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An extension of the algebraic Aldous diffusion

T @ set of trees with n labelled leaves and no degree 2 vertex.

Goal : study the limit of a Markov chain on ¥,,, as n — +o0.

How does the chain work ?
Remove a leaf uniformly at random, reattach it with a specific rule.

Why do we expect a limit?

@ The chain is parameterized by v € (1,2] and the limit was
already shown when ~ = 2.

@ The invariant distributions of the chains converge to the same
limit one obtains by only attaching leaves.

What about combinatorics ?

The chains converge to a limit process whose operators admit a
spectral decomposition with a simple combinatorial description.
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Plan of the talk

1. Definitions and context
1.1 Attachment rule, and the limit tree it produces.
1.2 Leaf-constant chain on %,,.

1.3 Theory of algebraic measure trees, and limit when v = 2.

2. The limit process
2.1 Extension of the theory of algebraic measure trees.

2.2 Limit process in the case v € (1,2].

3. Spectral decomposition

3.1 Spectrum and eigenspaces of the limit generator.
3.2 Consequences for the limit process.

3.3 (If time permits...) Sketch of proof.
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The attachment rule

T @ set of trees with n labelled leaves and no degree 2 vertex.

Marchal’s algorithm (2008) : generates random trees (T,)n>2
1. Given T, (a.s. in T,), put weight v — 1 on each edge of T, and
d — 1 — 7 on each branch point with degree d of T,,.

2. Attach a leaf labelled n+ 1 to an edge or branch point of T,
sampled proportionally to the weights and define T,;1 as the
newly created random tree in T, 1.

. 1 .
3 3 9
/ Marchal’s algorithm /
\ TN
5 G 6

4 5 4
Initial tree with 5 leaves. The blue edge is selected. The red branch point is selected.

Dﬁ,’; slaw of T, on %,

—

&)
. S—

Special case (7 =2) : Rémy'’s algorithm (1980)
N5 = uniform distribution on binary leaf-labelled trees
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Metric trees and Gromov-Hausdorff-Prokhorov convergence

Real tree (T, d) : geodesic metric space with no subset
homeomorphic to a circle.

x,y € T : segment [x, y] is the geodesic path from x to y

x € T : deg(x) = number of connected components of T\{x}

Metric tree (T, d) : metric space that can be isometrically
embedded into a real tree and contains all its branchpoints.

M : space of (probability) measured compact metric spaces (up to
measure preserving isometry).

derp metric on M given for X = (X, dx, ux),Y = (Y, dy,uy) :

derp(X,Y) = ini (dHausdorfr (9x (X), 0y (Y)) + dprokhorov (©xx 1hx s @Y 5 ty))

Px,Py
where the infimum is over metric spaces Z and isometric
injections px : X = Z, oy : Y = Z.

deyp makes M complete. [Abraham, Delmas, Hoscheit, 13']
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The stable trees

Theorem (Curien & Haas, 2012)

—a=l GHP
n v T — T, a.s.
n—+00

where T, is a random real tree called a ~y-stable tree.

~-stable tree : [Le Gall, Le Jan 98"; Duquesne, Le Gall : 02", 05']
Brownian tree : 2-stable tree, known since [Aldous 91'-93'].
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where T, is a random real tree called a ~y-stable tree.

~-stable tree : [Le Gall, Le Jan 98"; Duquesne, Le Gall : 02", 05']
Brownian tree : 2-stable tree, known since [Aldous 91'-93'].

Some properties of 7., : [above + Haas, Pitman, Winkel 07']

Universal limit (limit of large Galton-Watson trees).

Lebesgue dim. 1 (like all real trees) but Hausdorff dim. ~15.

The branchpoints of 7, are dense and countable.

The leaves of T are dense and uncountable.

The mass of 7, is diffuse and supported by the leaves.

Branch point degree is constant (2 if ¥ = 2, co otherwise).

Sample n leaves from 7, induced shape has law oMz

@ Self-similarity (sample two leaves, the trees branching from
the path between them are independent factored stable trees)
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lllustrations (courtesy of |. Kortchemski)




The Markov chain on ¥,

X" = (X])k>0 Markov chain on ¥, that moves as follows :
1. Remove a leaf uniformly at random from X
2. Reattach it following Marchal’s algorithm to obtain X[ ;.

X" is ergodic and reversible with respect to I7.
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The Markov chain on ¥,

X" = (X])k>0 Markov chain on ¥, that moves as follows :
1. Remove a leaf uniformly at random from X
2. Reattach it following Marchal’s algorithm to obtain X[ ;.

X" is ergodic and reversible with respect to I7.

~ =2 :"Aldous chain” on binary trees (cladograms). [Aldous 98’
@ Mixing time of order at least n® and at most nd.

o Relaxation time of order n?. [Schweinsberg 02']

~ < 2 : same order of mixing and relaxation [Sgrensen 21’

" Real world” motivation :
asymptotic study of phylogenetics MCMC-type algorithms.

Q) : generator of continuous-time version with total rate ~ yn?.
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Aldous's observation and conjecture (7 = 2)

Fix a branch point b and consider the proportions of leaves
n(b) := (n1,m2,m3) € Az branching from it.
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Fix a branch point b and consider the proportions of leaves
n(b) := (m,n2,m3) € Az branching from it. Then

3 3

Jim Qf(n)=>_ni <5ij - ;77;) 05f(n) = > _(1=3m)d:f(n) (1)
ij=1 i=1

(1) : generator of a Wright-Fisher diffusion with negative mutation rate.

Wright-Fisher diffusion with negative mutation rate

— Simplex Boundary
Path on the simplex
® Ermination Point
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Aldous's observaton and conjecture

More generally :
Take k leaves and look at the mass distribution along the edges of
the shape they induce : we obtain a similar diffusion on Ajyx_3.

Question (Aldous, 1999) : Are we observing functionals of some
limit tree diffusion (later nicknamed " Aldous diffusion™) that is
stationary w.r.t. the law of the Brownian tree?
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Proposed solutions

Long standing problem as the metric dynamics appears to be
difficult to track. Two teams have proposed solutions :
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Long standing problem as the metric dynamics appears to be
difficult to track. Two teams have proposed solutions :

1. [Forman, Pal, Rizzolo, Winkel : 2010-2023]
@ Obtained a continuous process on real trees that has the same
properties as the conjectured one but :
@ The process has to be started at the invariant distribution.
@ Only the convergence in fdd’s is proved.
@ Complicated construction that required a lot of papers.

2. [Lohr, Mytnik, Winter : 2018-2023]

@ Decided to "forget” the metric and consider equivalence
classes that they developed under the name of "algebraic
measure trees’. But :

@ Their process can be started at any "reasonable” tree.

@ Once the theory is developed, it reduces to a classical
martingale problem.

Second process referred to as the " algebraic” Aldous diffusion.
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Algebraic measure trees [L., W. 18']

Let T be any set and ¢ : T3 — T symmetric such that :
@ Forall x,y € T, c(x,x,y) = x.

@ Forall x,y,z€ T, c(x,y,c(x,y,2)) = c(x,y, z).

@ Forall x,y,z,w € T : c(x,y,z) € {c(x,y,w), c(x,w, z),c(w,y, z)}.

(T,c) is an algebraic tree.
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c(x,y, z) the element of the singleton [x, y] N [x,z] N[y, z].

Classical trees definitions (degree, segment, subtree...) can be
defined from ¢, and c induces a topology on T which is consistent
with the metric when (T, c) is derived from a metric tree.

Algebraic measure tree (AMT) : Triplet [T, ¢, u] where (T, ¢)
is a separable algebraic tree and p a distribution on (T, ¢).

T := set of (equivalence classes of) AMTs

Tl .= AMTs with n leaves and uniform distribution on the leaves
T := AMTs with no atom outside leaves, 'ﬁ‘g := binary AMTs in T
T := AMTs with diffuse measure
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Strategy in the case vy =2 [L., M., W. 20']

1. Map the chain from ¥, to ']I‘[zn] = Tl N 'ﬁ‘2.
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Strategy in the case v =2 [L., M., W. 20']

1. Map the chain from ¥, to ']I‘[zn] = Tl N 'ﬁ‘2.

2. Define a compact "sample shape” topology on T, induced by
functions called "shape polynomials”.

2

3. Prove the convergence of the generators to a limit operator Q5

acting on shape polynomials.

4. Deduce the existence of a limit process on TS := T° N ’]Tg
through classical martingale problem arguments [Ethier, Kurtz 09'].

The limit process is Feller, continuous, ergodic and symmetric for
the law of an "algebraic” Brownian tree.
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What about v < 27

Aldous's observation extends to the case v < 2, but

Problem : the sample shape topology can be extended to T but is
no longer compact (star trees admit no convergent subsequence).

T XK e 96 R
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What about v < 27

Aldous's observation extends to the case v < 2, but

Problem : the sample shape topology can be extended to T but is
no longer compact (star trees admit no convergent subsequence).

T XK e 96 R

Solution : define a topology that makes star trees converge.

Topology based on sampling subtrees called " hierarchies”
[Forman, Haulk, Pitman 18"; Forman 20’

1. Take m points v := (u1,...,Um) € T in a tree (T, c).
2. Attach a leaf Iy on each of the points uy (1 < k < m).

3. Define the hierarchy 5(7 .y(u) induced by v in (T,c) as the
labelled tree in T, induced by the leaves (/1,...,ln) in (T,c).

14 /28



lllustration of a sampled hierarchy

5(7.¢) (u)
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Sample hierarchy topology

Form>3,te%yand [T,c,u] €T,
W(T, ¢ ) = /T 870 ()™ (du).

WMY[T, c,p]) : probablity of obtaining the hierarchy t € T, if we
sample m points from [T, ¢, p].

Sample hierarchy topology on T : induced by (W™!);,>3 5,

In this topology, the star trees converge to an atom of mass 1.

More generally : accumulation of mass results in creation of atoms.

1
- > .

Trivial tree
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Form>3,te%yand [T,c,u] €T,
W(T, ¢ ) = /T 870 ()™ (du).

WMY[T, c,p]) : probablity of obtaining the hierarchy t € T, if we
sample m points from [T, ¢, p].

Sample hierarchy topology on T : induced by (W™!);,>3 5,

In this topology, the star trees converge to an atom of mass 1.

B S
I A RIRA
*3 * * *s * 12

More generally : accumulation of mass results in creation of atoms.

1
- > .

Trivial tree

Theorem

The sample hierarchy topology on T is compact.
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Convergence of the chains

Hierarchy polynomials : linear combinations W of (W™Y) 53 e, ,
dense subalgebra of cont. functions on T (Stone-Weierstrass).

Theorem (Convergence of generators)

lim sup QW(T) - QLV(T)| =0,
n—+00 T:=[T,c,u] €T
where

QLm(7) = [ @ E) (o).
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Hierarchy polynomials : linear combinations W of (W™Y) 53 e, ,
dense subalgebra of cont. functions on T (Stone-Weierstrass).

Theorem (Convergence of generators)

lim sup QW(T) - QLV(T)| =0,
n—+00 T:=[T,c,u] €T
where

QLm(7) = [ @ E) (o).

Theorem (Convergence of the chains)

The chains converge in law (for the sample hierarchy topology) to
a limit process X := (Xt)ter, on T with (pre)generator Q.

Properties in common with v =2 : X is continuous, Feller,
ergodic, reversible for the law M., of an algrebraic ~-stable tree.

Difference : X can be started at any point of T.
17/28



Spectral decomposition of the limiting generator

M., : hierarchy polynomials of order < m (for m > 3).
(= linear combinations from {Wkt: k € [3, m],t € Tx})

Observation : for m >3, W™ = Z ymt
t’E‘ZmH:t/‘t’

= M, = Vect({W™: t € Tp}).

Set A3 :=0 and A\, := m((m —2)y —1) for m > 4.

Vim C My, : subspace of T, that can be described explicitely.

Theorem (Eigendecomposition of the generator in L?(M.))

For m > 3, —\, is an eigenvalue of Q0 with eigenspace V,,.
Moreover, we have the orthogonal direct sum

:@Vma

m>3

dim(V3) = 1, and dim(Vin) = |TIM| — |TI™=Y| for m > 4.
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Combinatorial description of the eigenspaces (V) m>4

My, : linear combinations of {W™t:t e T}
a: T, — TIm : canonical map (forgets labels)
Observation : for all t,t' € T, s.t. a(t) = a(t), Y™t = ymt
= For 7€ TIM define
wm,‘fz Z wm,t.
tea=1({7})
w™7 : probability of sampling the unlabelled shape 7.

Proposition : The family {w™7: 7¢c TI™} is a basis for M,,.
= dim(N |T[m]‘

Vi : polynomials )~ rim asW™7 such that, for all s € TIm=1,
Z 7T»y(5, (I)Oérf: 0,
TEeTIm

(S, T) : probability of getting 7 from § with Marchal's algorithm.
— dlm ‘T[m]‘ ‘T[m*]-]‘ — I_Im = @27;3 V
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lllustration of the eigenspaces structure (V5 to Vs)
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N o<



lllustration of the eigenspaces structure (V5 to Vs)

/ \ A=B+C
Il; = F({A})
\ /

H4 = F({Ba C}

% 1
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lllustration of the eigenspaces structure (V5 to Vs)

Nﬁ**&w/ﬁ/

M

E F
\ / \ /A o
H3 F({A}) B=D+3€
F({8B,C}) + C=2+F

FUP.E, 7)) B \Y/ ¢ (Il; C ch 15)
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lllustration of the eigenspaces structure (V5 to Vs)

*f@?/%*“ } /*

5(y —1)
A=B+C
m F({A}) 22 —1) 4(y 1) B=D+32E

F({B,C}) c_iF

FUP.E, 7)) B\ / (I3 C I, C TI5)

K
T
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lllustration of the eigenspaces structure (V5 to Vs)

AN A O Ok X

--\T//<T/T/

X
5(y —1
\ / \ /A B+cC
Hs F({A}) 22 —1) 4(y 1) B=D+32E
F{HB.C}) C_eiF

H— ({DP.&,7}) B\ / (Il C 11y C II5)

Vs =3, Vo ={apB+acC cly: 3( —Dag + (2 —7)ac =0},
Vs = subspace of apD + ag€ + arF € Mg such that

5(7 — Dag +2(2 — 7)ag = 0,

4y —1)ag+ (3 —7)ar =0.
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Eigenstructure of the continuous-time Markov chain

For m > 3, let sp, : R* — I, be the linear surjection given by
oo (St ) = X awm
teTm teTm

Corollary : Q), has eigenvalues {—\, : k € [3, m]} with respective
eigenspaces {s,,}(Vk) : k € [3, m]}.
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Eigenstructure of the continuous-time Markov chain

For m > 3, let sp, : R* — I, be the linear surjection given by
oo (St ) = X awm
teTm teTm

Corollary : Q), has eigenvalues {—\, : k € [3, m]} with respective
eigenspaces {s,,}(Vk) : k € [3, m]}.

Sketch of proof : Recall that
QL (Tocl) = [l (B (do).
Forall f =3 s ailyy € R¥" A€ R and [T,c,u] €T,
(@ = Nsnf(Toco) =0 <= [ (2 = )FE()"(ds) = 0.

By density, (2% — N)spf =0 < (Q, — \)f =0.
But (% — N)smf =0 iff 3k € [3,m] s.t. A = A\ and s;uf € V4.
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Eigenstructure of the discrete-time Markov chain

M), : transition matrix of the discrete-time Markov chain on T ,.

Corollary : Mp, has eigenvalues {1 — i‘—fn : k € [3,m]} with
respective eigenspaces {s,,}(Vk) : k € [3, m]}.

Proof : Observe that M), = I,,, + ﬁQ?n.
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Eigenstructure of the discrete-time Markov chain

M), : transition matrix of the discrete-time Markov chain on T ,.

Corollary : Mp, has eigenvalues {1 — i‘—fn : k € [3,m]} with
respective eigenspaces {s,,}(Vk) : k € [3, m]}.

Proof : Observe that M), = I,,, + ﬁQ?n.

Consequence :
m o Am — Ag _ m((m — 2)7 - 1)) _ e(m2)
rel Am 4(2y — 1)
T, - relaxation time of the discrete-time Markov chain on T,.

The order of 7,7} is consistent with [Sgrensen 21'].
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Eigenstructure of the discrete-time Markov chain

M), : transition matrix of the discrete-time Markov chain on T ,.

Corollary : Mp, has eigenvalues {1 — i‘—fn : k € [3,m]} with
respective eigenspaces {s,,}(Vk) : k € [3, m]}.

Proof : Observe that M), = I,,, + ﬁQ?n.

Consequence :
m_Am—X _m((m=2)y-1)) .
Trel - )\m - 4(2,_)/ o 1) - e(m )
TM - relaxation time of the discrete-time Markov chain on %,,.

rel -

The order of 7,7} is consistent with [Sgrensen 21'].

Open question : mixing time of order m??
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Spectral decomposition of the L? semigroup

(P¢)t>0 : Markov semigroup of the process X (with generator Q%)

Theorem

For t > 0, there exists ¢; € L>(M$?) such that, for f € [2(M.,),
Pef() = [ el DATIM,(AT) € L2(M,),
T

In particular, P; is self-adjoint and trace-class on L2(./\/l7)
with spectrum {e~*mt : m > 3} and eigenspaces {V,, : m > 3}.
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Spectral decomposition of the L? semigroup

(P¢)t>0 : Markov semigroup of the process X (with generator Q%)

Theorem

For t > 0, there exists ¢; € L>(M$?) such that, for f € [2(M.,),
Pf() = [ el DADIM,(AT) € (M)
T

In particular, P is self-adjoint and trace-class on L?(M.)
with spectrum {e~*mt : m > 3} and eigenspaces {V,, : m > 3}.

Corollary : For all f € [?>(M,) and t € R,
1PeF = Mo (F)llogay < € — Mo (Ol
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Spectral decomposition of the L? semigroup

(P¢)t>0 : Markov semigroup of the process X (with generator Q%)

Theorem

For t > 0, there exists ¢; € L>(M$?) such that, for f € [2(M.,),
Pf() = [ el DADIM,(AT) € (M)
T

In particular, P is self-adjoint and trace-class on L?(M.)
with spectrum {e~*mt : m > 3} and eigenspaces {V,, : m > 3}.

Corollary : For all f € [?>(M,) and t € R,
1PeF = Mo (F)llogay < € — Mo (Ol

For all f : T — R continuous for the sample hierarchy topology,
suprer |Pef(T) — My(f)] —— 0.
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Conjecture : continuity of the integral kernel

Recall : (P:):>0 semigroup of the limit process X, satisfying
Ptf(-):/gpt(-,‘T)Mv(d‘T), VF e 12(M,).
T
Conjecture :
©¢(+, ) is jointly continuous in both its variables and in time.
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Conjecture : continuity of the integral kernel

Recall : (P:):>0 semigroup of the limit process X, satisfying
Ptf(-):/gpt(-,‘T)Mv(d‘T), VF e 12(M,).
T
Conjecture :

©¢(+, ) is jointly continuous in both its variables and in time.

Sufficient condition :
Find orthonormal basis (¢m k)« of Vi with supy [[om«ll < em.

dim(Vpn)
Why? () =Y e ™ > dmi(-)omi(-) € LP(MS?)
m>3 k=1
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Conjecture : continuity of the integral kernel

Recall : (P:):>0 semigroup of the limit process X, satisfying
Ptf(-):/gpt(-,‘T)Mv(d‘T), VF e 12(M,).
T
Conjecture :

©¢(+, ) is jointly continuous in both its variables and in time.

Sufficient condition :
Find orthonormal basis (¢m k)« of Vi with supy [[om«ll < em.

dim(Vpn)
Why? () =Y e ™ > dmi(-)omi(-) € LP(MS?)
m>3 k=1

Consequences if the conjecture is true :
— Convergence in the stronger sample shape topology
= Strong Feller property

= The diffusion instantaneously enters T¢ and stays within it

(" big bang” phenomenon when started from the trivial tree) )
24 /28



Generator of the Markov chain

Q) : generator of the continuous—time Markov chain on ¥,,.

D) =Y Y w0 (FM) - ).
I=1 heH(tn)
where

@ t,; : labelled tree t with the leaf labelled / removed,
@ H(tns) : set of edges and branch points of t,/,
o m/ (h) : Marchal's weight associated to h in t,, i.e.

(h) = —1, if his a leaf
. _
s —1—~, if his a branch point of degree d > 3

o t('") - labelled tree t after the leaf / has been moved to h.

Total Marchal’s weight on a tree t with n leaves :
m(HE) = Y m(h)=(n-1)y-1
heH(t)
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Derivation of the eigenvalues

QL : generator of the limiting process, acting on |J,,,53 Mm.

ngwm’f(fr) - / Q)1 (¢) 8,427 (dt)
T™m

/T 7 () (L (C0P) — 1)) 8.p"7(d0)

m =1 heH( t’
But, ¢UN =t — t,=¢t, & IhecHly), "=t

— Q'Oyowm,t: Z (WzA,(hl)wth + Z 7.‘.;YN(h)wm,t)

I=1 he"rl(’w)
= (QL +m((m—2)y—1))wmt = Zwt (U™ € My

=1
= QL is triangular with eigenvalues (—m((m — 2)y — 1)) m>3.
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Derivation of the eigenspaces

Recall :

m
QL+ Am) W™ =D "] (™ b g T Y g
I=1 tea1({7})

Vi : subspace of W := 3" qim agW™? =37 o aqyV™! st

(ng + )\m)\U =0 «— Z Oéa(t) ZW?A’(h/)\Um_l’t/\l =0

— Z ym-1s Z 71'(5, t)aa(t) =0
5€Tm_1 t€Tmis M

= Y v N (s Tar =0
SETIm TeTlm: s 1

(s, t) (resp. m(S, T)) : probability to get from s to t (resp. S to 7).
Because (W™~ 15) s _pim-1 is linearly independent :
= vseT™ 1 N 2(s Tar=0

[m].
TeTIm:s M 2128



Thank you for your attention.

28/28



