Multiple tree automata

a new model of tree automata

Gwendal Collet (TU Wien), Julien David (LIPN)

Séminaire CALIN, 24 mars 2015



@ Introduction to automata: definitions and motivation
@ Description of the model: Multiple Tree Automata
(3 Minimization

@ Closure properties

(5 Yield of a MTA: Link with language theory



Introduction: Regular Word Automata

Finite alphabet: a, b, c...
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Introduction: Regular Tree Automata

Finite ranked alphabet: a(0),b(1),c(1),d(2)...
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Introduction: Regular Tree Automata

Finite ranked alphabet: a(0),b(1),c(1),d(2)...
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Introduction: Regular Tree Automata

Finite ranked alphabet: a(0),b(1),c(1),d(2)...

Y
A= (Z: UkZOZka Q) [7 A) Set of transitions:

// ‘¥ACUICZOQXE]€XQI€

Finite set of states: initial,Hrat-..
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Introduction: Motivation

Random sampling of trees
controlling the number of occurrences of a given pattern

d
i >y
Pattern / \ / \
] a C C b
/ \b c‘l ‘ C‘L 2 occurrences
| SN LN
) |



Introduction: Motivation

Random sampling of trees
controlling the number of occurrences of a given pattern

Pattern
/d\ When reading the tree top-down:
d b

/ \b | Dependencies between nodes at a same height
a a

a

Idea (C., David, Jacquot 2014):

e Use refined tree automata which count occurrences
of a given pattern — need to handle dependencies

e [ranslate the associated tree grammar into
a system of equations on generating series

e Design a bivariate Boltzmann sampler with the GS



Multiple Tree Automata (MTA)

Finite ranked alphabet: a(0),b(1),c(1),d(2)...
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Multiple Tree Automata (MTA)
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Multiple Tree Automata (MTA)
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Def [Non-determinism]:
Non-deterministic MTA iff |[I| > 1 or 3¢ € Q, (a1,...,ax) € X,

(q,(a1,...,a;),P,p) and (q, (a1,...,ar), P, p') € A

Deterministic M TA otherwise.



Minimization: size of a MTA

Minimize = Compute the smallest equivalent Deterministic MTA
Size = Number of transitions — Not enough anymore!
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LA, =L, =L, ={ Binary trees of height less than 3}
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Minimization: state equivalence
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Minimization: state equivalence
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Minimization: splitting

I\/I|n|m|ze — Compute the smallest equivalent Deterministic MTA
= — Not enough anymore!
Size = Total length of transitions
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Minimization: splitting

I\/I|n|m|ze — Compute the smallest equivalent Deterministic MTA
= — Not enough anymore!
Size = Total length of transitions
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splittable : _ splittable
transitions + independence = state
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Minimization: splitting

I\/I|n|m|ze — Compute the smallest equivalent Deterministic MTA

— Not enough anymore!

Size = Total length of transitions
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Minimization: minimal DMTA

Minimize = Compute the smallest equivalent Deterministic MTA
Size = Total length of transitions

Theorem
A MTA without equivalent or splittable states is minimal.

This minimal automaton can be computed for any DMTA.

Sketch of the minimization algorithm

e Compute and merge any equivalent states.
e Compute and split any splittable states.
e Repeat until a fixpoint is reached.



Closure properties of the tree languages

Theorem
1. MTA are closed under union and concatenation.

3. Non-deterministic MTA are strictly more powerful
than deterministic ones.
2. MTA are not closed under complementation.

Proof:

1. Straightforward

2. Language of unary-binary trees
with exactly one unary node

non—deterministi%
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Theorem
1. MTA are closed under union and concatenation.
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Yield of a MTA

Def [Yield of an MTA A]J:
Word language Yield(A) = {border(T) : T € L 4}
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Theorem

Yield(MTA) are equivalent to LCFRS languages.

Context-free C Mildly context-sensitive C Context-sensitive

k. Linear Context-Free Rewriting Systems



Further works

Conjecture: MTA are closed under intersection.

— Semi-algorithm by computing joint dependences,
believed to terminate eventually...
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Further works

Conjecture: MTA are closed under intersection.

— Semi-algorithm by computing joint dependences,
believed to terminate eventually...

What about Bottom-up MTA?

— useful for parsing
— more expressive in Deterministic Regular TA

Characterize the tree languages recognized by MTA

— Regular TL C Multiple TL C Context-free TL
— Pumping lemma, swapping lemma, other tools?
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Thank you!



