Total costs in UNION-FIND-algorithms

Proof idea

Example of destroying a tree:

a b

° ° Cost =1
Cost =2
Cost=1
o
f C Cost =1
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Total costs in UNION-FIND-algorithms

Proof idea

Example of destroying a tree:

a b

° ° Cost =1
Cost =2
Cost=1
o [ ]
f C Cost =1
Cost=1

Total costs = 6
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Total costs in UNION-FIND-algorithms

Proof idea

Recursive description of total costs X;:
Distributional recurrence for rooted trees:

(d)

Xn = Xsn + X:fS,, + t”ysn

Sn: size of subtree containing root after removing random edge of
randomly chosen labeled rooted tree of size n

Toll function: t, x = min(k, n — k)

S, is distributed as follows:

kT, Th—k
(n—1T,’

with T, == "%

n!

P{S, = k} =
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Total costs in UNION-FIND-algorithms

Proof idea

Recurrence for r-th moments of X,
Linear recurrence for ME{] =E(X}):

n—1
(n— 1) Tordl =3 kTi sl + W1 ) + RI,
k=1

where the inhomogeneous part R,[,r] depends on the lower order

moments ,uLll, - ,qu_I]
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Total costs in UNION-FIND-algorithms

Proof idea

Generating functions treatment

Linear differential equation:
z(1-T(2))C(z) — (1 + zT'(2))C(2) = R (2),

where the inhomogeneous part depends on the g.f.
Gi(2),..., C(z) for lower moments

T(z) [*R(1)
C(z) = dt
(2) 1-— T(z)/0 tT(t)
Asymptotic equivalents of r-th moments:

“pumped out” inductively
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Total costs in UNION-FIND-algorithms

Remark

Problems of similar “nature”:

» Quicksort: number of comparisons
» Pathlengths in search tree models

» Wiener-index of certain tree models

Limiting distribution characterized by “complicated” moment's
sequence
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Counterexample

Cutting down recursive trees

Cutting down procedure for rooted trees:

INPUT: tree T

steps «— 0

while |T|>1do
cut off an edge e of T
T « subtree containing the root
steps < steps +1

OUTPUT: steps

Remove edges until root is isolated

Counterexample
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Counterexample
Cutting down recursive trees

An example of cutting a tree:

Example Il
00000000000

Example Il
000000000000 0000

Size-11 tree destroyed in 5 steps.

Counterexample
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Counterexample

Cutting down recursive trees

How many steps are done, until root is isolated?

Probability model:

» Randomized cutting down procedure:
Edges in tree chosen at random in each step.

» Random tree model for certain tree families.

R. v. X, counts steps done to destroy size-n tree.
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Counterexample

Cutting down recursive trees

Why are the number of cuts to destroy the tree of interest?

» Strong connections to coalescent models = theoretical
physics, mathematical biology

» Cayley-trees: additive Marcus-Lushnikov process
» Recursive trees: Bolthausen-Sznitman coalescent

» X, for recursive trees: number of collision events in the
coalescent model until there is just a single block
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Counterexample

Cutting down recursive trees

Apply cutting-down procedure to recursive trees:

» non-plane labelled rooted tree
» size-n tree labelled with labels 1,2,...,n

» labels along path from root to arbitrary node v are increasing
sequence

Random recursive trees:
all (n — 1)! recursive trees of size n appear with equal probability
@

CNEONO,
@6 06

© O
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Counterexample
Cutting down recursive trees
Idea: apply recursive approach:

n—1

P{Xy=m}=> pnuP{Xc=m—1}.
k=1

Pn,k : Probability, that subtree containing root has size k, if we cut
off random edge in random size-n tree.
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Counterexample

Cutting down recursive trees

Idea: apply recursive approach:

n—1

P{Xy=m}=> pnuP{Xc=m—1}.
k=1

Pn,k : Probability, that subtree containing root has size k, if we cut
off random edge in random size-n tree.

Attention:
» approach only applicable if randomness is preserved by cutting

off random edge
» satisfied, e.g, by recursive trees, Cayley-trees, planted plane
trees, d-ary trees
» not satisfied, e.g., by Motzkin-trees, binary search trees
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Cutting down recursive trees

Cutting off random edge:
Planted plane trees: randomness preserved

Motzkin trees: randomness not preserved

Planted plane trees

Example 11
000000000000 0000

Motzkin trees
7\

-~

8>@4/
8>@4/
o0
=
—

Counterexample
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Counterexample

Cutting down recursive trees

Computations for recursive trees:

Splitting probability: size-n tree — size-k tree:

(n=1)(n—k)(n—k+1)

Pnk =

Recurrence:

n—1

P{X, = m} = Z oD PXe = m— 1},
k=1

Counterexample
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Counterexample

Cutting down recursive trees

Computations for recursive trees:

Proper generating function:

M(z,v)=>" > P{X,= m}in"vm.

n>10<m<n

Differential equation:

1

z—v(z—(l—z)log(i))

gl\/l(z, v) =

57 M(z,v).

Counterexample
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Counterexample

Cutting down recursive trees

Computations for recursive trees:

Solution of DE:

fz v(t*(lff)log(llt))

M(Z, V) — 70 t(t—v(t—(l—t)log (%)))

Try method of moments:
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Counterexample

Counterexample

Cutting down recursive trees

Computations for recursive trees:

Solution of DE:

fz v(t*(lff)l"g(llt))

M(Z, V) = Zet:o t(t_‘/(t—(l—t)log (%)))
Try method of moments:

r-th moments:

xr) =" ul H o(—"

E = NH — ).

( ") |Ogr n + |Ogr+1 n((r+ ) r I”y) + (logr+2 n)

Scaling does not lead to a limiting distribution!
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Counterexample

Cutting down recursive trees

Computations for recursive trees:
r-th centered moments:

(0o ) - 2 s 22

Also centering and scaling does not lead to a limiting distribution!
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Counterexample

Cutting down recursive trees

Computations for recursive trees:
r-th centered moments:

(0o ) - 2 s 22

Also centering and scaling does not lead to a limiting distribution!

Method of moments not applicable!
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Counterexample

Cutting down recursive trees

Theorem (Drmota, lksanov, Mohle and Rosler, 2009)
The random variable

Xn n__ nloglogn

y, — " ogn — (logn)’

(iog 77

converges in distribution to a stable random variable Y with
characteristic function

¢Y(A) — E(ei)\Y) _ ei)\log|/\\—%|)\|'

The moments of the limiting distribution Y do not exist!
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