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Introduction: Combinatorics and representation theory

R P Stanley [Positivity Problems and Conjectures in Algebraic Combinatorics ‘99]:
“The theory of symmetric functions is rife with positivity results and problems, stemming
from the possibility of expanding a symmetric function in terms of a number of possible
bases. If the coefficients in such an expansion are real numbers (respectively, polynomials
with real coefficients), then we can ask whether they are nonnegative (respectively, have
nonnegative coefficients). Often these coefficients will have a representation-theoretic
interpretation, such as the multiplicity of an irreducible representation within some larger
representation. Sometimes the only known proof of positivity will be such an
interpretation, and the problem will be to find a combinatorial proof.”

Pb10:

sλ ∗ sν =
∑
ν

C(λ, ν, µ)sµ (1)

sλ, sν are Schur symmetric functions, C(λ, ν, µ) is the Kronecker coefficient.
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Introduction: Combinatorics and representation theory

Barcelo-Ram [Combinatorial Representation Theory, arXiv:math/9707221[math.RT]]
“In January 1997, (...) Gil Kalai, in his usual fashion, began asking very pointed
questions about exactly what all the combinatorial representation theorists were doing
their research on. After several unsuccessful attempts at giving answers that Gil would
find satisfactory, (...). in the end, Arun gave two talks at MSRI in which he tried to clear
up the situation. (...) After some arm twisting it was agreed that, Arun and Helene
would write such a paper on combinatorial representation theory. What follows is our
attempt to define the field of combinatorial representation theory, describe the main
results and main questions and give an update of its current status.

Of course this is wholly impossible. Everybody in the field has their own point of view
and their own preferences of questions and answers. (...)

What do we mean by ‘combinatorial representation theory’? First and foremost,
combinatorial representation theory is representation theory. The adjective
‘combinatorial’ will refer to the way in which we answer representation theoretic
questions.”
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Introduction: “Combinatorial, have you said Combinatorial?”

→ In this talk: address a question with an RT input but, in the end, has a combinatorial
answer.
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Introduction: tensors, colored/ribbon graphs

From mathematical physics to combinatorics [BG, Ramgoolam, ‘14, ‘17]
• Permutation methods and algebras: Role in the enumeration of observables of tensor
models. [BG, Ramgoolam, ‘14].

• Tensor observable ≡ a contraction of tensors ≡ classical Lie group invariant
(U(N),O(N),Sp(N)) ≡ a colored graph.
Illustration in rank 3: complex tensors Tabc , a, b, c = 1...N, with distinguished indices

Counting 3-regular 3-edged colored graphs is counting permutation triples

(σ1, σ2, σ3) ∈ (Sn × Sn × Sn) up to the equivalence

(σ1, σ2, σ3) ∼ ( γ1σ1γ2, γ1 σ2γ2, γ1σ3γ2 ) , γi ∈ Sn . (2)
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Introduction: colored graphs and ribbon graphs

[BG, Ramgoolam, ‘14]
• Gauge-fixed version of the same counting

(σ1, σ2) ∼ (γσ1γ
−1, γσ2γ

−1) (3)

• Counting bi-partite ribbon graphs with n edges and at most n white and n black
vertices (shortly called “bi-partite ribbon graphs with n edges”).

• Construction of the ribbon graph:
- cycles of s1 define vertices of the black type; draw the labels in the cyclic order they
appear in their cycle, and all with a given and unique orientation;
- cycles of s2 define vertices of white type; draw the labels in the cyclic order they appear
in their cycle, and all with the same orientation as above;
- the edges are labelled from 1...n and connect the labels
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Illustrations: n = 2
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Figure: Bipartite ribbon graphs with n = 2 edges
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Illustrations: n = 3
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Figure: Bipartite ribbon graphs with n = 3 edges
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Introduction: Counting orbits

[BG, Ramgoolam, ‘14]
• Counting cosets (Sn × Sn)/Diag(Sn) .
• Burnside’s lemma

|G/H| =
1

|H|
∑
h∈H

∑
g∈G

δ(hgh−1g−1) (4)

• Number of bi-partite ribbon graphs with n edges

Z(n) =
1

n!

∑
σ1,σ2∈Sn

∑
γ∈Sn

δ(γσ1γ
−1σ−1

1 )δ(γσ2γ
−1σ−1

2 ) (5)

→Programming in Gap, and Mathematica [OEIS: A110143 (isomorphism of graph
coverings)] Illustration at rank d = 3

1; 4; 11; 43; 161; 901; 5579; 43206; 378360; 3742738, ... (6)

→All the above generalizes at any rank d .
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Introduction: Revisiting the counting

Revisiting the counting under a different light,
that of representation theory of the symmetric group.
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Basics of representation of the symmetric group

• Irreps of symmetric group Sn are labelled by Young diagrams or R ` n partition of n.

n = 7, R = (1, 2, 4) = (7)

• DR
ij (σ) = 〈R, j |σ|R, i〉 the real matrix representation of σ in the irrep R ` n (dimension

d(R))

Orthogonality :
∑
σ∈Sn

DR
ij (σ)DS

kl(σ) =
n!

d(R)
δRS δikδjl ;

Clebsch−Gordan :
∑
σ∈Sn

DR1
i1j1

(σ)DR2
i2j2

(σ)DR3
i3j3

(σ) =
n!

d(R3)

∑
τ

CR1,R2;R3,τ
i1,i2;i3

CR1,R2;R3,τ
j1,j2;j3

τ ∈ [[1,C(R1,R2,R3)]]

• Expansion of the delta

δ(σ) =
∑
R

d(R)

n!
χR(σ) , d(R) =

n!

h(R)
, h(R) =

∏
i,j

hook− Lengthi,j∑
σ∈Sn

χR(σ)χS(σ) = n! δRS ; (8)
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Introduction: Revisiting the counting

[BG, Ramgoolam, ‘17]
• A small calculation

Z(n) =
1

n!

∑
σi∈Sn

∑
γ1,γ2∈Sn

δ(γ1σ1γ
−1
2 σ−1

1 )δ(γ1σ2γ
−1
2 σ−1

2 )δ(γ1σ3γ
−1
2 σ−1

3 )

=
1

(n!)2

∑
γi∈Sn

∑
Ri`n

χR1 (γ1)χR1 (γ2)χR2 (γ1)χR2 (γ2)χR3 (γ1)χR3 (γ2)

=
∑

R1,R2,R3`n

(C(R1,R2,R3))2 (9)

where the symbol

C(R1,R2,R3) =
1

n!

∑
σ∈Sn

χR1 (σ)χR2 (σ)χR3 (σ) (10)

is the Kronecker coefficient.
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The Kronecker coefficient C(R1,R2,R3) = 1
n!

∑
σ∈Sn χ

R1 (σ)χR2 (σ)χR3 (σ)

• Counts
→ multiplicity of the one-dimensional (trivial) representation in the tensor product
R1 ⊗ R2 ⊗ R3.

→Find a combinatorial rule to characterize them in general (Murnaghan ‘38, Stanley ‘99)
→ Ikenmeyer, Burgisser, Walter, Pak, Panova.... : C not like the Littlewood-Richardson
coefficients;
→ Littlewood-Richardson (LR) coefficients:
- a combinatorial interpretation in terms of fillings of skew tableaux, or filling of the hive
model in relationship with Knutson and Tao saturation conjecture (see [King, Tollu,
Toumazet ‘06]);
→Combinatorial interpretation and scaling limits of C: focus in the ordinary fashion of
fillings tableaux, using other numbers (Kostka, LR) the interpretation is known, or
reduced YD (3 hooks, 2 hooks and 1 rectangle, 3 rectangles...).

Proposition (Combinatorial interpretation of the sum of C 2)

∑
R1,R2,R3`n

(C(R1,R2,R3))2 = # bi-partite ribbon graphs with n edges

= # 3-regular 3-edge colored bi-partite graphs with 2n − vertices (11)
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Giving a sense to
∑

R1,R2,R3`n(C(R1,R2,R3))2

from the representation theoretic base of an algebra.
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K(n), the graph algebra

• Group algebra C(Sn), i.e. an element of which writes a =
∑
σ∈Sn λσσ, λσ ∈ C

• Back to coset formulation: Consider the orbits

(σ1, σ2) ∼ (γσ1γ
−1, γσ2γ

−1) (12)

• Define K(n) ⊂ C(Sn)⊗2 is the vector space over C

K(n) = SpanC

{ ∑
γ∈Sn

γσ1γ
−1 ⊗ γσ2γ

−1, σ1, σ2,∈ Sn

}
(13)

→Fact 1: dimCK(n) = Z(n).
→Fact 2: a ribbon graph r is 1-1 with an orbit Orb(r) and is 1-1 with a base vector Er

of K(n).
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K(n), the graph algebra

• Take a base element of K(n)

Aσ1,σ2 =
∑
γ∈Sn

γσ1γ
−1 ⊗ γσ2γ

−1 (14)

• Associative multiplication

Aσ1,σ2 Aσ3,σ4 = coeff .
∑
τ∈Sn

Aσ1τσ3τ−1, σ2τσ4τ−1 (15)

• There is a pairing

δ2(⊗2
i=1σi ;⊗2

i=1σ
′
i ) =

2∏
i=1

δ(σiσ
′−1
i ) (16)

that extends by linearity to K(n) and that is non-degenerate.

Theorem (BG, Ramgoolam ‘17)

K(n) is an associative unital semi-simple algebra. There is a Fourier representation
theoretic base {QR1,R2,R3

a,b }, Ri ` n, a, b ∈ [[1,C(R1,R2,R3)]] that makes the
Wedderburn-Artin decomposition manifest.

→Fact 3: By the Wedderburn-Artin theorem K(n) decomposes as a direct sum of matrix
sub-algebras.
→Fact 4: The base {QR1,R2,R3

a,b } decomposes K(n) in direct blocks.
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Summary

→Bi-partite ribbon graphs with n edges (and ....) are in 1-1 corresp. with the orbits of
Sn × Sn on which Sn acts by conjugation.

→Rib(n) ⊂ Sn×Sn is the set of orbits representing bi-partite ribbon graphs with n edges.

→We construct the subspace K(n) ⊂ C(Sn)⊗2 with base vectors that are in 1-1 corresp.
with elements of Rib(n). We call these geometric base vectors.

→K(n) is an associative unital semi-simple algebra and its Wedderburn-Artin base is
given by {QR1,R2,R3

τ1,τ2
}, where the matrix blocks are of size C(R1,R2,R3)2 for each triple of

Ri ` n.
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Goal: Forming a lattice combinatorial interpretation of the Kronecker coefficient

Step 1: Building integral operators (an integrable quantum mechanical system)

For i = 1, 2, 3, and k = 2, 3, . . . , k̃(n) ≤ n

• Show that there are operators T
(i)
k acting on K(n) such that {QR1,R2,R3

τ1,τ2
} forms an

eigenbasis of T
(i)
k with eigenvalue given by normalized characters χRi (Tk)/d(Ri ) and the

multiplicity of each eigenvalue is precisely given by C(R1,R2,R3)2. INPUT from RT.

•
χR1

(σ)

d(R1)
is combinatorial: χR1 (σ) can be computed by the Murnaghan-Nakayama rule

(see Wiki); d(R1) by the hook-length formula.

• Show that, in the geometric base of K(n), the T
(i)
k ’s have matrices M(i)

k with positive
integer coefficients.

• By product: Show that T
(i)
k are mutually commuting and Hermitian with respect to a

sesquilinear form making K(n) Hilbert space. This makes the framework as a quantum

mechanical (integrable) model where T
(i)
k are seen as Hamiltonians.
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Goal: Forming a lattice combinatorial interpretation of the Kronecker coefficient

Step 2: Getting C(R1,R2,R3)2

• Stacking the matrices, for a fixed triple R1,R2,R3, seek all ribbon graph vectors that
solve the system: 

M(1)
2 −

χR1
(T2)

d(R1)
id

...

M(1)

k̃
− χR1

(T
k̃

)

d(R1)
id

M(2)
2 −

χR2
(T2)

d(R2)
id

...

M(2)

k̃
− χR2

(T
k̃

)

d(R2)
id

M(3)
2 −

χR3
(T2)

d(R3)
id

...

M(3)

k̃
− χR3

(T
k̃

)

d(R3)
id



· v = LR1,R2,R3 · v = 0 (17)

id is the identity matrix of size Z(n)× Z(n). (This is the counting problem.)
• Use the so-called Hermite normal form (HNF) procedure to extract the dimension of
the null space of the system.
• Then, the null space is generated by integer linear combinations of basis vectors of
K(n) and forms a sub-lattice in Z|Rib(n)| of dimension C(R1,R2,R3)2. (Theorem 1)
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Goal: Forming a lattice combinatorial interpretation of the Kronecker coefficient

Step 3: Getting C(R1,R2,R3)

• Use an involution S : K(n)→ K(n), S2 = id , such that

K(n) ≡ V |Rib(n)| =
⊕

R1,R2,R3

(
V

Rib(n):R1,R2,R3
S=1 ⊕ V

Rib(n):R1,R2,R3
S=−1

)
(18)

• Show that

Dim
(

V
Rib(n):R1,R2,R3
S=−1

)
=

C(R1,R2,R3)(C(R1,R2,R3)− 1)

2

Dim
(

V
Rib(n):R1,R2,R3
S=+1

)
=

C(R1,R2,R3)(C(R1,R2,R3) + 1)

2
(19)

(counting problem) and, using the HNF algorithm, show these correspond also to the
dimensions of 2 sublattices in Z|Rib(n)| formed by integer linear combinations of vectors in
K(n).
• By choosing an injection from the smaller sub-lattice into the larger sub-lattice, we get
a constructive interpretation of C(R1,R2,R3) as the dimension of a sub-lattice of
Z|Rib(n)|. (Theorem 2)
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K(n), the graph algebra

K(n) = SpanC

{ ∑
γ∈Sn

γτ1γ
−1 ⊗ γτ2γ

−1, τ1, τ2 ∈ Sn

}
(20)

• A non-degenerate symmetric bilinear pairing δ2 : C(Sn)⊗2 × C(Sn)⊗2 → C where

δ2(⊗2
i=1σi ;⊗2

i=1σ
′
i ) =

2∏
i=1

δ(σiσ
′−1
i ) (21)

which extends to linear combinations with complex coefficients.
• K(n) is a semi-simple algebra admits a Wedderburn-Artin decomposition in matrix
blocks.
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K(n), the graph algebra

• A base of K(n): pick a ribbon graph (etc) labeled by r = 1, ..., |Rib(n)|, in Orb(r)

there is a representative (τ
(r)
1 , τ

(r)
2 ), we define the base vector

Er =
1

n!

∑
µ∈Sn

µτ
(r)
1 µ−1 ⊗ µτ (r)

2 µ−1 =
|Aut(r)|

n!

∑
a∈Orb(r)

τ
(r)
1 (a)⊗ τ (r)

2 (a)

=
1

|Orb(r)|
∑

a∈Orb(r)

τ
(r)
1 (a)⊗ τ (r)

2 (a) (22)

- Aut(τ
(r)
1 , τ

(r)
2 ) = the subgroup of Sn which leaves fixed the pair (τ

(r)
1 , τ

(r)
2 ), and

|Aut(τ
(r)
1 , τ

(r)
2 )| = |Aut(r)| .

- Orbit-stabilizer theorem: Orb(r) ≡ Sn/Aut(τ
(r)
1 , τ

(r)
2 ).

• δ2(Er ,Es) = 1
|Orb(r)|δrs . Thus {Er} is orthogonal.

Joseph Ben Geloun (LIPN, USPN) QM of ribbon graphs: a lattice interpretation of the Kronecker coeff. 25 / 53



K(n), the graph algebra

• A base of K(n): pick a ribbon graph (etc) labeled by r = 1, ..., |Rib(n)|, in Orb(r)

there is a representative (τ
(r)
1 , τ

(r)
2 ), we define the base vector

Er =
1

n!

∑
µ∈Sn

µτ
(r)
1 µ−1 ⊗ µτ (r)

2 µ−1 =
|Aut(r)|

n!

∑
a∈Orb(r)

τ
(r)
1 (a)⊗ τ (r)

2 (a)

=
1

|Orb(r)|
∑

a∈Orb(r)

τ
(r)
1 (a)⊗ τ (r)

2 (a) (22)

- Aut(τ
(r)
1 , τ

(r)
2 ) = the subgroup of Sn which leaves fixed the pair (τ

(r)
1 , τ

(r)
2 ), and

|Aut(τ
(r)
1 , τ

(r)
2 )| = |Aut(r)| .

- Orbit-stabilizer theorem: Orb(r) ≡ Sn/Aut(τ
(r)
1 , τ

(r)
2 ).

• δ2(Er ,Es) = 1
|Orb(r)|δrs . Thus {Er} is orthogonal.

Joseph Ben Geloun (LIPN, USPN) QM of ribbon graphs: a lattice interpretation of the Kronecker coeff. 25 / 53



Fourier base of K(n)

Introduce the Fourier basis of C(Sn)

QR
ij =

κR

n!

∑
σ∈Sn

DR
ij (σ)σ (23)

• Fourier base [BR, Ramgoolam, ‘17]∑
il ,jl

CR1,R2;R3,τ
i1,i2;i3

CR1,R2;R3,τ
′

j1,j2;i3︸ ︷︷ ︸
Make it legs/momentum invariant

∑
γ

ρL(γ)ρR(γ)︸ ︷︷ ︸
Make it invariant

QR1
i1j1
⊗ QR2

i2j2︸ ︷︷ ︸
Ordinary base of C(Sn)⊗2

= QR1,R2,R3
τ,τ ′ (24)

QR1,R2,R3
τ1,τ2

= κR1,R2

∑
σ1,σ2∈Sn

∑
i1,i2,i3,j1,j2

CR1,R2;R3,τ1
i1,i2;i3

CR1,R2;R3,τ2
j1,j2;i3

DR1
i1j1

(σ1)DR2
i2j2

(σ2)σ1 ⊗ σ2

κR1,R2 = d(R1)d(R2)

(n!)2 .
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The basis QR1,R2,R3
τ,τ ′

• The set {QR1,R2,R3
τ,τ ′ } forms an invariant orthogonal matrix base of K(n).

Invariance (γ ⊗ γ) · QR1,R2,R3
τ1,τ2

· (γ−1 ⊗ γ−1) = QR1,R2,R3
τ1,τ2

Multiply like matrices QR,S,T
τ1,τ2

QR′,S′,T ′

τ ′2 ,τ3
= δRR

′
δSS
′
δTT

′
δτ2τ

′
2
QR,S,T
τ1,τ3

Orthogonality δ2(QR1,R2,R3

τ1,τ
′
1

; Q
R′1,R

′
2,R
′
3

τ2,τ
′
2

) = κR1,R2 d(R3) δR1R
′
1
δR2R

′
2
δR3R

′
3
δτ1τ2δτ ′1τ ′2 .

• At fixed [R1,R2,R3], QR1,R2,R3
τ,τ ′ is a matrix with C(R1,R2,R3)2 entries.

→This is the Wedderburn-Artin basis for K(n).
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K(n) is a Hilbert space

• Inner product g on C(Sn)⊗ C(Sn), using the basis of permutation pairs and extend it
by linearity. ∀α = (α1, α2), β = (β1, β2) ∈ Sn × Sn

g(α, β) = g(α1 ⊗ α2, β1 ⊗ β2) = δ(α−1
1 β1)δ(α−1

2 β2) (25)

and that extends to a sesquilinear form on C(Sn)⊗ C(Sn) as

g(
∑
i

aiα1i ⊗ α2i ,
∑
j

bjβ1j ⊗ β2j) =
∑
i,j

āibj δ(α−1
1i β1j)δ(α−1

2i β2j) (26)

where ai , bi ∈ C.
• Involution, the conjugation S :

S(
∑
i

ciσi ) :=
∑
i

ciσ
−1
i , S(σ1 ⊗ σ2) = σ−1

1 ⊗ σ
−1
2

extends by linearity S(
∑
i

ai σ1i ⊗ σ2i ) =
∑
i

aiσ
−1
1i ⊗ σ

−1
2i (27)

S2 = id .
• Note the following relation

g(α, β) = δ2(S(α)β) . (28)
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Integrality structure in the product of K(n)

• The product of two base elements

ErEs =

|Rib(n)|∑
t=1

C t
rsEt (29)

→For notational convenience,

σ(r) = σ
(r)
1 ⊗ σ

(r)
2 , µσ(r)µ−1 = µσ

(r)
1 µ−1 ⊗ µσ(r)

2 µ−1

Er =
1

n!

∑
µ∈Sn

µσ(r)µ−1 =
1

|Orb(r)|
∑

a∈Orb(r)

σ(r)(a) (30)
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Integrality structure of K(n)

ErEs =
1

n!

1

|Orb(r)|
∑
µ∈Sn

∑
a∈Orb(r)

µσ(r)(a)σ(s)µ−1

=
1

|Orb(r)|
∑

a∈Orb(r)

1

|Orb(σ(r)(a)σ(s))|
∑

b∈Orb(σ(r)(a)σ(s))

σ(b)

=
∑
t

1

|Orb(r)|
∑

b∈Orb(t)

σ(t)(b)

|Orb(t)|
∑

a∈Orb(r)

δ(Orb(t),Orb(σ(r)(a)σ(s)))

=
∑
t

1

|Orb(r)|Et

∑
a∈Orb(r)

δ(Orb(t),Orb(σ(r)(a)σ(s))) , (31)

where δ(Orb(s),Orb(t)) = δst .
We have thus expressed the product of C t

rs in terms of 1
|Orb(r)| times the non-negative

integer ∑
a∈Orb(r)

δ(Orb(t),Orb(σ(r)(a)σ(s)))

= Number of times the multiplication of elements from orbit r
with a fixed element in orbit s to the right produces an element in orbit t

(32)

Joseph Ben Geloun (LIPN, USPN) QM of ribbon graphs: a lattice interpretation of the Kronecker coeff. 31 / 53



Hamiltonian operators T
(i)
k in the centre of K(n)

• For k ∈ N, such that 2 ≤ k ≤ n,
Ck = conjugacy class of permutations σ ∈ Sn made of a single cycle of length k and
remaining cycles of length 1.
Ex: for n = 3, k = 2, C2 = {(1, 2)(3), (2, 3)(1), (1, 3)(2)}.

• Define Tk as the sum
Tk =

∑
σ∈Ck

σ (33)

|Tk | will refer to as the number of terms.
• Tk are central element in C(Sn).

Proposition (Kemp and Ramgoolam ‘20)

For any n, there exists 2 ≤ k∗(n) ≤ n such that the set {T2, · · · ,Tk∗(n)} generates the
centre Z(C(Sn)) of C(Sn).

k∗(n) = 2 for n ∈ {2, 3, 4, 5, 7}
k∗(n) = 3 for n ∈ {6, 8, 9 · · · , 14}
k∗(n) = 4 for n ∈ {15, 16, · · · , 23, 25, 26}
k∗(n) = 5 for n ∈ {24, 27, · · · , 41}
k∗(n) = 6 for n ∈ {42, · · · , 78, 79, 81} (34)

Joseph Ben Geloun (LIPN, USPN) QM of ribbon graphs: a lattice interpretation of the Kronecker coeff. 32 / 53



Hamiltonian operators T
(i)
k in the centre of K(n)

• For k ∈ N, such that 2 ≤ k ≤ n,
Ck = conjugacy class of permutations σ ∈ Sn made of a single cycle of length k and
remaining cycles of length 1.
Ex: for n = 3, k = 2, C2 = {(1, 2)(3), (2, 3)(1), (1, 3)(2)}.

• Define Tk as the sum
Tk =

∑
σ∈Ck

σ (33)

|Tk | will refer to as the number of terms.
• Tk are central element in C(Sn).

Proposition (Kemp and Ramgoolam ‘20)

For any n, there exists 2 ≤ k∗(n) ≤ n such that the set {T2, · · · ,Tk∗(n)} generates the
centre Z(C(Sn)) of C(Sn).

k∗(n) = 2 for n ∈ {2, 3, 4, 5, 7}
k∗(n) = 3 for n ∈ {6, 8, 9 · · · , 14}
k∗(n) = 4 for n ∈ {15, 16, · · · , 23, 25, 26}
k∗(n) = 5 for n ∈ {24, 27, · · · , 41}
k∗(n) = 6 for n ∈ {42, · · · , 78, 79, 81} (34)

Joseph Ben Geloun (LIPN, USPN) QM of ribbon graphs: a lattice interpretation of the Kronecker coeff. 32 / 53



Hamiltonian operators T
(i)
k in the centre of K(n)

• For k ∈ N, such that 2 ≤ k ≤ n,
Ck = conjugacy class of permutations σ ∈ Sn made of a single cycle of length k and
remaining cycles of length 1.
Ex: for n = 3, k = 2, C2 = {(1, 2)(3), (2, 3)(1), (1, 3)(2)}.

• Define Tk as the sum
Tk =

∑
σ∈Ck

σ (33)

|Tk | will refer to as the number of terms.
• Tk are central element in C(Sn).

Proposition (Kemp and Ramgoolam ‘20)

For any n, there exists 2 ≤ k∗(n) ≤ n such that the set {T2, · · · ,Tk∗(n)} generates the
centre Z(C(Sn)) of C(Sn).

k∗(n) = 2 for n ∈ {2, 3, 4, 5, 7}
k∗(n) = 3 for n ∈ {6, 8, 9 · · · , 14}
k∗(n) = 4 for n ∈ {15, 16, · · · , 23, 25, 26}
k∗(n) = 5 for n ∈ {24, 27, · · · , 41}
k∗(n) = 6 for n ∈ {42, · · · , 78, 79, 81} (34)

Joseph Ben Geloun (LIPN, USPN) QM of ribbon graphs: a lattice interpretation of the Kronecker coeff. 32 / 53



Hamiltonian operators T
(i)
k in the centre of K(n)

• For k ∈ N, such that 2 ≤ k ≤ n,
Ck = conjugacy class of permutations σ ∈ Sn made of a single cycle of length k and
remaining cycles of length 1.
Ex: for n = 3, k = 2, C2 = {(1, 2)(3), (2, 3)(1), (1, 3)(2)}.

• Define Tk as the sum
Tk =

∑
σ∈Ck

σ (33)

|Tk | will refer to as the number of terms.
• Tk are central element in C(Sn).

Proposition (Kemp and Ramgoolam ‘20)

For any n, there exists 2 ≤ k∗(n) ≤ n such that the set {T2, · · · ,Tk∗(n)} generates the
centre Z(C(Sn)) of C(Sn).

k∗(n) = 2 for n ∈ {2, 3, 4, 5, 7}
k∗(n) = 3 for n ∈ {6, 8, 9 · · · , 14}
k∗(n) = 4 for n ∈ {15, 16, · · · , 23, 25, 26}
k∗(n) = 5 for n ∈ {24, 27, · · · , 41}
k∗(n) = 6 for n ∈ {42, · · · , 78, 79, 81} (34)

Joseph Ben Geloun (LIPN, USPN) QM of ribbon graphs: a lattice interpretation of the Kronecker coeff. 32 / 53



Hamiltonian operators T
(i)
k in the centre of K(n)

Lemma (TQ = χ̂Q)

For any n, for any 2 ≤ k∗(n) ≤ n, TkQR
ij = χR (Tk )

d(R)
QR

ij

Proof: Use the Schur lemma on
∑
σ∈Ck

DR
li (σ) = DR

li (Tk) = αδli and then determine∑
i DR

ii (Tk) = χR(Tk) = αd(R).

• At any n ≥ 2, we will define elements in C(Sn)⊗ C(Sn)

T
(1)
k = Tk ⊗ 1 =

∑
σ∈Ck

σ ⊗ 1 ,

T
(2)
k = 1⊗ Tk =

∑
σ∈Ck

1⊗ σ ,

T
(3)
k =

∑
σ∈Ck

σ ⊗ σ . (35)

• T
(i)
k cut and join vertices of ribbon graphs.
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Hamiltonian operators T
(i)
k in the centre of K(n)

Proposition

1) T
(i)
k commute with γ ⊗ γ and so are in K(n) (in fact in its centre).

2) T
(i)
k ’s act as linear operators on K(n) by left multiplication (left regular representation)

Denote their matrices T
(i)
k Es =

∑
s(M

(i)
k )tsEt .

3) The matrix elements (M(i)
k )sr are non-negative integers.

Proof:
1) is obvious from the fact that Tk is central. 2) Ok.

3) T
(i)
k ∝ Er obtained by summing over diagonal conjugations of permutations of the

form σ ⊗ 1, 1⊗ σ, σ ⊗ σ, where σ is a cyclic permutation of a subset of k numbers from
{1, 2, · · · , n}.
Each T

(i)
k corresponds to a ribbon graph, with some label r which we will call r(k, i).

The proportionality constant is given as

T
(i)
k = |Orb(r(k, i))| Er(k,i)

T
(i)
k Es = |Orb(r(k, i))| Er(k,i)Es

=
|Orb(r(k, i))|
|Orb(r(k, i))|

∑
t

Et

∑
a∈Orb(r(k,i))

δ(Orb(t),Orb(σ(r(k,i))(a)σ(s))) (36)
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Hamiltonian operators T
(i)
k in the centre of K(n)

(M(i)
k )ts = Number of times the multiplication of elements in the sum T

(i)
k

with a fixed element in orbit s to the right produces an element in orbit t.
(37)

Proposition

T
(i)
k are hermitian operators on K(n) in the inner product g

g(Es ,T
(i)
k Er ) = g(T

(i)
k Es ,Er ) . (38)

Proof: First observe that Es and T
(i)
k Er have real coeffs then

g(Es ,T
(i)
k Er ) = g(T

(i)
k Er ,Es)

g(T
(i)
k Er ,Es) = δ2(S(T

(i)
k Er )Es) = δ2(S(Es)(T

(i)
k Er )) = δ2(S(Es)S(T

(i)
k )Er ) =

δ2(S(T
(i)
k Es)Er ) = g(T

(i)
k Es ,Er ).

we use S(Tk) = Tk and S(AB) = S(B)S(A).
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Hamiltonian operators T
(i)
k in the centre of K(n)

• Quantum evolution: ∀t ∈ R

Er (t) = e−itT
(i)
k Er (39)

• Construct interesting Hamiltonians H =
∑

i,k ai,kT
(i)
k .
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Common eigenspace of operators T
(i)
k

Proposition

For all k ∈ {2, 3, · · · n}, {Ri ` n : i ∈ {1, 2, 3}}, τ1, τ2 ∈ [[1,C(R1,R2,R3)]], the Fourier

basis elements QR1,R2,R3
τ1,τ2

are eigenvectors of T
(i)
k :

T
(1)
k QR1,R2,R3

τ1,τ2
= (

∑
σ∈Ck

σ ⊗ 1)QR1,R2,R3
τ1,τ2

=
χR1 (Tk)

d(R1)
QR1,R2,R3
τ1,τ2

, (40)

T
(2)
k QR1,R2,R3

τ1,τ2
= (

∑
σ∈Ck

1⊗ σ)QR1,R2,R3
τ1,τ2

=
χR2 (Tk)

d(R2)
QR1,R2,R3
τ1,τ2

, (41)

T
(3)
k QR1,R2,R3

τ1,τ2
= (

∑
σ∈Ck

σ ⊗ σ)QR1,R2,R3
τ1,τ2

=
χR3 (Tk)

d(R3)
QR1,R2,R3
τ1,τ2

. (42)

Proof: T
(i)
k is formed by Tk and QR1,R2,R3

τ1,τ2
formed by QR

ij .
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Hamiltonian operators T
(i)
k in the centre of K(n)

Proposition

For any k̃∗ ∈ {k∗(n), k∗(n) + 1, · · · , n} the list of eigenvalues of the Hamiltonian

operators {T (1)
2 ,T

(1)
3 , · · · ,T (1)

k̃∗
; T

(2)
2 ,T

(2)
3 , · · · ,T (2)

k̃∗
; T

(3)
2 ,T

(3)
3 , · · · ,T (3)

k̃∗
} uniquely

determines the Young diagram triples (R1,R2,R3).

Proof: [Kemp, Ramgoolam ‘19]

Conclusion: the common eigenspace of operators in the list
{T (1)

2 ,T
(1)
3 , · · · ,T (1)

k̃∗
; T

(2)
2 ,T

(2)
3 , · · · ,T (2)

k̃∗
; T

(3)
2 ,T

(3)
3 , · · · ,T (3)

k̃∗
} generates the space

spanned by {QR1,R2,R3
τ1,τ2

} that is of dimension C(R1,R2,R3)2.
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Integrality, null space

• The vectors in the Fourier subspace for a triple (R1,R2,R3) solve the following matrix

equation K(n)→ K(n)×3(k̃∗−1) in the basis of ribbon graph vectors:

M(1)
2 −

χR1
(T2)

d(R1)

...

M(1)

k̃∗
− χR1

(T
k̃

)

d(R1)

M(2)
2 −

χR2
(T2)

d(R2)

...

M(2)

k̃∗
−

χR2
(T

k̃∗
)

d(R2)

M(3)
2 −

χR3
(T2)

d(R3)

...

M(3)

k̃∗
−

χR3
(T

k̃∗
)

d(R3)



· v = 0 (43)
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Integrality, null space

• The normalized characters
χRi

(T
k̃

)

d(Ri )
are known, from the Murnaghan-Nakayama

construction, to be rational numbers.

• Multiplying the rectangular matrix by an integer to clear the denominators ; integer
rectangular matrix, which we will denote as LR1,R2,R3 · v = 0.

• Null spaces of integer matrices have integer null vector bases. These can be interpreted
in terms of lattices and can be constructed using integral algorithms.

• End of Step 1.
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Outline

1 Introduction
Counting graphs, permutations, and algebras
Summary
Goals

2 Review: K(n) an algebra and Hilbert space

3 Step1: Integrality and Hamiltonians
Integrality structure in the product of K(n)

The centre of K(n) and reconnection operators T
(i)
k

Fourier subspace of a Young diagram triple as eigenspace of T
(i)
k

4 Step2: Square of Kronecker coefficients and ribbon graph sub-lattices

5 Step3: Kronecker coefficient and sub-lattices of ribbon graphs

6 Conclusion
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HNF: Null-vectors of integer matrices and lattices

• The null space of LR1,R2,R3 has dimension C(R1,R2,R3)2.

• Theory of Hermite normal forms (HNF): Null spaces of integer matrices have bases
given as integer vectors and have an interpretation in terms of sub-lattices.

Z|Rib(n)| (44)

[Refs: H. Cohen, “A Course in Computational Algebraic Number Theory,” Springer
Science & Business Media, Springer, 2000.
D. Micciancio, “Basic algorithms”, available at
http://cseweb.ucsd.edu/classes/wi10/cse206a/lec2.pdf.]

• For a fix (R1,R2,R3), let us write X = LR1,R2,R3
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HNF of an integer matrix

Let A be a matrix with integer coefficient (integer matrix for short)
• A = Uh where

→U is a unimodular, i.e. ∈ GLn(Z)
→ h is upper triangular and is unique

- any rows of zeros are located below any other row
- the leading coefficient (pivot) of a non zero row is always strictly to the right of the
leading coefficient of the row above it; moreover it is positive
- the element below the pivot are zero and elements above pivot are non negative and
strictly smaller than the pivot.

1  2   2   1  1  1
0  3   2   1  0  0
0  0   3   0  0  0
0  0   0   0  0  0

• Sequences of allowed operations (unimodular transformation):
- swop of rows
- multiply a row by -1
- add an integer multiple of a row to another row of the matrix.
• The HNF can be computed by usual softwares (Sage, Gap...).
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HNF of a integer matrix

→ Suppose that we want to solve Xv = 0, equivalently v tX t = 0.

→X t transformed to h = UX t

Note that
→A null row of h is such that ∀j ,

hij = 0 =
∑
k

Uik(X t)kj =
∑
k

XjkUik (45)

→The row vectors of U corresponding to indices i of vanishing rows of h are null vectors
of X .
Conclusion:

Dim null space of X = # null rows of h
null space of X = Span{Ui , i |hi = 0} (46)
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End of Step 2

Theorem (1)

For every triple of Young diagrams (R1,R2,R3) with n boxes, the lattice

Z|Rib(n)| (47)

of integer linear combinations of the geometric basis vectors Er of K(n) contains a
sub-lattice of dimension (C(R1,R2,R3))2 spanned by a basis of integer null vectors of the
operator LR1,R2,R3 .

→Constructive procedure: treatment of rows of XT is combinatorial.
s
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Conjugation operation S

• S satisfies S2 = id .

• Either S(Er ) = Er (self-conjugate), or distinct pairs Es 6= Et are related by
S(Es) = Et ; S(Et) = Es (conjugate pair).

• Under the conjugation action

S(QR1,R2,R3
τ1,τ2

) = QR1,R2,R3
τ2,τ1

(48)

(Proof based on the reality of the DR
ij .)

• Consider K(n) as an underlying vector space V |Rib(n)|:

V Rib(n) = V
Rib(n)
S=1 ⊕ V

Rib(n)
S=−1

= Span {E (s)
r , (E (n)

r + E (n̄)
r )} ⊕ Span{E (n)

r − E (n̄)
r } (49)

Using the Wedderburn-Artin decomposition of K(n) we also have

V Rib(n) =
⊕

R1,R2,R3

V Rib(n): R1,R2,R3 , DimV Rib(n): R1,R2,R3 = C(R1,R2,R3)2 (50)
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S(Es) = Et ; S(Et) = Es (conjugate pair).

• Under the conjugation action

S(QR1,R2,R3
τ1,τ2

) = QR1,R2,R3
τ2,τ1

(48)

(Proof based on the reality of the DR
ij .)

• Consider K(n) as an underlying vector space V |Rib(n)|:

V Rib(n) = V
Rib(n)
S=1 ⊕ V

Rib(n)
S=−1

= Span {E (s)
r , (E (n)

r + E (n̄)
r )} ⊕ Span{E (n)

r − E (n̄)
r } (49)

Using the Wedderburn-Artin decomposition of K(n) we also have

V Rib(n) =
⊕

R1,R2,R3

V Rib(n): R1,R2,R3 , DimV Rib(n): R1,R2,R3 = C(R1,R2,R3)2 (50)
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Refined counting S

• Projecting on S = +1-space

V
Rib(n): R1,R2,R3
S=1 = Span{QR1,R2,R3

τ,τ : 1 ≤ τ ≤ C(R1,R2,R3)} (51)

⊕ Span{QR1,R2,R3
τ1,τ2

+ QR1,R2,R3
τ2,τ1

: 1 ≤ τ1 < τ2 ≤ C(R1,R2,R3)}

Dim
(

V
Rib(n):R1,R2,R3
S=+1

)
=

C(R1,R2,R3)(C(R1,R2,R3) + 1)

2
(52)

• On S = −1-space

V
Rib(n): R1,R2,R3
S=−1 = Span{QR1,R2,R3

τ1,τ2
− QR1,R2,R3

τ2,τ1
: 1 ≤ τ1 < τ2 ≤ C(R1,R2,R3)}

Dim
(

V
Rib(n):R1,R2,R3
S=−1

)
=

C(R1,R2,R3)(C(R1,R2,R3)− 1)

2
(53)
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End of step 3: Projections and HNF

• Projection K(n)→ V
Rib(n):R1,R2,R3
S=±1 :[

LR1,R2,R3

S ± 1

]
v = 0 (54)

• HNF construction of V
Rib(n):R1,R2,R3
S=±1 determines sub-lattices of Z|Rib(n)|.

• C(R1,R2,R3): Injection V
Rib(n):R1,R2,R3
S=−1 ↪−→ V

Rib(n):R1,R2,R3
S=+1 a constructive interpretation

of C(R1,R2,R3).

Theorem (2)

For every triple of Young diagrams (R1,R2,R3) with n boxes, there are three constructible
sub-lattices of Z|Rib(n)| of respective dimensions C(R1,R2,R3)(C(R1,R2,R3) + 1)/2,
C(R1,R2,R3)(C(R1,R2,R3)− 1)/2, and C(R1,R2,R3).

• Reminiscent of a result of Burgisser and Ikenmeyer [2008]: Kron in GapP, i.e. expresses
as a difference of two counting problems in #P.
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Conclusion

• The Kronecker coefficient = dimension of a constructible sub-lattice of ribbon graphs
in Z|Rib(n)|.

• Proof relies on integral hermitian operators with integral eigenvalues acting on a
Hilbert space and algebra of ribbon graphs (QM). The HNF algorithm offers the lattice
interpretation.

• The method can be generalized to C(R1,R2, . . . ,Rd) and even applied to the LR
coefficient (so yet another combinatorial intepretation !).

• A way of exploring quantum supremacy.

• Open problems:

1) Contact with existing literature on the combinatorial intepretation of the Kronecker for
particular cases (rectangular, hook shapes).

2) Part of our proof relied on RT: TkQR
ij = χ̂R(Tk)QR

ij .
→Provide a proof that the integer eigenvalues of Tk : C(Sn)→ C(Sn) satisfy
Murnaghan-Nakayama rule ⇒ Provide an entire combinatorial setting to caracterize the
Kronecker.
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Exploring quantum supremacy: Vanishing of the Kronecker

• Assume we prepare our ribbon graph states in the lab.
• Total Hamiltonian

H =

k∗(n)∑
k=2

3∑
i=1

ai,k T
(i)
k (55)

where ai,k are integer coefficients such that H have eignevalues

ωR1,R2,R3 =
∑
i,k

ai,k
χRi (Tk)

d(Ri )
(56)

that distinguish all triples of R1,R2,R3.
• Time evolved ribbon graph state

Er (t) = e−iHtEr

QR1,R2,R3
τ1,τ2

→ e−iHtQR1,R2,R3
τ1,τ2

≡ QR1,R2,R3
τ1,τ2

(t) = e−it
∑

k,i ai,k χ̂Ri
(Tk )QR1,R2,R3

τ1,τ2
(57)
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Exploring quantum supremacy: Vanishing of the Kronecker

• Choose a state Ψ is to take a linear combination of T
(1)
k

Ψ =

k∗(n)∑
k=2

bkT
(1)
k such that

k∗(n)∑
k=2

bk χ̂R(Tk) 6= 0 ∀R (58)

bk can be taken, for example, to be square roots of distinct prime numbers, e.g.
{
√

2,
√

3, · · · }. No cancellations between contributions from different values of k.
• To detect if a Kronecker is vanishing

(QR1,R2,R3
τ1,τ2

,Ψ) = Θ(C(R1,R2,R3))
d(R1)d(R2)d(R3)

n!

∑
k

bk χ̂R1 (Tk) (59)

is therefore not zero for any non-zero Fourier basis state.
• Observe that the time evolved overlap

(Er (t),Ψ) (60)

as Er (t) expands in terms of Q-states, we could a priori tune bk to detect a single, could
have a component of the form

e−it
∑

k,i ai,k χ̂Ri
(Tk ) (61)

if and only if C(R1,R2,R3) is non-zero.
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