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The underlying Euclidean dynamical system (1).
The trace of the execution of the Euclid Algorithm on (uq,ug) is:
(u1,up) = (ug,ur) = (us,uz) = ... = (Up—1,Up) — (Upt1,up) = (0,up)

Replace the integer pair (u;,u;_1) by the rational x; := .
Uj—1
The division u; 1 = m;u; + u;y1 is then written as

1 1
Tip1 = — — \‘J or Tiy1 = T(Ll), where

ZT; s

T:[0,1] — [0,1], T(z):= o L}UJ for x#£0, T(0)=0

An execution of the Euclidean Algorithm (x,T'(z), T%(x),...,0)
= A rational trajectory of the Dynamical System ([0, 1],7T)
= a trajectory that reaches 0.

The dynamical system is a continuous extension of the algorithm.
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The Euclidean dynamical system (I1).
A dynamical system with a denumerable system of branches (T7,,,))m>1,

1 1 1

The set H of the inverse branches of T is

! 1[; him) () := ! }

H = { h[m] :]07 1[—>]m7-i—17 E

The set H builds one step of the CF's.
The set H™ of the inverse branches of 7" builds CF's of depth n.
The set H* := [JH" builds all the (finite) CF's.

= 1 = h[m]] o h[mQ] 0...0 h[mp](O)



The transfer operator (I)

Density Transformer

For a density f on [0,1], H[f] is the density on [0, 1]

after one iteration of the shift
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The transfer operator (I)

Density Transformer

For a density f on [0,1], H[f] is the density on [0, 1]
after one iteration of the shift
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hh«
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Transfer operator (Ruelle)
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The k-th iterate satisfies
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heHE

x)



The transfer operator (I1)
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The transfer operator (I1)

The density transformer H expresses the new density f; as a function of
the old density fo, as f1 = H[fy]. It involves the set H

H: H(f](z) = > _ [N (x)]- foh(x)

heH

With a cost ¢ : H — R extended to H* by additivity,
it gives rise to the weighted transfer operator

H,. H,o[f)(z) = ) explwe(h)] - [W (2)]* - f o h(z)
heH

Multiplicative properties of the derivative N
Additive properties of the cost

H,,,[f](z) = > explwe(h)] - [W(z)]° - f o h(x)

heH'rl
The n~th iterate of H; ,, generates the CFs of depth n.

The quasi inverse (I —H; )" =3, 5, HY , generates all the finite CFs.
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My, :=sup{|h/(z)|, ze€ X}
(1) Uniform contraction.
"" VheH, M,<1
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Properties of the dynamical system: the Good Class

Mh'

= sup{[W/(2)], =€ X)
(1) Uniform contraction
ll“ |\ VheH, M,<1
. l". dp<l,ng>1 Mp<p VheH"™
. ' \ '\\ (2) Bounded distortion
\|» \
|H L\ R

dK > 0,Vhe H,Vzx € X
\

()| < K [P (2)].

(3) Convergence on the left of Rs =1

Jog < 1,Vo > oy, ZMﬁ<oo

heH



Properties of the cost

A cost ¢ : H — R first defined on H,
then extended to H* by additivity c(h o k) := c(h) + c(k).

A cost is of moderate growth if ¢(h) = O(|log My|)



What is needed on the operator H; ,, for the analysis of the algorithm?

For the average case,
only properties on (I — H)~! near Rs =1

For the distributional analysis,
properties on (I — H, ,,)~! on the left of Rs = 1.
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Quasi-Compactness
For an operator L,

— the spectrum Sp(L) :={A\ € C; L — Xl non inversible}

— the spectral radius R(L) :=sup{|A|, A€ Sp(L)}

— the essential spectral radius R.(L) = the smallest r > 0 s.t

any A € Sp(L) with |A| > r is an isolated eigenvalue of finite multiplicity.

— For compact operators, the essential radius equals 0.

— L is quasi-compact if the inequality R.(L) < R(L) holds.

Then, outside the closed disk of radius R, (L), the spectrum of the operator
consists of isolated eigenvalues of finite multiplicity.
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Conditions that are sufficient for quasi-compactness
A theorem, due to Hennion:

Suppose that the Banach space F

— is endowed with two norms, a weak norm |.| and a strong norm ||.||,

— and the unit ball of (F,||.||) is precompact in (F,|.|).

If L is a bounded operator on (F, ||.||) for which there exist two sequences
{rn, > 0} and {t, > 0} s.t.

L < - Ifll+tn - [fl - VR2LVfETF,

Then: R.(L) <r:= lim inf (rn)l/".

n—oo

If R(L) > r, then the operator L is quasi-compact on (F, ||.|]).

For systems of the Good Class, F := C(X),

— the weak norm is the sup-norm || f||o := sup|f(t)],

— the strong norm is the norm ||f||1 := sup|f(¢)| + sup | f'(¢)|.

— the density transformer satisfies the hypotheses of Hennion's Theorem.
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of the Good Class and a digit-cost ¢ of moderate growth.

H; ., acts on C'(Z) for Rs > o and Rw small enough

The map (s, w) — Hs,, is analytic near the reference point (1,0)

For s and w real, the operator is quasi—compact. Thus:
Property UDE : Unique dominant eigenvalue A(s, w),
Property SG : Existence of a spectral gap.

With perturbation theory, this remains true for (s, w) near (1,0),
(s, w) — A(s,w) is analytic.

A spectral decomposition  Hg ,, = A(s,w) - Ps oy + Ny .
P, ., is the projector on the dominant eigensubspace.

Ny . is the operator relative to the remainder of the spectrum,
whose spectral radius p; ., satisfies ps ., < 0A(s,w) with 6 < 1.

..... which extends to all n > 1, HY, = \"(s,w) - Psw + NT,,.



Spectral Gap

Unique Dominant
Eigenvalue
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Then, a Quasi—Power Property

H?,w[f] = /\"(Sa ’LU) : Ps,w[f] : [1 + O(en)]

and, a decomposition for the quasi—inverse

P
I—-H,,) '=2\ — =W (] —N,,) !
( w) (s,w)l_MS’w) + ( w)

Since Hy ¢ is a density transformer, one has

ML=t Pl =3t [ 10

“Dominant” (polar) singularities of (I — Hj,,)~! near the point (1,0):

along a curve s = o(w) on which the dominant eigenvalue satisfies

AMo(w),w) =1



Another important condition: the Aperiodicity condition:

On the line Rs =1, 1 € SpH;;.



The triple [/ D2 + SG' + Aperiodicity entails good properties for (I — H,) ™!,
sufficient for applying Tauberian Theorems

s =1 is the only pole
on the line ks = 1

Expansion near the pole s =1
a

I-H,) '~
= / ( S) 571
s=1 ¢

Half—plane of convergence fs > 1

No hypothesis needed
on the half-plane Rs < 1.
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Property US(s,w) : Uniformity on Vertical Strips

There exist a > 0, 8 > 0 such that,

on the vertical strip S := {s;|R(s) — 1] < a},

and uniformly when w € W := {w; |Rw] < S},
(i) [Strong aperiodicity] s — (I — Hg,,,) ! has a unique pole inside S;
it is located at s = o(w) defined by A(o(w),w) = 1.
(#t) [Uniform polynomial estimates| For any v > 0, there exists £ > 0 s.t,

(I-H, ) 1] =0(Ssl¥)  VseS, |t|>v, weW

With the Property US,
it is easy to deform the contour of the Perron Formula

and use Cauchy's Theorem ...



Near w = 0, the function o is defined by \(o(w), w) =1

s = o(w) is the only pole
on the strip |Rs — 1] < «

1—a<Rs <1,|Ss] > 7.

I
I
I
:
| Expansion
I
! ' near the pole s = o(w)
1 1 1 a
I-H ~—
| : ( sw) s —o(w)
| @ 1
I I
! ' Half-plane of
I I
\ . convergence Rs > o(w)
: :
Uniform polynomial estimates | :
needed on the left domain | |
e
I I
I I
I I
I

[



Property US(s) is not always true

Item (i) is always false for Dynamical Systems with affine branches.

Example: Location of poles of (I — H,)~! near s = 1
in the case of affine branches of slopes 1/p and 1/¢g with p 4 ¢ = 1.

Two main cases

log p logp
—€Q . — ZQ
log q . logq
Regularly spaced poles ® o| Onlyonepoleats=1
on s =1 o on s =1

.: but accumulation of poles
on the left of Rs =1




Three main facts.

(a) There exist various conditions, (introduced by Dolgopyat),
the Conditions UNI that express that
“the dynamical system is quite different from a system

with piecewise affine branches”

b) For a good Dynamical system
( g y y
[complete, strongly expansive, with bounded distortion],
Conditions UNI imply the Uniform Property US(s,w).

(¢) Conditions UNI are true in the Euclid context.



Dolgopyat (98) proves the ltem (b) but
— only for Dynamical Systems with a finite number of branches

— He considers only the US(s) Property
Baladi-Vallée adapt his arguments to generalize this result:
For a Dynamical System

with a denumerable number of branches (possibly infinite),
Conditions UNT [Strong or Weak] imply US(s, w).



Precisions about the UNI Conditions

|7 ()]
K" ()]

Contraction ratio p. p:=limsup ({max |h'(z)|;h € H",z € I})l/”.

Distance A.  A(h, k) := iréfI\IJ;Z,k(x), with Wy, 1 (z) := log

Probability Pr,, on H" x H". Pr,(h, k) := |h(T)|- |k(T)|

For a system C?—conjugated with a piecewise-affine system :

For any p with p < p < 1, for any n, Pr,[A<p"| =1

Strong Condition UNI.
For any p with p < p < 1, forany n, Pr,[A < p"] << p"

Weak Condition UNI.
D >0,3ng>1,Yn>ng, Pr,[A<D]<L




