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An extension of the algebraic Aldous diffusion

Tn : set of trees with n labelled leaves and no degree 2 vertex.

Goal : study the limit of a Markov chain on Tn, as n → +∞.

How does the chain work ?
Remove a leaf uniformly at random, reattach it with a specific rule.

Why do we expect a limit ?

The chain is parameterized by γ ∈ (1, 2] and the limit was
already shown when γ = 2.

The invariant distributions of the chains converge to the same
limit one obtains by only attaching leaves.

What about combinatorics ?

The chains converge to a limit process whose operators admit a
spectral decomposition with a simple combinatorial description.
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Plan of the talk

1. Definitions and context

1.1 Attachment rule, and the limit tree it produces.

1.2 Leaf-constant chain on Tn.

1.3 Theory of algebraic measure trees, and limit when γ = 2.

2. The limit process

2.1 Extension of the theory of algebraic measure trees.

2.2 Limit process in the case γ ∈ (1, 2].

3. Spectral decomposition

3.1 Spectrum and eigenspaces of the limit generator.

3.2 Consequences for the limit process.

3.3 (If time permits...) Sketch of proof.
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The attachment rule

Tn : set of trees with n labelled leaves and no degree 2 vertex.

Marchal’s algorithm (2008) : generates random trees (Tn)n≥2

1. Given Tn (a.s. in Tn), put weight γ − 1 on each edge of Tn and
d − 1− γ on each branch point with degree d of Tn.
2. Attach a leaf labelled n + 1 to an edge or branch point of Tn

sampled proportionally to the weights and define Tn+1 as the
newly created random tree in Tn+1.

Mn
γ : law of Tn on Tn

Special case (γ = 2) : Rémy’s algorithm (1980)
Mn

2 = uniform distribution on binary leaf-labelled trees
4 / 28



Metric trees and Gromov-Hausdorff-Prokhorov convergence

Real tree (T , d) : geodesic metric space with no subset
homeomorphic to a circle.
x , y ∈ T : segment [x , y ] is the geodesic path from x to y
x ∈ T : deg(x) = number of connected components of T\{x}

Metric tree (T , d) : metric space that can be isometrically
embedded into a real tree and contains all its branchpoints.

M : space of (probability) measured compact metric spaces (up to
measure preserving isometry).

dGHP metric on M given for X = (X , dX , µX ),Y = (Y , dY , µY ) :

dGHP(X ,Y) = inf
φX ,φY

(dHausdorff (φX (X ), φY (Y )) + dProkhorov (φX ∗µX , φY ∗µY ))

where the infimum is over metric spaces Z and isometric
injections φX : X → Z , φY : Y → Z .

dGHP makes M complete. [Abraham, Delmas, Hoscheit, 13’]
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The stable trees

Theorem (Curien & Haas, 2012)

n−
γ−1
γ T γ

n
GHP−→

n→+∞
Tγ a.s.

where Tγ is a random real tree called a γ-stable tree.

γ-stable tree : [Le Gall, Le Jan 98’ ; Duquesne, Le Gall : 02’, 05’]
Brownian tree : 2-stable tree, known since [Aldous 91’-93’].

Some properties of Tγ : [above + Haas, Pitman, Winkel 07’]

Universal limit (limit of large Galton-Watson trees).
Lebesgue dim. 1 (like all real trees) but Hausdorff dim. γ

γ−1 .
The branchpoints of Tγ are dense and countable.
The leaves of Tγ are dense and uncountable.
The mass of Tγ is diffuse and supported by the leaves.
Branch point degree is constant (2 if γ = 2, ∞ otherwise).
Sample n leaves from Tγ , induced shape has law Mn

γ .
Self-similarity (sample two leaves, the trees branching from
the path between them are independent factored stable trees)
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Illustrations (courtesy of I. Kortchemski)
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The Markov chain on Tn

X n := (X n
k )k≥0 Markov chain on Tn that moves as follows :

1. Remove a leaf uniformly at random from X n
k .

2. Reattach it following Marchal’s algorithm to obtain X n
k+1.

X n is ergodic and reversible with respect to Mn
γ .

γ = 2 : ”Aldous chain” on binary trees (cladograms). [Aldous 98’]

Mixing time of order at least n2 and at most n3.

Relaxation time of order n2. [Schweinsberg 02’]

γ < 2 : same order of mixing and relaxation [Sørensen 21’]

”Real world” motivation :
asymptotic study of phylogenetics MCMC-type algorithms.

Ωγ
n : generator of continuous-time version with total rate ∼ γn2.
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Aldous’s observation and conjecture (γ = 2)

Fix a branch point b and consider the proportions of leaves
η(b) := (η1, η2, η3) ∈ ∆3 branching from it.

Then

lim
n→+∞

Ω2
nf (η) =

3∑
i,j=1

ηi

(
δij −

1

2
ηi

)
∂ij f (η)−

3∑
i=1

(1− 3ηi )∂i f (η) (1)

(1) : generator of a Wright-Fisher diffusion with negative mutation rate.
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Aldous’s observaton and conjecture

More generally :
Take k leaves and look at the mass distribution along the edges of
the shape they induce : we obtain a similar diffusion on ∆2k−3.

Question (Aldous, 1999) : Are we observing functionals of some
limit tree diffusion (later nicknamed ”Aldous diffusion”) that is
stationary w.r.t. the law of the Brownian tree ?
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Proposed solutions

Long standing problem as the metric dynamics appears to be
difficult to track. Two teams have proposed solutions :

1. [Forman, Pal, Rizzolo, Winkel : 2010-2023]

Obtained a continuous process on real trees that has the same
properties as the conjectured one but :
The process has to be started at the invariant distribution.
Only the convergence in fdd’s is proved.
Complicated construction that required a lot of papers.

2. [Löhr, Mytnik, Winter : 2018-2023]

Decided to ”forget” the metric and consider equivalence
classes that they developed under the name of ”algebraic
measure trees”. But :
Their process can be started at any ”reasonable” tree.
Once the theory is developed, it reduces to a classical
martingale problem.

Second process referred to as the ”algebraic” Aldous diffusion.
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Algebraic measure trees [L., W. 18’]

Let T be any set and c : T 3 → T symmetric such that :
For all x , y ∈ T , c(x , x , y) = x .

For all x , y , z ∈ T , c(x , y , c(x , y , z)) = c(x , y , z).

For all x , y , z ,w ∈ T : c(x , y , z) ∈ {c(x , y ,w), c(x ,w , z), c(w , y , z)}.

(T , c) is an algebraic tree.

All metric trees (in particular real ones) are algebraic trees : take
c(x , y , z) the element of the singleton [x , y ] ∩ [x , z ] ∩ [y , z ].

Classical trees definitions (degree, segment, subtree...) can be
defined from c, and c induces a topology on T which is consistent
with the metric when (T , c) is derived from a metric tree.

Algebraic measure tree (AMT) : Triplet [T , c , µ] where (T , c)
is a separable algebraic tree and µ a distribution on (T , c).

T := set of (equivalence classes of) AMTs
T[n] := AMTs with n leaves and uniform distribution on the leaves
T̃ := AMTs with no atom outside leaves, T̃2 := binary AMTs in T̃
Tc := AMTs with diffuse measure

12 / 28
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Strategy in the case γ = 2 [L., M., W. 20’]

1. Map the chain from Tn to T[n]
2 := T[n] ∩ T̃2.

2. Define a compact ”sample shape” topology on T̃2 induced by
functions called ”shape polynomials”.

3. Prove the convergence of the generators to a limit operator Ω2
∞

acting on shape polynomials.

4. Deduce the existence of a limit process on Tc
2 := Tc ∩ T̃2

through classical martingale problem arguments [Ethier, Kurtz 09’].

The limit process is Feller, continuous, ergodic and symmetric for
the law of an ”algebraic” Brownian tree.
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the law of an ”algebraic” Brownian tree.
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What about γ < 2 ?

Aldous’s observation extends to the case γ < 2, but

Problem : the sample shape topology can be extended to T̃ but is
no longer compact (star trees admit no convergent subsequence).

Solution : define a topology that makes star trees converge.

Topology based on sampling subtrees called ”hierarchies” :
[Forman, Haulk, Pitman 18’ ; Forman 20’]

1. Take m points u := (u1, . . . , um) ∈ Tm in a tree (T , c).

2. Attach a leaf lk on each of the points uk (1 ≤ k ≤ m).

3. Define the hierarchy ŝ(T ,c)(u) induced by u in (T , c) as the
labelled tree in Tm induced by the leaves (l1, . . . , lm) in (T , c).
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Illustration of a sampled hierarchy
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Sample hierarchy topology

For m ≥ 3, t ∈ Tm and [T , c , µ] ∈ T,

Ψm,t([T , c, µ]) :=

∫
Tm

ŝ(T ,c)(u)µ
⊗m(du).

Ψm,t([T , c , µ]) : probablity of obtaining the hierarchy t ∈ Tm if we
sample m points from [T , c , µ].

Sample hierarchy topology on T : induced by (Ψm,t)m≥3,t∈Tm .

In this topology, the star trees converge to an atom of mass 1.

More generally : accumulation of mass results in creation of atoms.

Theorem

The sample hierarchy topology on T is compact.
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Convergence of the chains

Hierarchy polynomials : linear combinations Ψ of (Ψm,t)m≥3,t∈Tm ,
dense subalgebra of cont. functions on T (Stone-Weierstrass).

Theorem (Convergence of generators)

lim
n→+∞

sup
T :=[T ,c,µ]∈T[n]

|Ωγ
nΨ(T )− Ωγ

∞Ψ(T )| = 0,

where

Ωγ
∞Ψm,t(T ) :=

∫
Tm

Ωγ
m1{t}(ŝ(u))µ

⊗m(du).

Theorem (Convergence of the chains)

The chains converge in law (for the sample hierarchy topology) to
a limit process X := (Xt)t∈R+ on T with (pre)generator Ωγ

∞.

Properties in common with γ = 2 : X is continuous, Feller,
ergodic, reversible for the law Mγ of an algrebraic γ-stable tree.

Difference : X can be started at any point of T.
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Spectral decomposition of the limiting generator

Πm : hierarchy polynomials of order ≤ m (for m ≥ 3).
(= linear combinations from {Ψk,t : k ∈ J3,mK, t ∈ Tk})

Observation : for m ≥ 3, Ψm,t =
∑

t′∈Tm+1 : t↗t′

Ψm,t′ .

=⇒ Πm = Vect({Ψm,t : t ∈ Tm}).

Set λ3 := 0 and λm := m((m − 2)γ − 1) for m ≥ 4.

Vm ⊂ Πm : subspace of Πm that can be described explicitely.

Theorem (Eigendecomposition of the generator in L2(Mγ))

For m ≥ 3, −λm is an eigenvalue of Ωγ
∞ with eigenspace Vm.

Moreover, we have the orthogonal direct sum

L2(Mγ) =
⊕
m≥3

Vm,

dim(V3) = 1, and dim(Vm) =
∣∣T[m]

∣∣− ∣∣T[m−1]
∣∣ for m ≥ 4.
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Combinatorial description of the eigenspaces (Vm)m≥4

Πm : linear combinations of {Ψm,t : t ∈ Tm}
a : Tm → T[m] : canonical map (forgets labels)

Observation : for all t, t′ ∈ Tm s.t. a(t) = a(t′), Ψm,t = Ψm,t′ .

=⇒ For T ∈ T[m], define

Ψm,T =
∑

t∈a−1({T })

Ψm,t.

Ψm,T : probability of sampling the unlabelled shape T.

Proposition : The family {Ψm,T : T ∈ T[m]} is a basis for Πm.

=⇒ dim(Πm) =
∣∣T[m]

∣∣.
Vm : polynomials

∑
T∈T[m] αT Ψ

m,T such that, for all S ∈ T[m−1],∑
T∈T[m]

πγ(S, T )αT = 0,

πγ(S, T ) : probability of getting T from S with Marchal’s algorithm.

=⇒ dim(Vm) =
∣∣T[m]

∣∣− ∣∣T[m−1]
∣∣ =⇒ Πm :=

⊕m
k=3 Vm
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Illustration of the eigenspaces structure (V3 to V5)

V3 = Π3, V4 = {αBB + αCC ∈ Π4 : 3(γ − 1)αB + (2− γ)αC = 0},
V5 = subspace of αDD + αEE + αFF ∈ Π5 such that

5(γ − 1)αE + 2(2− γ)αE = 0,

4(γ − 1)αE + (3− γ)αF = 0.
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Eigenstructure of the continuous-time Markov chain

For m ≥ 3, let sm : RTm → Πm be the linear surjection given by

sm

(∑
t∈Tm

αt1{t}

)
=
∑
t∈Tm

αtΨ
m,t

Corollary : Ωγ
m has eigenvalues {−λk : k ∈ J3,mK} with respective

eigenspaces {s−1
m (Vk) : k ∈ J3,mK}.

Sketch of proof : Recall that

Ωγ
∞Ψm,t([T , c , µ]) =

∫
Tm

Ωm1{t}(ŝ(u))µ
⊗m(du).

For all f :=
∑

t∈Tm
αt1{t} ∈ RTm , λ ∈ R and [T , c , µ] ∈ T,

(Ωγ
∞ − λ)smf ([T , c, µ]) = 0 ⇐⇒

∫
Tm

(Ωγ
m − λ)f (ŝ(u))µ⊗m(ds) = 0.

By density, (Ωγ
∞ − λ)smf ≡ 0 ⇐⇒ (Ωγ

m − λ)f ≡ 0.

But (Ωγ
∞ − λ)smf ≡ 0 iff ∃k ∈ J3,mK s.t. λ = λk and smf ∈ Vk .
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m − λ)f (ŝ(u))µ⊗m(ds) = 0.

By density, (Ωγ
∞ − λ)smf ≡ 0 ⇐⇒ (Ωγ

m − λ)f ≡ 0.

But (Ωγ
∞ − λ)smf ≡ 0 iff ∃k ∈ J3,mK s.t. λ = λk and smf ∈ Vk .

21 / 28



Eigenstructure of the discrete-time Markov chain

Mγ
m : transition matrix of the discrete-time Markov chain on Tm.

Corollary : Mγ
m has eigenvalues

{
1− λk

λm
: k ∈ J3,mK

}
with

respective eigenspaces {s−1
m (Vk) : k ∈ J3,mK}.

Proof : Observe that Mγ
m = Im + 1

λm
Ωγ
m.

Consequence :

τmrel =
λm − λ4

λm
=

m((m − 2)γ − 1))

4(2γ − 1)
= Θ(m2)

τmrel : relaxation time of the discrete-time Markov chain on Tm.

The order of τmrel is consistent with [Sørensen 21’].

Open question : mixing time of order m2 ?
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Spectral decomposition of the L2 semigroup

(Pt)t≥0 : Markov semigroup of the process X (with generator Ωγ
∞)

Theorem

For t > 0, there exists φt ∈ L2(M⊗2
γ ) such that, for f ∈ L2(Mγ),

Pt f (·) =
∫
T
φt(·, T )f (T )Mγ(dT ) ∈ L2(Mγ).

In particular, Pt is self-adjoint and trace-class on L2(Mγ)
with spectrum {e−λmt : m ≥ 3} and eigenspaces {Vm : m ≥ 3}.

Corollary : For all f ∈ L2(Mγ) and t ∈ R+,

∥Pt f −Mγ(f )∥L2(Mγ)
≤ e−λ4t∥f −Mγ(f )∥L2(Mγ)

For all f : T → R continuous for the sample hierarchy topology,

supT∈T |Pt f (T )−Mγ(f )| −→
t→+∞

0.
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Conjecture : continuity of the integral kernel

Recall : (Pt)t≥0 semigroup of the limit process X , satisfying

Pt f (·) =
∫
T
φt(·, T )Mγ(dT ), ∀ f ∈ L2(Mγ).

Conjecture :

φt(·, ·) is jointly continuous in both its variables and in time.

Sufficient condition :

Find orthonormal basis (ϕm,k)k of Vm with supk ∥ϕm,k∥∞ ≪ em
2
.

Why ? φt(·, ·) =
∑
m≥3

e−λmt

dim(Vm)∑
k=1

ϕm,k(·)ϕm,k(·) ∈ L2(M⊗2
γ )

Consequences if the conjecture is true :

=⇒ Convergence in the stronger sample shape topology

=⇒ Strong Feller property

=⇒ The diffusion instantaneously enters Tc and stays within it
(”big bang” phenomenon when started from the trivial tree)
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Generator of the Markov chain

Ωγ
n : generator of the continuous-time Markov chain on Tn.

Ωγ
nf (t) :=

n∑
l=1

∑
h∈H(t∧l )

πγ
t∧l

(h)
(
f (t(l ,h))− f (t)

)
,

where

t∧l : labelled tree t with the leaf labelled l removed,

H(t∧l) : set of edges and branch points of t∧l ,

πγ
t∧l
(h) : Marchal’s weight associated to h in t∧l , i.e.

πγ
t∧l
(h) =

{
γ − 1, if h is a leaf

d − 1− γ, if h is a branch point of degree d ≥ 3

t(l ,h) : labelled tree t after the leaf l has been moved to h.

Total Marchal’s weight on a tree t with n leaves :

πγ
t (H(t)) :=

∑
h∈H(t)

πγ
t (h) = (n − 1)γ − 1.
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Derivation of the eigenvalues

Ωγ
∞ : generator of the limiting process, acting on

⋃
m≥3Πm.

Ωγ
∞Ψm,t(T ) :=

∫
Tm

Ωγ
m1{t}(t

′) ŝ∗µ
⊗m(dt′)

=

∫
Tm

m∑
l=1

∑
h∈H(t′∧l )

πγ
t′∧l
(h)
(
1{t}(t

′(l ,h))− 1{t}(t
′)
)
ŝ∗µ

⊗m(dt′)

But, t′(l ,h) = t =⇒ t∧l = t′∧l & ∃!hl ∈ H(t∧l), t
(l ,hl ) = t.

=⇒ Ωγ
∞Ψm,t =

m∑
l=1

πγ
t∧l
(hl)Ψ

m,t∧l +
∑

h∈H(t∧l )

πγ
t∧l
(h)Ψm,t


=⇒ (Ωγ

∞ +m((m − 2)γ − 1))Ψm,t =
m∑
l=1

πγ
t∧l
(hl)Ψ

m,t∧l ∈ Πm−1

=⇒ Ωγ
∞ is triangular with eigenvalues (−m((m − 2)γ − 1))m≥3.
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Derivation of the eigenspaces

Recall :

(Ωγ
∞ + λm)Ψ

m,t =
m∑
l=1

πγ
t∧l
(hl)Ψ

m−1,t∧l , Ψm,T :=
∑

t∈a−1({T })

Ψm,t

Vm : subspace of Ψ :=
∑

T∈T[m] αTΨ
m,T =

∑
t∈Tm

αa(t)Ψ
m,t s.t.

(Ωγ
∞ + λm)Ψ = 0 ⇐⇒

∑
t∈Tm

αa(t)

m∑
l=1

πγ
t∧l
(hl)Ψ

m−1,t∧l = 0

⇐⇒
∑

s∈Tm−1

Ψm−1,s
∑

t∈Tm:s↗t

π(s, t)αa(t) = 0

⇐⇒
∑

S∈T[m]

Ψm−1,S
∑

T∈T[m]:S↗T

π(S, T )αT = 0

π(s, t) (resp. π(S, T )) : probability to get from s to t (resp. S to T ).

Because (Ψm−1,S)S∈T[m−1] is linearly independent :

⇐⇒ ∀S ∈ T[m−1],
∑

T∈T[m]:S↗T

π(S, T )αT = 0
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Last slide.

Thank you for your attention.
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