Multiple tree automata a new model of tree automata

Gwendal Collet (TU Wien), Julien David (LIPN)

Séminaire CALIN, 24 mars 2015

Outline

- 1 Introduction to automata: definitions and motivation
- 2 Description of the model: Multiple Tree Automata
- Minimization
- 4 Closure properties
- (5) Yield of a MTA: Link with language theory

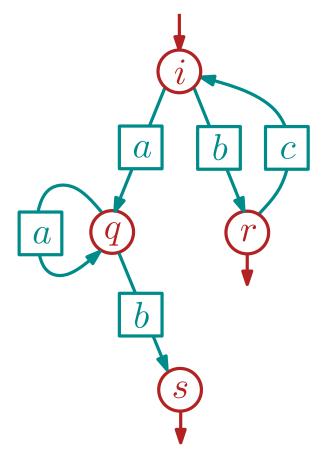
Introduction: Regular Word Automata

— Set of transitions: $\Delta \subset Q imes \Sigma imes Q$

Finite alphabet:
$$a,b,c...$$

$$\mathcal{A} = (\Sigma,Q,I,F,\delta)$$

Finite set of states: initial, final...



$$i \in I, r, s \in F$$

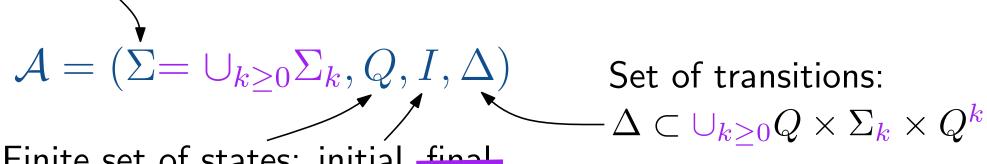
$$(i,b,r),(q,a,q),\ldots\in\Delta$$

$$\mathcal{L}_{\mathcal{A}} = (bc)^{\star} (1 + a^{+}b)$$

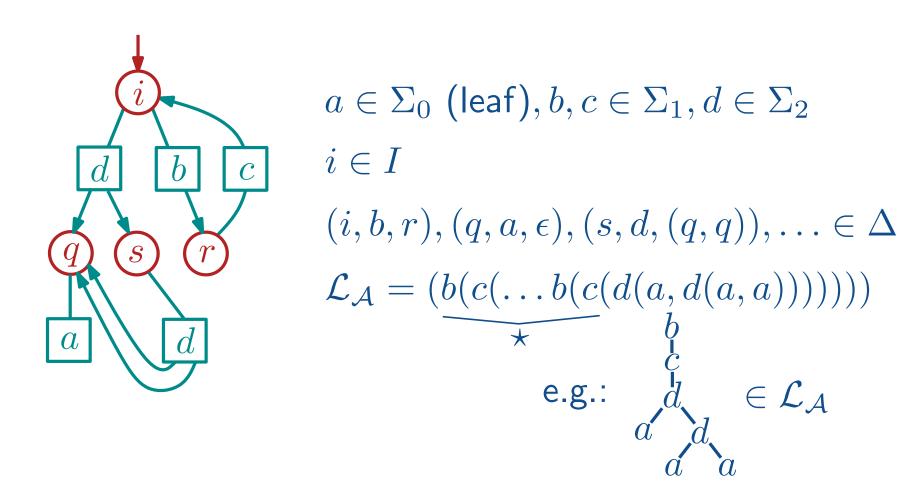
e.g.: $bcaaab \in \mathcal{L}_A$

Introduction: Regular Tree Automata

Finite ranked alphabet: a(0), b(1), c(1), d(2)...

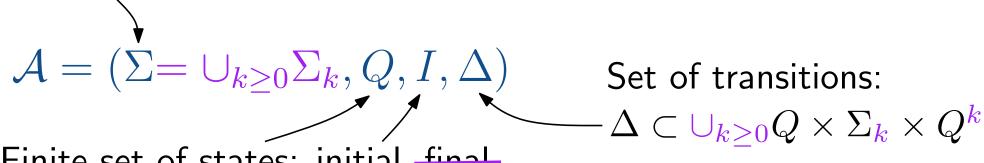


Finite set of states: initial, final...

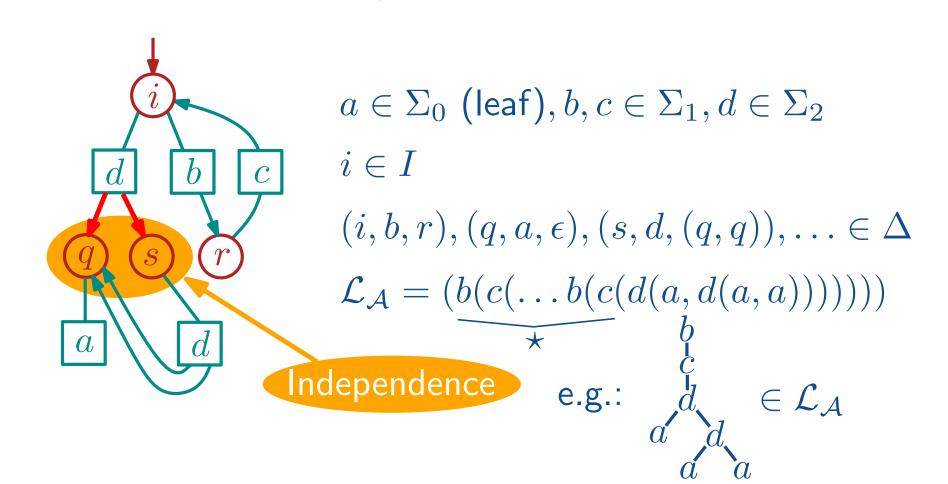


Introduction: Regular Tree Automata

Finite ranked alphabet: a(0), b(1), c(1), d(2)...

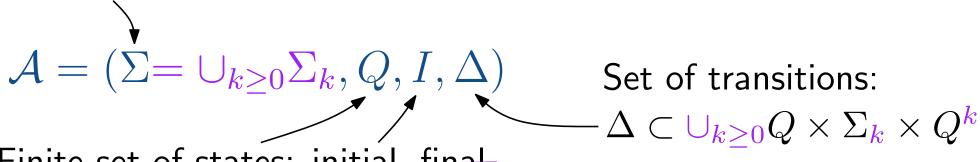


Finite set of states: initial, final...

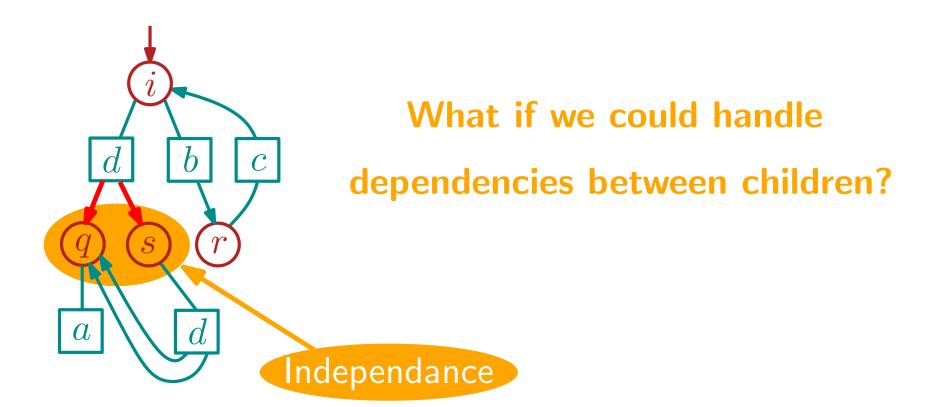


Introduction: Regular Tree Automata

Finite ranked alphabet: a(0), b(1), c(1), d(2)...



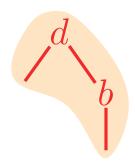
Finite set of states: initial, final...

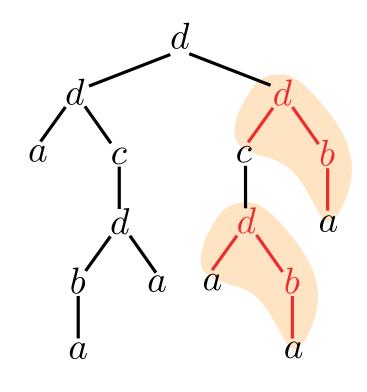


Introduction: Motivation

Random sampling of trees controlling the number of occurrences of a given pattern

Pattern



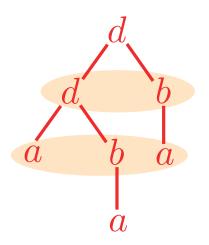


2 occurrences

Introduction: Motivation

Random sampling of trees controlling the number of occurrences of a given pattern

Pattern



When reading the tree top-down:

Dependencies between nodes at a same height

Idea (C., David, Jacquot 2014):

- Use refined tree automata which count occurrences of a given pattern → need to handle dependencies
- Translate the associated tree grammar into a system of equations on generating series
- Design a bivariate Boltzmann sampler with the GS

Finite ranked alphabet: a(0), b(1), c(1), d(2)...

$$\mathcal{A} = (\Sigma = \bigcup_{k \ge 0} \Sigma_k, Q = \bigcup_{\ell \ge 1} Q_\ell, I, \Delta)$$

Finite ranked set of states

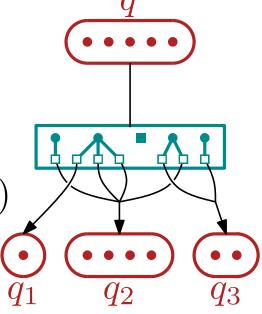
Initial states $\in Q_1$

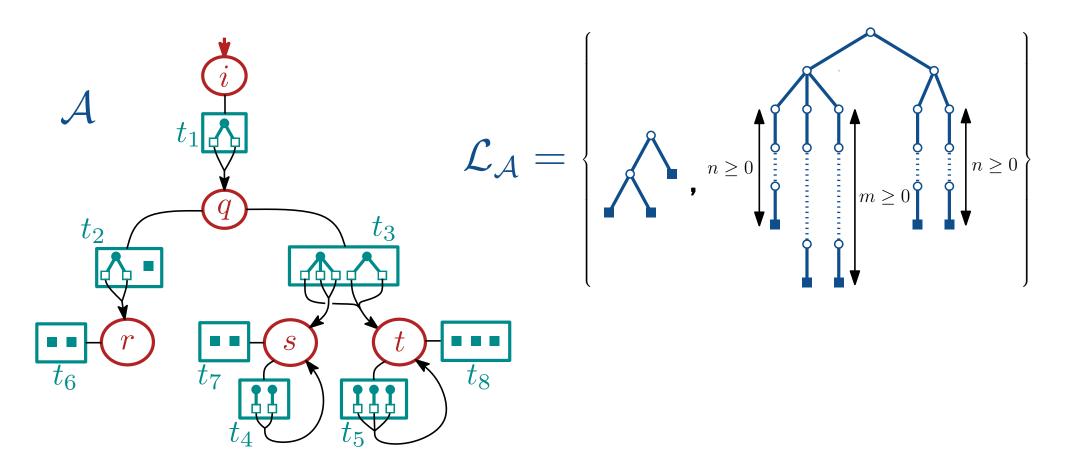
Set of transitions:
$$\Delta \subset \bigcup_{\ell \geq 1} Q_{\ell} \times \Sigma^{\ell} \times Part \times Q^{\star}$$

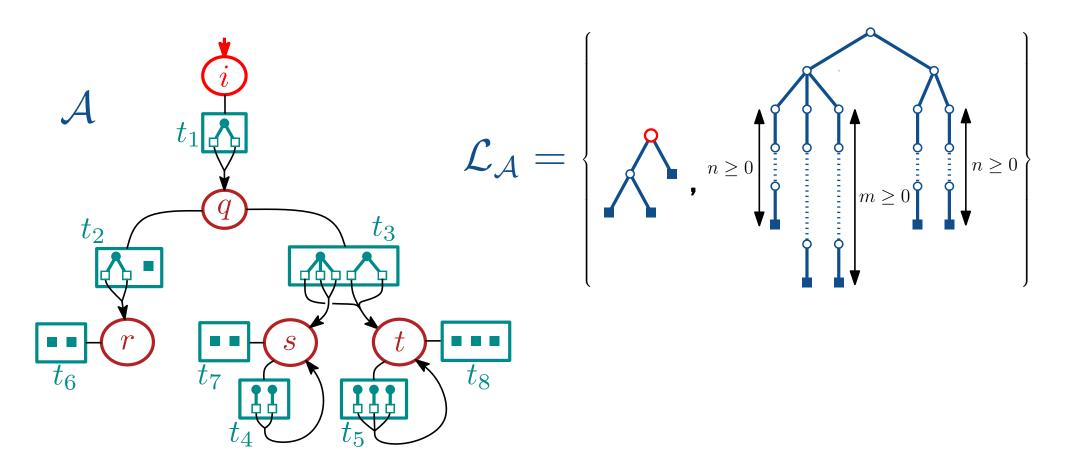
$$(q, (a_1, \ldots, a_\ell), P = (p_1, \ldots, p_r), (q_1, \ldots, q_r))$$

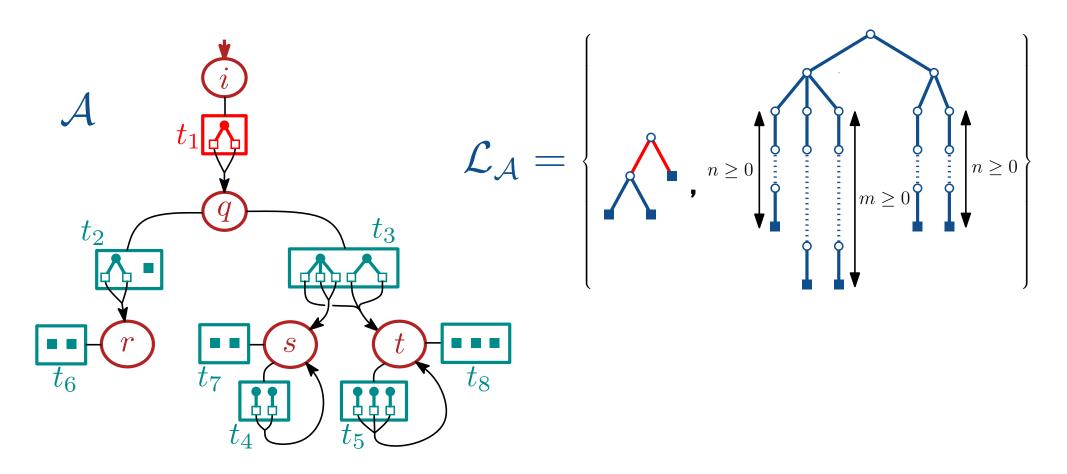
such that:
$$|P| = \sum_{i=1}^{\ell} rank(a_i)$$

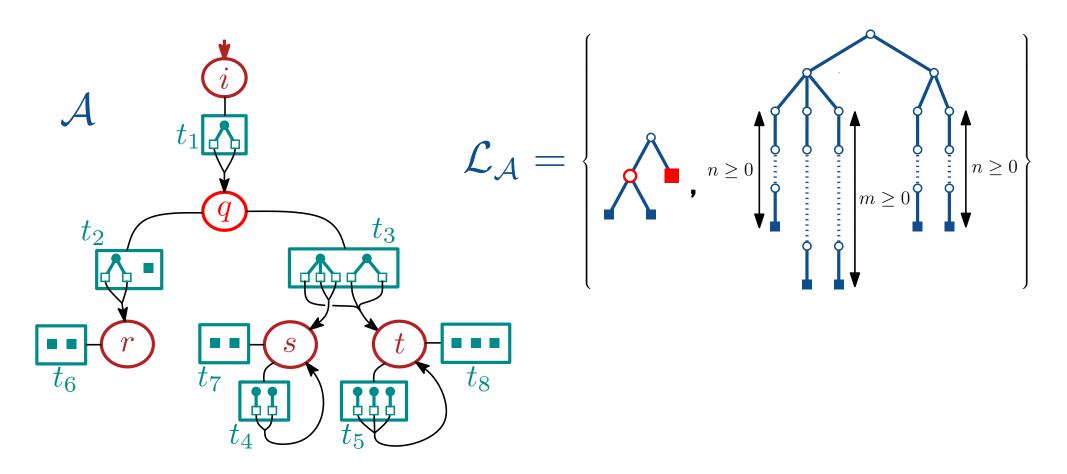
$$\forall 1 \leq j \leq r, rank(q_j) = |p_j|$$

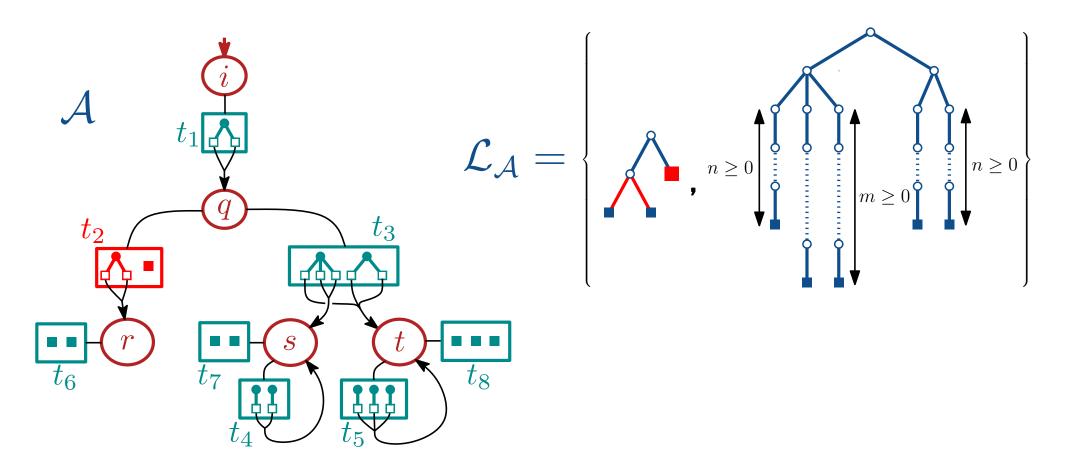


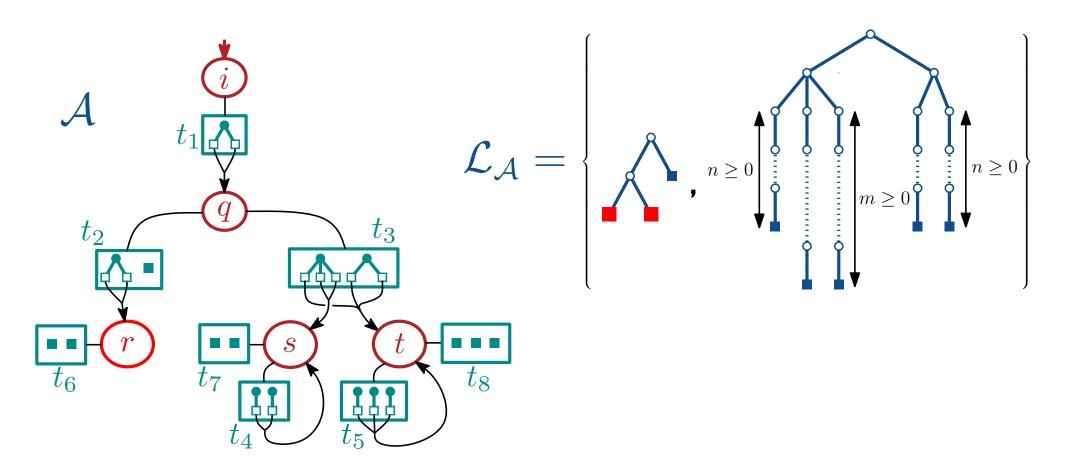


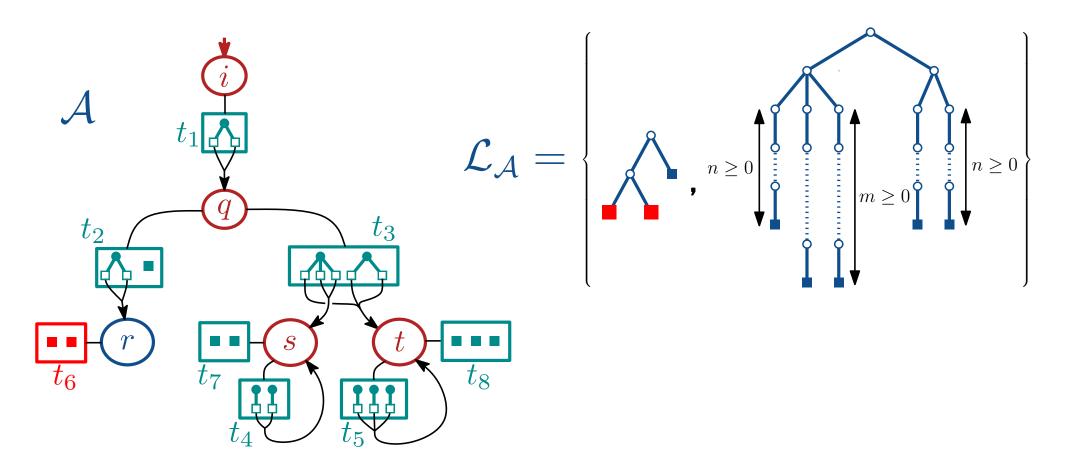


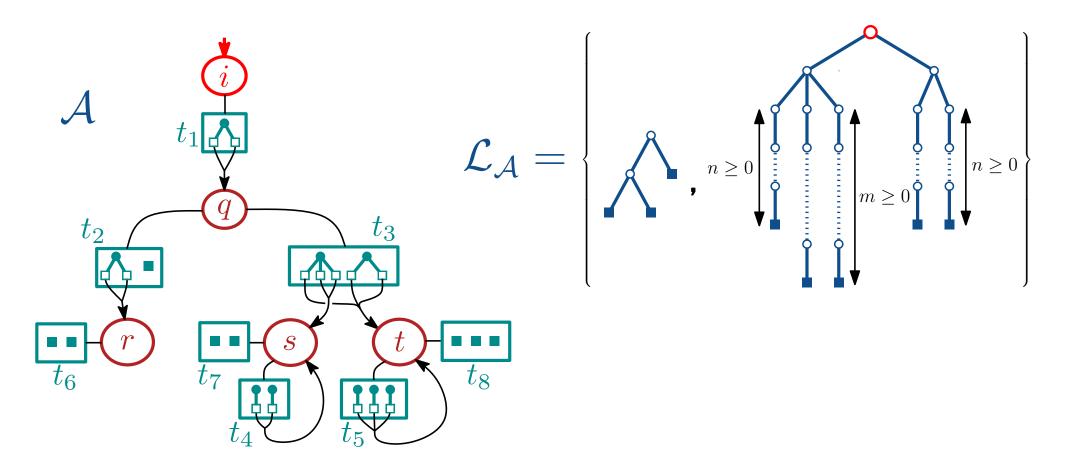


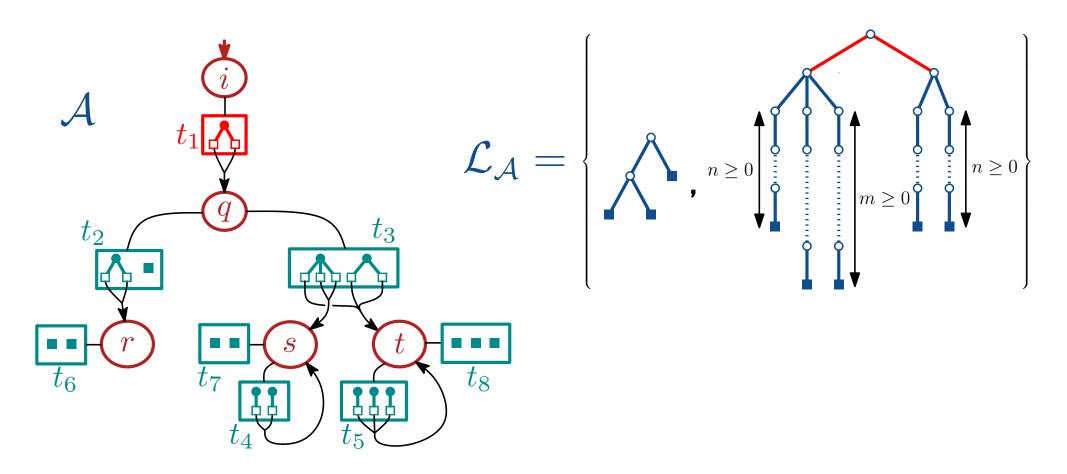


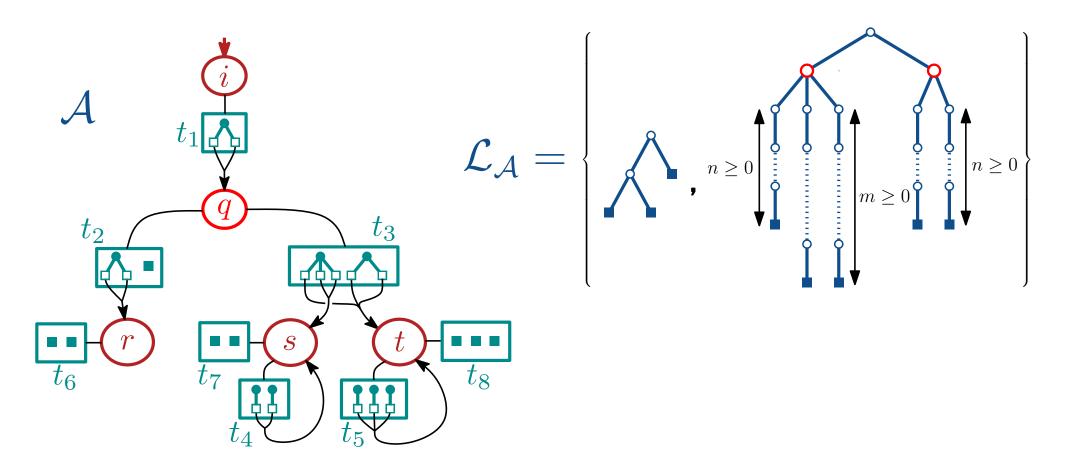


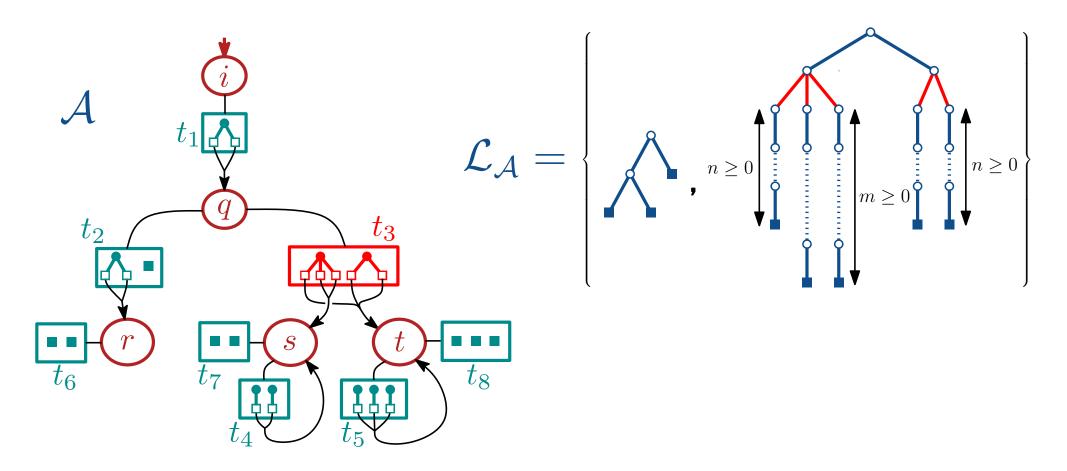


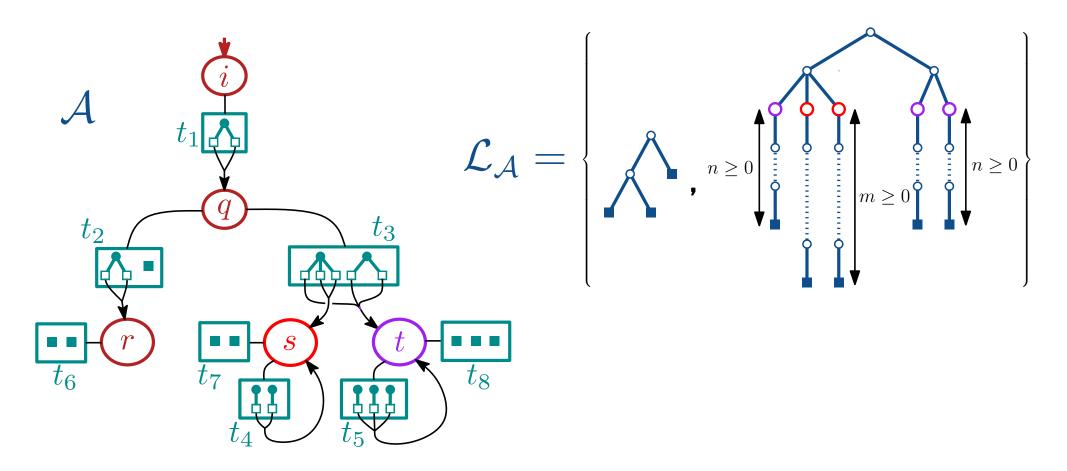


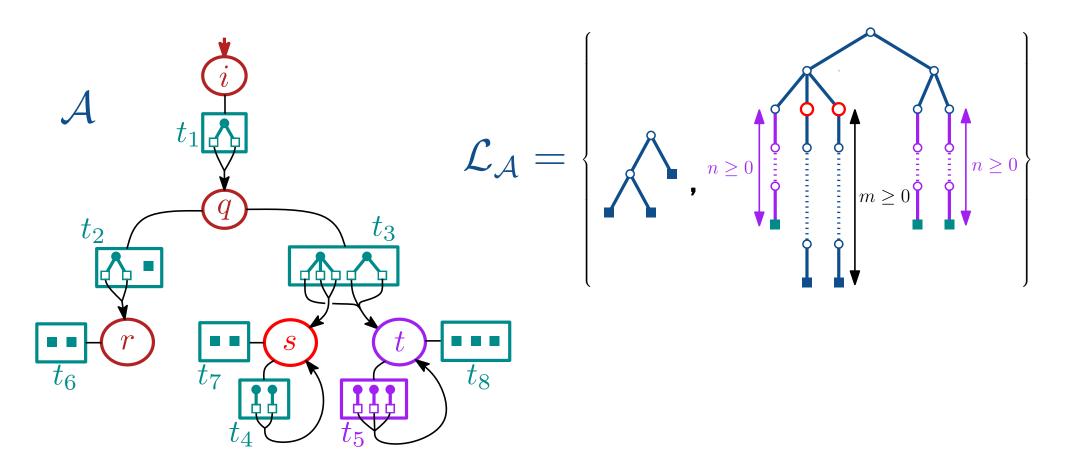


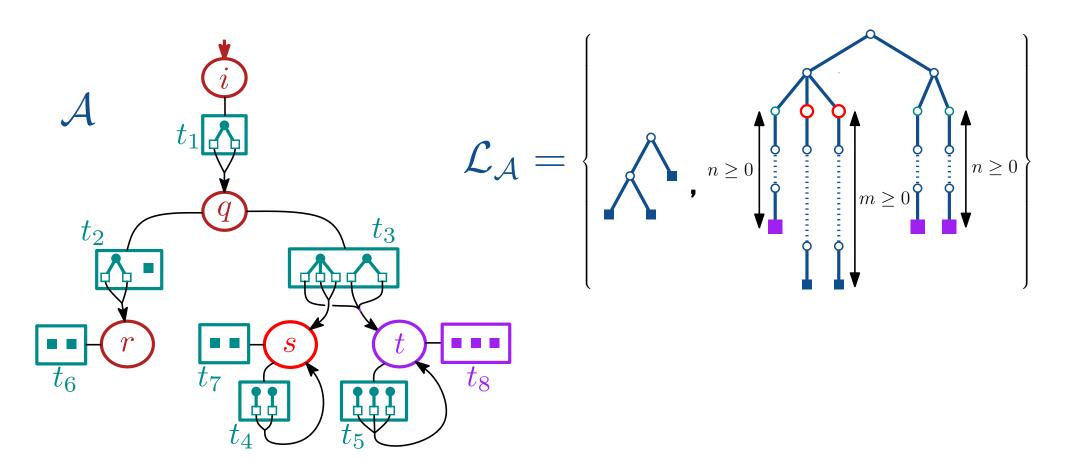


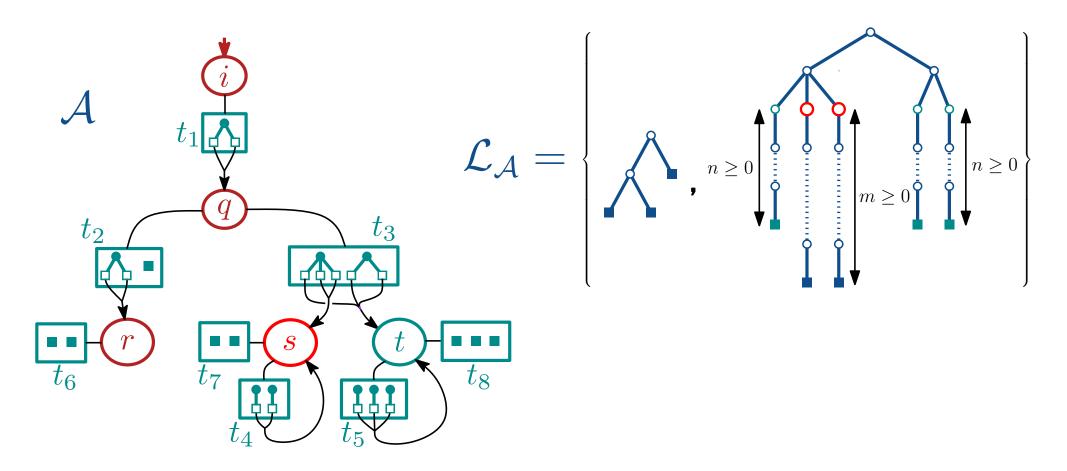


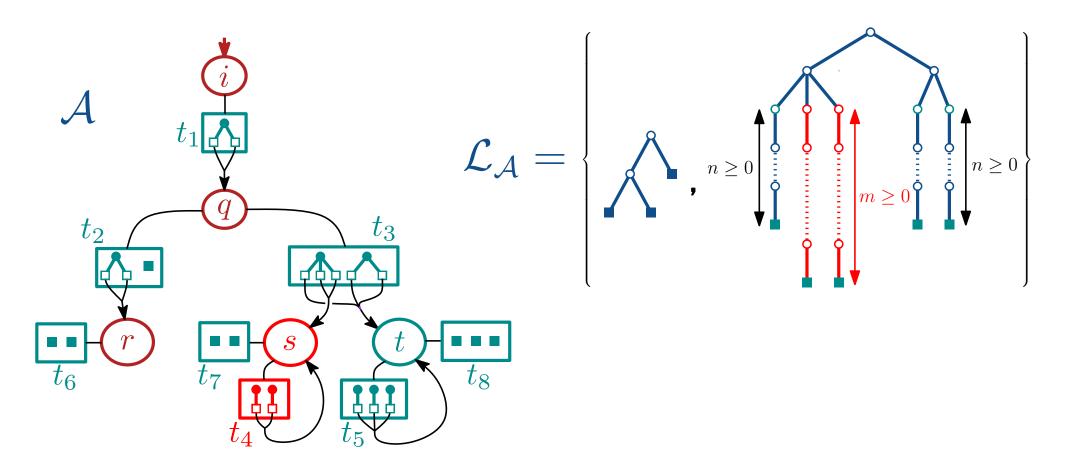


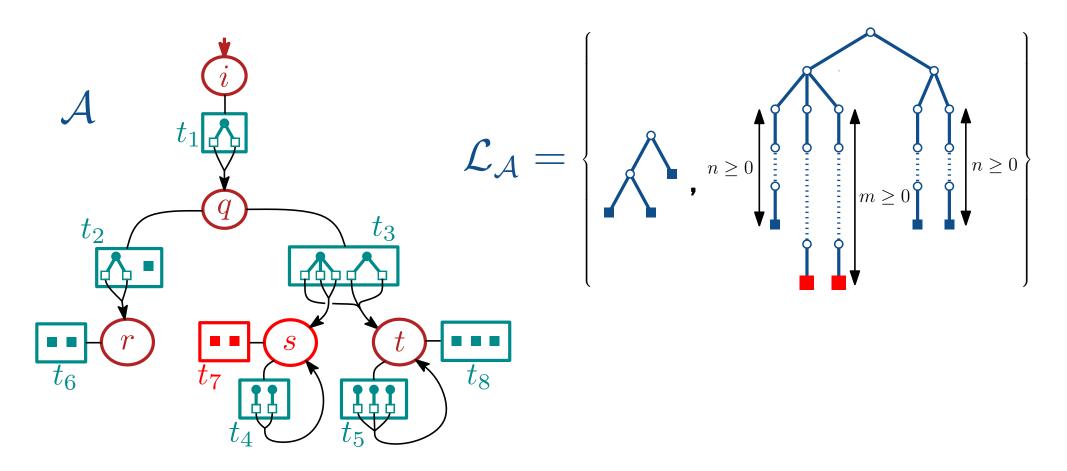


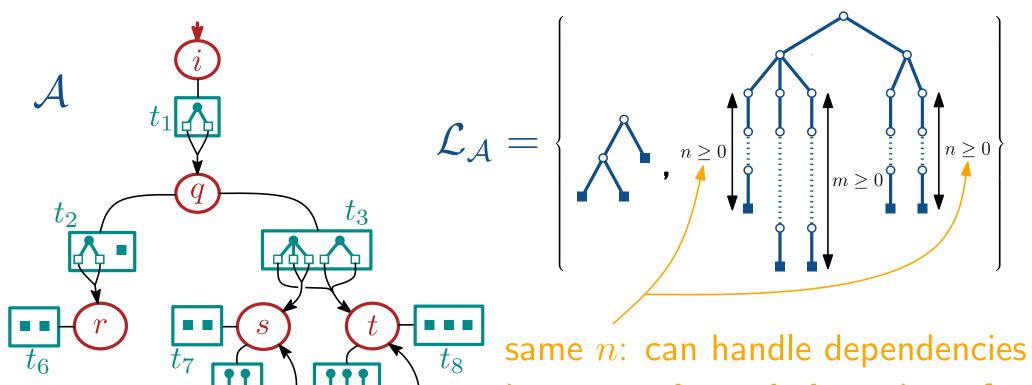




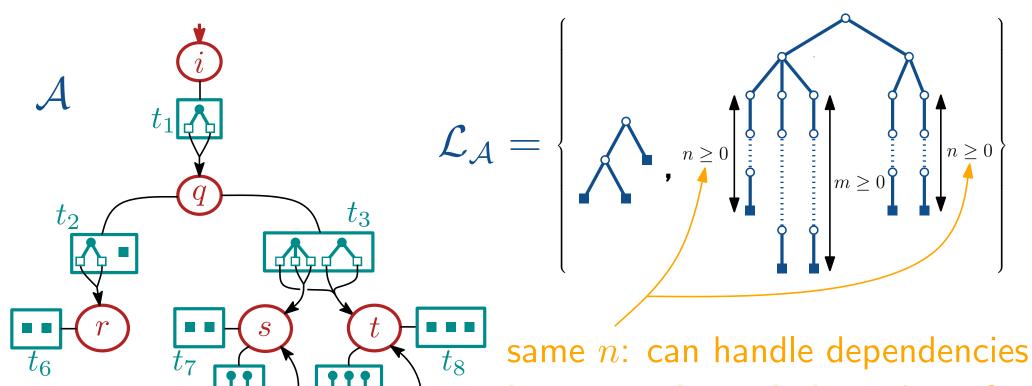








same n: can handle dependencies between a **bounded** number of nodes at the same height



same n: can handle dependencie between a **bounded** number of nodes at the same height

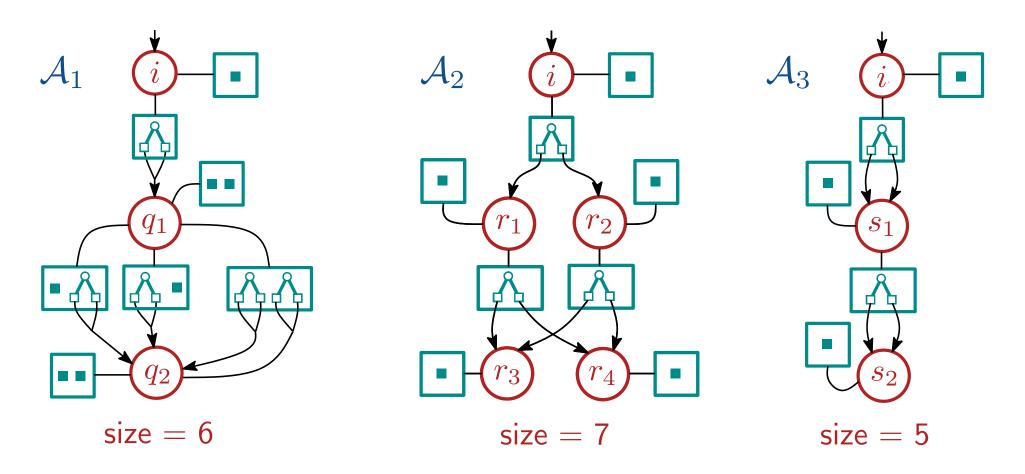
Def [Non-determinism]:

Non-deterministic MTA iff |I| > 1 or $\exists q \in Q_k, (a_1, \dots, a_k) \in \Sigma^k,$ $(q, (a_1, \dots, a_k), P, \vec{p})$ and $(q, (a_1, \dots, a_k), P', \vec{p'}) \in \Delta$

Deterministic MTA otherwise.

Minimization: size of a MTA

Minimize = Compute the smallest equivalent Deterministic MTA Size = Number of transitions \rightarrow Not enough anymore!

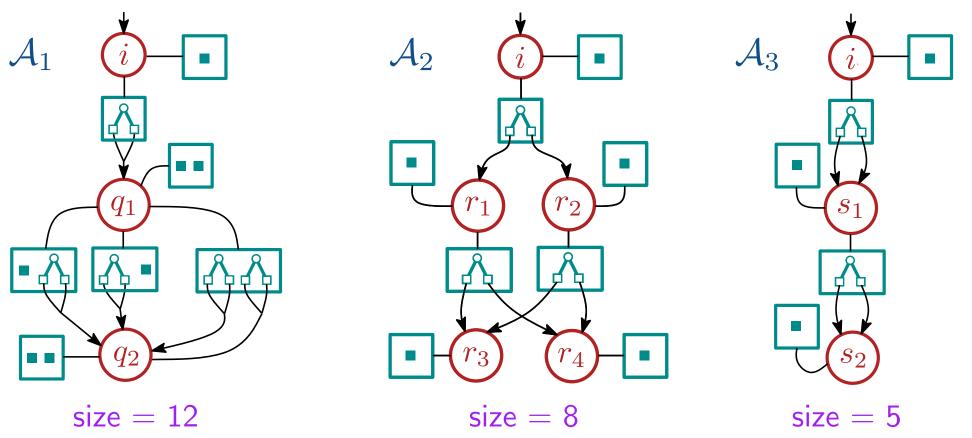


 $\mathcal{L}_{\mathcal{A}_1} = \mathcal{L}_{\mathcal{A}_2} = \mathcal{L}_{\mathcal{A}_3} = \{ \text{ Binary trees of height less than 3} \}$

Minimization: size of a MTA

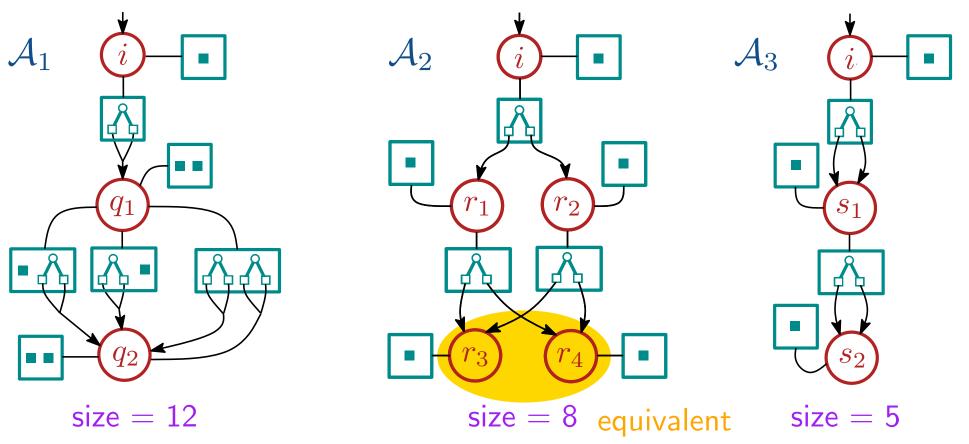
Minimize = Compute the smallest equivalent Deterministic MTA $Size = Number of transitions \rightarrow Not enough anymore!$

Size = Total length of transitions

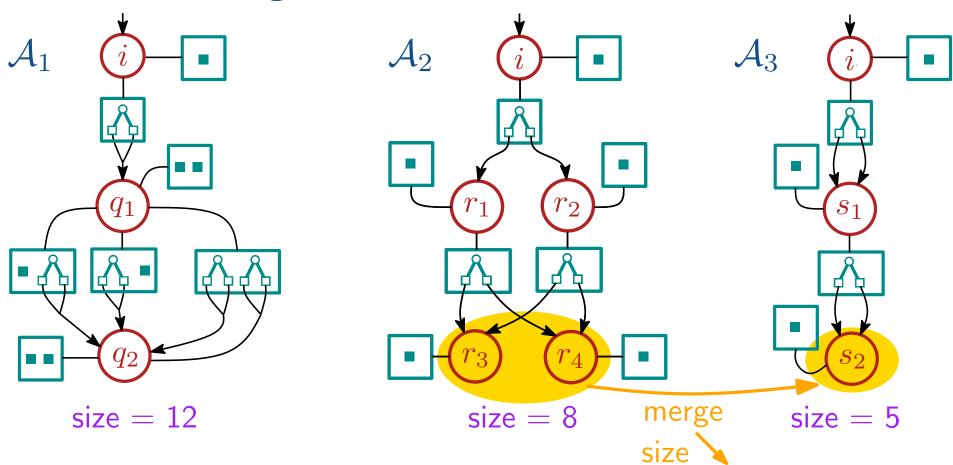


 $\mathcal{L}_{\mathcal{A}_1} = \mathcal{L}_{\mathcal{A}_2} = \mathcal{L}_{\mathcal{A}_3} = \{ \text{ Binary trees of height less than 3} \}$

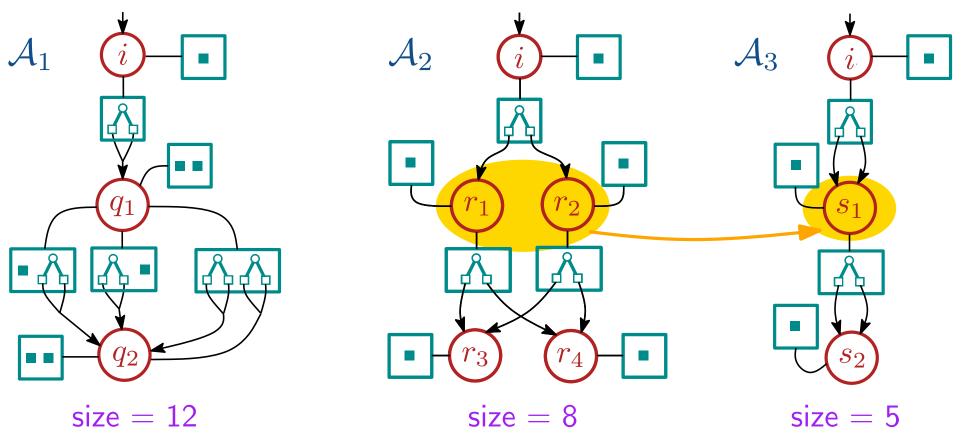
Minimize = Compute the smallest equivalent Deterministic MTA $Size = Number of transitions \rightarrow Not enough anymore!$



Minimize = Compute the smallest equivalent Deterministic MTA Size = Number of transitions → Not enough anymore!

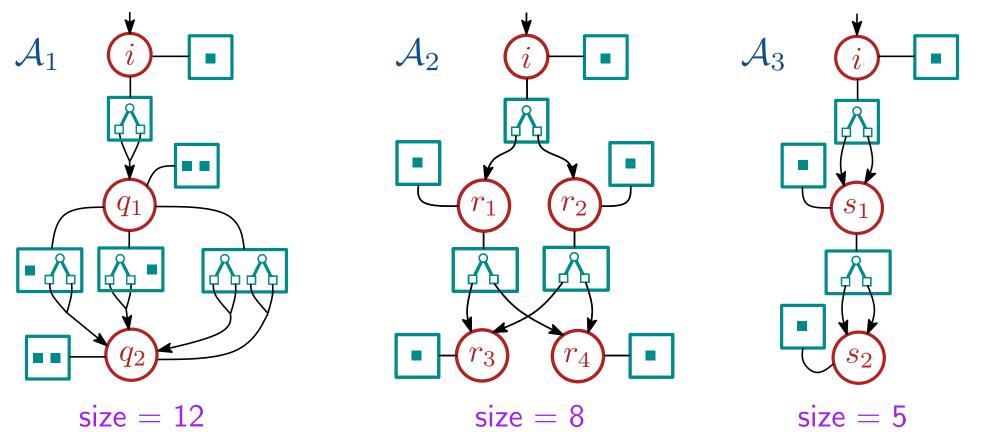


Minimize = Compute the smallest equivalent Deterministic MTA Size = Number of transitions \rightarrow Not enough anymore!



Minimize = Compute the smallest equivalent Deterministic MTA $Size = Number of transitions \rightarrow Not enough anymore!$

Size = Total length of transitions

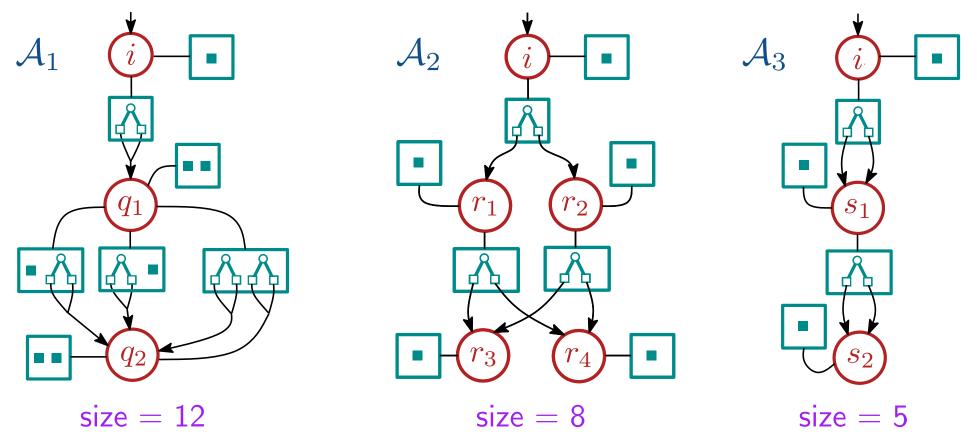


No equivalent states

Minimization: splitting

Minimize = Compute the smallest equivalent Deterministic MTA Size = Number of transitions \rightarrow Not enough anymore!

Size = Total length of transitions



No equivalent states

New operation: **splitting**

$$q \in Q_k \longrightarrow q_1 \in Q_{k_1}$$

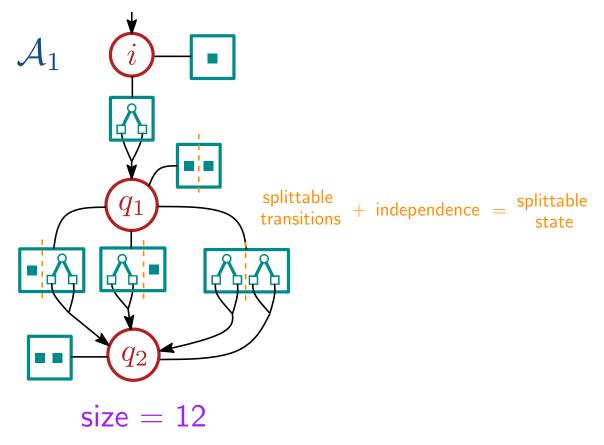
$$\vdots \qquad \sum k_i = k$$

$$q_n \in Q_{k_n}$$

Minimization: splitting

Minimize = Compute the smallest equivalent Deterministic MTA Size = Number of transitions \rightarrow Not enough anymore!

Size = Total length of transitions



No equivalent states

New operation: **splitting**

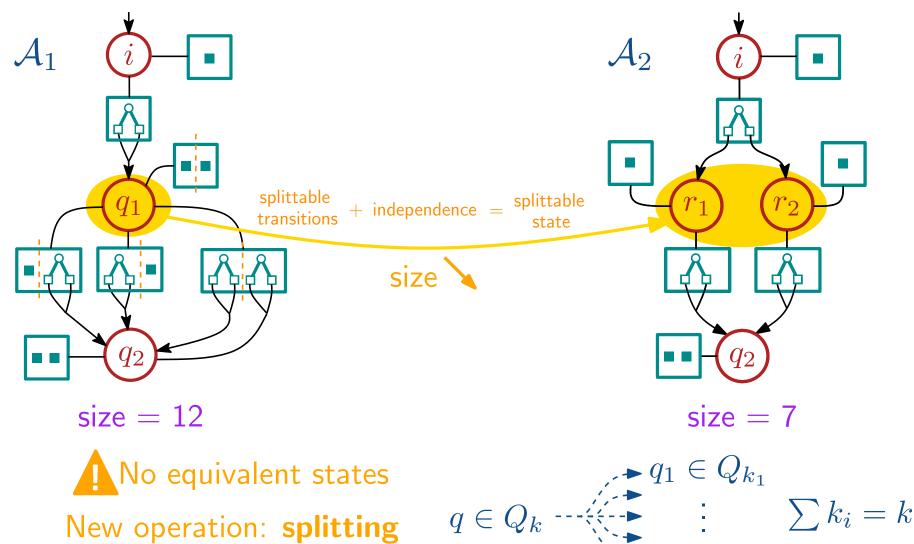
$$q \in Q_k \xrightarrow{} q_1 \in Q_{k_1}$$

$$\vdots \qquad \sum k_i = k$$

$$q_n \in Q_{k_n}$$

Minimization: splitting

Minimize = Compute the smallest equivalent Deterministic MTA $Size = Number of transitions \rightarrow Not enough anymore!$



Minimization: minimal DMTA

Minimize = Compute the smallest equivalent Deterministic MTA Size = Total length of transitions

Theorem

A MTA without equivalent or splittable states is minimal. This minimal automaton can be computed for any DMTA.

Sketch of the minimization algorithm

- Compute and merge any equivalent states.
- Compute and split any splittable states.
- Repeat until a fixpoint is reached.

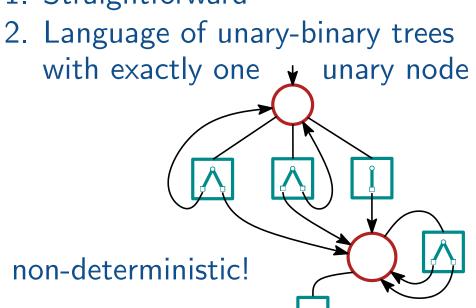
Closure properties of the tree languages

Theorem

- 1. MTA are closed under union and concatenation.
- 3. Non-deterministic MTA are strictly more powerful than deterministic ones.
- 2. MTA are not closed under complementation.

Proof:

1. Straightforward



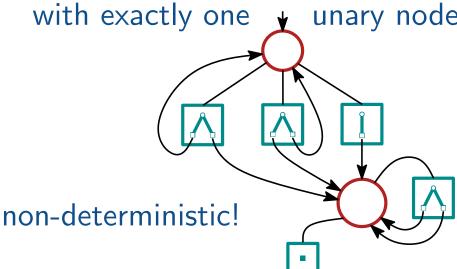
Closure properties of the tree languages

Theorem

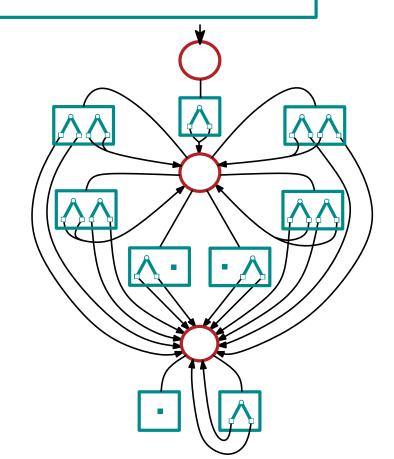
- 1. MTA are closed under union and concatenation.
- 3. Non-deterministic MTA are strictly more powerful than deterministic ones.
- 2. MTA are not closed under complementation.

Proof:

1. Straightforward



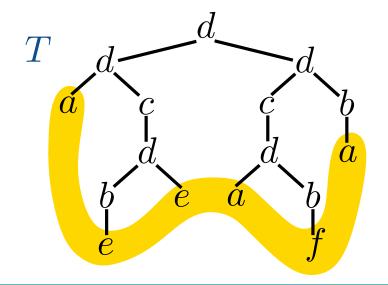
3...



Yield of a MTA

Def [Yield of an MTA A]:

Word language $Yield(\mathcal{A}) = \{border(T) : T \in \mathcal{L}_{\mathcal{A}}\}$



border(T) = aeeafa

Theorem

Yield(MTA) are equivalent to **LCFRS** languages.

Context-free ⊂ Mildly context-sensitive ⊂ Context-sensitive

Linear Context-Free Rewriting Systems

Further works

Conjecture: MTA are closed under intersection.

→ Semi-algorithm by computing joint dependences, believed to terminate eventually...

Further works

Conjecture: MTA are closed under intersection.

→ Semi-algorithm by computing joint dependences, believed to terminate eventually...

What about **Bottom-up** MTA?

- \rightarrow useful for parsing
- → more expressive in Deterministic Regular TA

Further works

Conjecture: MTA are closed under intersection.

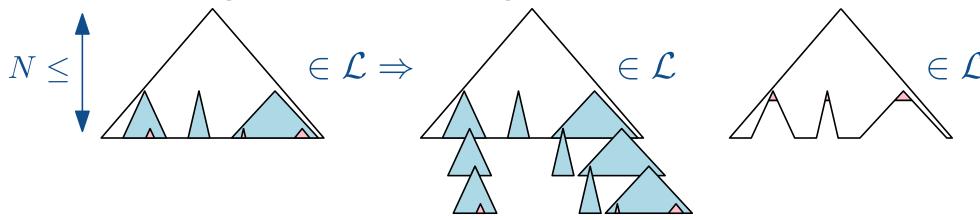
→ Semi-algorithm by computing joint dependences, believed to terminate eventually...

What about **Bottom-up** MTA?

- → useful for parsing
- → more expressive in Deterministic Regular TA

Characterize the tree languages recognized by MTA

- \rightarrow Regular TL \subset Multiple TL \subset Context-free TL
- → Pumping lemma, swapping lemma, other tools?



Thank you!