An extension of the algebraic Aldous diffusion: or how to make money fast

Roman Gambelin Universität Duisburg-Essen

Journée-séminaire de combinatoire Université Sorbonne Paris Nord 1 April 2025

イロト 不得 トイヨト イヨト 二日

1/28

An extension of the algebraic Aldous diffusion

Roman Gambelin Universität Duisburg-Essen

Journée-séminaire de combinatoire Université Sorbonne Paris Nord 1 April 2025

イロト 不得 トイヨト イヨト

3

1/28

An extension of the algebraic Aldous diffusion

 \mathfrak{T}_n : set of trees with *n* labelled leaves and no degree 2 vertex. **Goal**: study the limit of a Markov chain on \mathfrak{T}_n , as $n \to +\infty$.

How does the chain work?

Remove a leaf uniformly at random, reattach it with a specific rule.

Why do we expect a limit?

- The chain is parameterized by $\gamma \in (1,2]$ and the limit was already shown when $\gamma = 2$.
- The invariant distributions of the chains converge to the same limit one obtains by only attaching leaves.

What about combinatorics?

The chains converge to a limit process whose operators admit a spectral decomposition with a simple combinatorial description.

イロン イロン イヨン イヨン 三日

1. Definitions and context

- 1.1 Attachment rule, and the limit tree it produces.
- **1.2** Leaf-constant chain on \mathfrak{T}_n .
- **1.3** Theory of algebraic measure trees, and limit when $\gamma = 2$.

2. The limit process

2.1 Extension of the theory of algebraic measure trees.

2.2 Limit process in the case $\gamma \in (1, 2]$.

3. Spectral decomposition

- **3.1** Spectrum and eigenspaces of the limit generator.
- 3.2 Consequences for the limit process.
- **3.3** (If time permits...) Sketch of proof.

The attachment rule

 \mathfrak{T}_n : set of trees with *n* labelled leaves and no degree 2 vertex.

Marchal's algorithm (2008) : generates random trees $(T_n)_{n\geq 2}$ **1.** Given T_n (a.s. in \mathfrak{T}_n), put weight $\gamma - 1$ on each edge of T_n and $d - 1 - \gamma$ on each branch point with degree d of T_n .

2. Attach a leaf labelled n + 1 to an edge or branch point of T_n sampled proportionally to the weights and define T_{n+1} as the newly created random tree in \mathfrak{T}_{n+1} .

Initial tree with 5 leaves.

The blue edge is selected.

The red branch point is selected.

 \mathfrak{M}^n_γ : law of \mathcal{T}_n on \mathfrak{T}_n

Special case ($\gamma = 2$) : Rémy's algorithm (1980) $\mathfrak{M}_2^n =$ uniform distribution on binary leaf-labelled trees

Metric trees and Gromov-Hausdorff-Prokhorov convergence

Real tree (T, d) : geodesic metric space with no subset homeomorphic to a circle.

 $x, y \in T$: segment [x, y] is the geodesic path from x to y $x \in T$: deg(x) = number of connected components of $T \setminus \{x\}$

Metric tree (T, d): metric space that can be isometrically embedded into a real tree and contains all its branchpoints.

 $\mathbb M$: space of (probability) measured compact metric spaces (up to measure preserving isometry).

 d_{GHP} metric on $\mathbb M$ given for $\mathcal X=(X,d_X,\mu_X), \mathcal Y=(Y,d_Y,\mu_Y)$:

$$d_{GHP}(\mathcal{X},\mathcal{Y}) = \inf_{\varphi_X,\varphi_Y} \left(d_{Hausdorff}(\varphi_X(X),\varphi_Y(Y)) + d_{Prokhorov}(\varphi_{X*}\mu_X,\varphi_{Y*}\mu_Y) \right)$$

where the infimum is over metric spaces Z and isometric injections $\varphi_X : X \to Z$, $\varphi_Y : Y \to Z$.

 d_{GHP} makes M complete. [Abraham, Delmas, Hoscheit, 13'] =

wł

Theorem (Curien & Haas, 2012)

$$n^{-rac{\gamma-1}{\gamma}}T_n^\gamma \stackrel{GHP}{\underset{n o +\infty}{\longrightarrow}} \mathcal{T}_\gamma$$
 a.s.
nere \mathcal{T}_γ is a random real tree called a γ -stable tree.

 γ -stable tree : [Le Gall, Le Jan 98'; Duquesne, Le Gall : 02', 05'] Brownian tree : 2-stable tree, known since [Aldous 91'-93'].

v

Theorem (Curien & Haas, 2012)

$$n^{-rac{\gamma-1}{\gamma}}T_n^\gamma \stackrel{GHP}{\underset{n o +\infty}{\longrightarrow}} \mathcal{T}_\gamma$$
 a.s.
where \mathcal{T}_γ is a random real tree called a γ -stable tree.

 γ -stable tree : [Le Gall, Le Jan 98'; Duquesne, Le Gall : 02', 05'] Brownian tree : 2-stable tree, known since [Aldous 91'-93']. Some properties of T_{γ} : [above + Haas, Pitman, Winkel 07']

wh

Theorem (Curien & Haas, 2012)

$$n^{-\frac{\gamma-1}{\gamma}}T_{n}^{\gamma} \xrightarrow[n \to +\infty]{GHP} \mathcal{T}_{\gamma} \qquad \text{a.s.}$$

where \mathcal{T}_{γ} is a random real tree called a γ -stable tree.

 γ -stable tree : [Le Gall, Le Jan 98'; Duquesne, Le Gall : 02', 05'] Brownian tree : 2-stable tree, known since [Aldous 91'-93'].

Some properties of T_{γ} : [above + Haas, Pitman, Winkel 07']

• Universal limit (limit of large Galton-Watson trees).

Theorem (Curien & Haas, 2012)

$$n^{-\frac{\gamma-1}{\gamma}}T_n^{\gamma} \xrightarrow[n \to +\infty]{\text{GHP}} \mathcal{T}_{\gamma}$$
 a.s.
where \mathcal{T}_{γ} is a random real tree called a γ -stable tree.

 γ -stable tree : [Le Gall, Le Jan 98'; Duquesne, Le Gall : 02', 05'] Brownian tree : 2-stable tree, known since [Aldous 91'-93'].

- Universal limit (limit of large Galton-Watson trees).
- Lebesgue dim. 1 (like all real trees) but Hausdorff dim. $\frac{\gamma}{\gamma-1}$.

Theorem (Curien & Haas, 2012)

$$n^{-\frac{\gamma-1}{\gamma}}T_{n}^{\gamma} \xrightarrow[n \to +\infty]{\text{GHP}} \mathcal{T}_{\gamma} \qquad \text{a.s.}$$

where \mathcal{T}_{γ} is a random real tree called a γ -stable tree.

 γ -stable tree : [Le Gall, Le Jan 98'; Duquesne, Le Gall : 02', 05'] Brownian tree : 2-stable tree, known since [Aldous 91'-93'].

- Universal limit (limit of large Galton-Watson trees).
- Lebesgue dim. 1 (like all real trees) but Hausdorff dim. $\frac{\gamma}{\gamma-1}$.
- The branchpoints of \mathcal{T}_{γ} are dense and countable.

Theorem (Curien & Haas, 2012)

$$n^{-\frac{\gamma-1}{\gamma}}T_n^{\gamma} \xrightarrow[n \to +\infty]{\text{GHP}} \mathcal{T}_{\gamma} \quad a.s.$$

where \mathcal{T}_{γ} is a random real tree called a γ -stable tree.

 γ -stable tree : [Le Gall, Le Jan 98'; Duquesne, Le Gall : 02', 05'] Brownian tree : 2-stable tree, known since [Aldous 91'-93'].

- Universal limit (limit of large Galton-Watson trees).
- Lebesgue dim. 1 (like all real trees) but Hausdorff dim. $\frac{\gamma}{\gamma-1}$.
- The branchpoints of \mathcal{T}_{γ} are dense and countable.
- The leaves of \mathcal{T}_{γ} are dense and uncountable.

Theorem (Curien & Haas, 2012)

$$n^{-\frac{\gamma-1}{\gamma}}T_n^{\gamma} \xrightarrow[n \to +\infty]{\text{GHP}} \mathcal{T}_{\gamma} \qquad \text{a.s.}$$

where \mathcal{T}_{γ} is a random real tree called a γ -stable tree.

 γ -stable tree : [Le Gall, Le Jan 98'; Duquesne, Le Gall : 02', 05'] Brownian tree : 2-stable tree, known since [Aldous 91'-93'].

- Universal limit (limit of large Galton-Watson trees).
- Lebesgue dim. 1 (like all real trees) but Hausdorff dim. $\frac{\gamma}{\gamma-1}$.
- The branchpoints of \mathcal{T}_{γ} are dense and countable.
- The leaves of \mathcal{T}_{γ} are dense and uncountable.
- The mass of \mathcal{T}_{γ} is diffuse and supported by the leaves.

Theorem (Curien & Haas, 2012)

$$n^{-\frac{\gamma-1}{\gamma}}T_n^{\gamma} \xrightarrow[n \to +\infty]{GHP} \mathcal{T}_{\gamma} \quad a.s.$$

where \mathcal{T}_{γ} is a random real tree called a γ -stable tree.

 γ -stable tree : [Le Gall, Le Jan 98'; Duquesne, Le Gall : 02', 05'] Brownian tree : 2-stable tree, known since [Aldous 91'-93'].

- Universal limit (limit of large Galton-Watson trees).
- Lebesgue dim. 1 (like all real trees) but Hausdorff dim. $\frac{\gamma}{\gamma-1}$.
- The branchpoints of \mathcal{T}_{γ} are dense and countable.
- The leaves of \mathcal{T}_{γ} are dense and uncountable.
- The mass of \mathcal{T}_{γ} is diffuse and supported by the leaves.
- Branch point degree is constant (2 if $\gamma = 2$, ∞ otherwise).

Theorem (Curien & Haas, 2012)

$$n^{-\frac{\gamma-1}{\gamma}}T_n^{\gamma} \xrightarrow[n \to +\infty]{HP} \mathcal{T}_{\gamma}$$
 a.s.

where \mathcal{T}_{γ} is a random real tree called a γ -stable tree.

 γ -stable tree : [Le Gall, Le Jan 98'; Duquesne, Le Gall : 02', 05'] Brownian tree : 2-stable tree, known since [Aldous 91'-93'].

- Universal limit (limit of large Galton-Watson trees).
- Lebesgue dim. 1 (like all real trees) but Hausdorff dim. $\frac{\gamma}{\gamma-1}$.
- The branchpoints of \mathcal{T}_{γ} are dense and countable.
- The leaves of \mathcal{T}_{γ} are dense and uncountable.
- The mass of \mathcal{T}_{γ} is diffuse and supported by the leaves.
- Branch point degree is constant (2 if $\gamma = 2$, ∞ otherwise).
- Sample *n* leaves from \mathcal{T}_{γ} , induced shape has law $\mathfrak{M}_{\gamma}^{n}$.

Theorem (Curien & Haas, 2012)

$$n^{-\frac{\gamma-1}{\gamma}}T_n^{\gamma} \xrightarrow[n \to +\infty]{\text{GHP}} \mathcal{T}_{\gamma}$$
 a.s.

where \mathcal{T}_{γ} is a random real tree called a γ -stable tree.

 γ -stable tree : [Le Gall, Le Jan 98'; Duquesne, Le Gall : 02', 05'] Brownian tree : 2-stable tree, known since [Aldous 91'-93'].

- Universal limit (limit of large Galton-Watson trees).
- Lebesgue dim. 1 (like all real trees) but Hausdorff dim. $\frac{\gamma}{\gamma-1}$.
- The branchpoints of \mathcal{T}_{γ} are dense and countable.
- The leaves of \mathcal{T}_{γ} are dense and uncountable.
- The mass of \mathcal{T}_{γ} is diffuse and supported by the leaves.
- Branch point degree is constant (2 if $\gamma = 2$, ∞ otherwise).
- Sample *n* leaves from \mathcal{T}_{γ} , induced shape has law $\mathfrak{M}_{\gamma}^{n}$.
- Self-similarity (sample two leaves, the trees branching from the path between them are independent factored stable trees)

Illustrations (courtesy of I. Kortchemski)

7 / 28

 $X^n := (X_k^n)_{k \ge 0}$ Markov chain on \mathfrak{T}_n that moves as follows : **1.** Remove a leaf uniformly at random from X_k^n .

2. Reattach it following Marchal's algorithm to obtain X_{k+1}^n .

 X^n is ergodic and reversible with respect to \mathfrak{M}^n_{γ} .

 $X^n := (X_k^n)_{k \ge 0}$ Markov chain on \mathfrak{T}_n that moves as follows : **1.** Remove a leaf uniformly at random from X_k^n . **2.** Reattach it following Marchal's algorithm to obtain X_{k+1}^n .

 X^n is ergodic and reversible with respect to \mathfrak{M}^n_{γ} .

 $\gamma = 2$: "Aldous chain" on binary trees (cladograms). [Aldous 98']

- Mixing time of order at least n^2 and at most n^3 .
- Relaxation time of order n^2 . [Schweinsberg 02']

 $X^n := (X_k^n)_{k \ge 0}$ Markov chain on \mathfrak{T}_n that moves as follows : **1.** Remove a leaf uniformly at random from X_k^n . **2.** Reattach it following Marchal's algorithm to obtain X_{k+1}^n .

 X^n is ergodic and reversible with respect to \mathfrak{M}^n_{γ} .

 $\gamma = 2$: "Aldous chain" on binary trees (cladograms). [Aldous 98']

- Mixing time of order at least n^2 and at most n^3 .
- Relaxation time of order n^2 . [Schweinsberg 02']

 $\gamma < 2$: same order of mixing and relaxation [Sørensen 21']

 $X^n := (X_k^n)_{k \ge 0}$ Markov chain on \mathfrak{T}_n that moves as follows : **1.** Remove a leaf uniformly at random from X_k^n . **2.** Reattach it following Marchal's algorithm to obtain X_{k+1}^n .

 X^n is ergodic and reversible with respect to \mathfrak{M}^n_{γ} .

 $\gamma = 2$: "Aldous chain" on binary trees (cladograms). [Aldous 98']

- Mixing time of order at least n^2 and at most n^3 .
- Relaxation time of order n^2 . [Schweinsberg 02']

 $\gamma < 2$: same order of mixing and relaxation [Sørensen 21']

"Real world" motivation : asymptotic study of phylogenetics MCMC-type algorithms.

 Ω_n^γ : generator of continuous-time version with total rate $\sim \gamma n^2$.

Aldous's observation and conjecture ($\gamma = 2$)

Fix a branch point *b* and consider the proportions of leaves $\eta(b) := (\eta_1, \eta_2, \eta_3) \in \Delta_3$ branching from it.

Aldous's observation and conjecture ($\gamma = 2$)

Fix a branch point *b* and consider the proportions of leaves $\eta(b) := (\eta_1, \eta_2, \eta_3) \in \Delta_3$ branching from it. Then

$$\lim_{n \to +\infty} \Omega_n^2 f(\eta) = \sum_{i,j=1}^3 \eta_i \left(\delta_{ij} - \frac{1}{2} \eta_i \right) \partial_{ij} f(\eta) - \sum_{i=1}^3 (1 - 3\eta_i) \partial_i f(\eta) \quad (1)$$

(1) : generator of a Wright-Fisher diffusion with **negative** mutation rate.

Aldous's observation and conjecture ($\gamma = 2$)

Fix a branch point *b* and consider the proportions of leaves $\eta(b) := (\eta_1, \eta_2, \eta_3) \in \Delta_3$ branching from it. Then

$$\lim_{n \to +\infty} \Omega_n^2 f(\eta) = \sum_{i,j=1}^3 \eta_i \left(\delta_{ij} - \frac{1}{2} \eta_i \right) \partial_{ij} f(\eta) - \sum_{i=1}^3 (1 - 3\eta_i) \partial_i f(\eta) \quad (1)$$

(1) : generator of a Wright-Fisher diffusion with negative mutation rate.

9/28

More generally :

Take k leaves and look at the mass distribution along the edges of the shape they induce : we obtain a similar diffusion on Δ_{2k-3} .

Question (Aldous, 1999) : Are we observing functionals of some limit tree diffusion (later nicknamed "Aldous diffusion") that is stationary w.r.t. the law of the Brownian tree ?

Proposed solutions

Long standing problem as the metric dynamics appears to be difficult to track. Two teams have proposed solutions :

Proposed solutions

Long standing problem as the metric dynamics appears to be difficult to track. Two teams have proposed solutions :

1. [Forman, Pal, Rizzolo, Winkel : 2010-2023]

- Obtained a continuous process on real trees that has the same properties as the conjectured one but :
- The process has to be started at the invariant distribution.
- Only the convergence in fdd's is proved.
- Complicated construction that required a lot of papers.

Proposed solutions

Long standing problem as the metric dynamics appears to be difficult to track. Two teams have proposed solutions :

1. [Forman, Pal, Rizzolo, Winkel : 2010-2023]

- Obtained a continuous process on real trees that has the same properties as the conjectured one but :
- The process has to be started at the invariant distribution.
- Only the convergence in fdd's is proved.
- Complicated construction that required a lot of papers.

2. [Löhr, Mytnik, Winter : 2018-2023]

- Decided to "forget" the metric and consider equivalence classes that they developed under the name of "algebraic measure trees". But :
- Their process can be started at any "reasonable" tree.
- Once the theory is developed, it reduces to a classical martingale problem.

Second process referred to as the "algebraic" Aldous diffusion.

Let T be any set and $c: T^3 \rightarrow T$ symmetric such that :

• For all
$$x, y \in T$$
, $c(x, x, y) = x$.

- For all $x, y, z \in T$, c(x, y, c(x, y, z)) = c(x, y, z).
- For all $x, y, z, w \in T$: $c(x, y, z) \in \{c(x, y, w), c(x, w, z), c(w, y, z)\}.$

(T, c) is an algebraic tree.

Let T be any set and $c: T^3 \rightarrow T$ symmetric such that :

• For all $x, y \in T$, c(x, x, y) = x.

- For all $x, y, z \in T$, c(x, y, c(x, y, z)) = c(x, y, z).
- For all $x, y, z, w \in T$: $c(x, y, z) \in \{c(x, y, w), c(x, w, z), c(w, y, z)\}.$

(T, c) is an algebraic tree.

All metric trees (in particular real ones) are algebraic trees : take c(x, y, z) the element of the singleton $[x, y] \cap [x, z] \cap [y, z]$.

Let T be any set and $c: T^3 \rightarrow T$ symmetric such that :

• For all $x, y \in T$, c(x, x, y) = x.

• For all $x, y, z \in T$, c(x, y, c(x, y, z)) = c(x, y, z).

• For all $x, y, z, w \in T$: $c(x, y, z) \in \{c(x, y, w), c(x, w, z), c(w, y, z)\}.$

(T, c) is an algebraic tree.

All metric trees (in particular real ones) are algebraic trees : take c(x, y, z) the element of the singleton $[x, y] \cap [x, z] \cap [y, z]$.

Classical trees definitions (degree, segment, subtree...) can be defined from c, and c induces a topology on T which is consistent with the metric when (T, c) is derived from a metric tree.

Let T be any set and $c: T^3 \rightarrow T$ symmetric such that :

• For all $x, y \in T$, c(x, x, y) = x.

• For all $x, y, z \in T$, c(x, y, c(x, y, z)) = c(x, y, z).

• For all $x, y, z, w \in T$: $c(x, y, z) \in \{c(x, y, w), c(x, w, z), c(w, y, z)\}.$

(T, c) is an algebraic tree.

All metric trees (in particular real ones) are algebraic trees : take c(x, y, z) the element of the singleton $[x, y] \cap [x, z] \cap [y, z]$.

Classical trees definitions (degree, segment, subtree...) can be defined from c, and c induces a topology on T which is consistent with the metric when (T, c) is derived from a metric tree.

Algebraic measure tree (AMT) : Triplet $[T, c, \mu]$ where (T, c) is a separable algebraic tree and μ a distribution on (T, c).

Let T be any set and $c: T^3 \rightarrow T$ symmetric such that :

• For all $x, y \in T$, c(x, x, y) = x.

• For all $x, y, z \in T$, c(x, y, c(x, y, z)) = c(x, y, z).

• For all $x, y, z, w \in T$: $c(x, y, z) \in \{c(x, y, w), c(x, w, z), c(w, y, z)\}.$

(T, c) is an algebraic tree.

All metric trees (in particular real ones) are algebraic trees : take c(x, y, z) the element of the singleton $[x, y] \cap [x, z] \cap [y, z]$.

Classical trees definitions (degree, segment, subtree...) can be defined from c, and c induces a topology on T which is consistent with the metric when (T, c) is derived from a metric tree.

Algebraic measure tree (AMT) : Triplet $[T, c, \mu]$ where (T, c) is a separable algebraic tree and μ a distribution on (T, c).

$$\begin{split} \mathbb{T} &:= \text{set of (equivalence classes of) AMTs} \\ \mathbb{T}^{[n]} &:= \text{AMTs with } n \text{ leaves and uniform distribution on the leaves} \\ \tilde{\mathbb{T}} &:= \text{AMTs with no atom outside leaves, } \tilde{\mathbb{T}}_2 &:= \text{ binary AMTs in } \tilde{\mathbb{T}} \\ \mathbb{T}^c &:= \text{AMTs with diffuse measure} \end{split}$$

Strategy in the case $\gamma = 2$ [L., M., W. 20']

1. Map the chain from \mathfrak{T}_n to $\mathbb{T}_2^{[n]} := \mathbb{T}^{[n]} \cap \tilde{\mathbb{T}}_2$.

- **1.** Map the chain from \mathfrak{T}_n to $\mathbb{T}_2^{[n]} := \mathbb{T}^{[n]} \cap \tilde{\mathbb{T}}_2$.
- 2. Define a compact "sample shape" topology on $\tilde{\mathbb{T}}_2$ induced by functions called "shape polynomials".

- **1.** Map the chain from \mathfrak{T}_n to $\mathbb{T}_2^{[n]} := \mathbb{T}^{[n]} \cap \tilde{\mathbb{T}}_2$.
- 2. Define a compact "sample shape" topology on $\tilde{\mathbb{T}}_2$ induced by functions called "shape polynomials".

3. Prove the convergence of the generators to a limit operator Ω^2_∞ acting on shape polynomials.

- **1.** Map the chain from \mathfrak{T}_n to $\mathbb{T}_2^{[n]} := \mathbb{T}^{[n]} \cap \tilde{\mathbb{T}}_2$.
- 2. Define a compact "sample shape" topology on $\tilde{\mathbb{T}}_2$ induced by functions called "shape polynomials".

3. Prove the convergence of the generators to a limit operator Ω^2_∞ acting on shape polynomials.

4. Deduce the existence of a limit process on $\mathbb{T}_2^c := \mathbb{T}^c \cap \tilde{\mathbb{T}}_2$ through classical martingale problem arguments [Ethier, Kurtz 09'].

1. Map the chain from \mathfrak{T}_n to $\mathbb{T}_2^{[n]} := \mathbb{T}^{[n]} \cap \tilde{\mathbb{T}}_2$.

2. Define a compact "sample shape" topology on $\tilde{\mathbb{T}}_2$ induced by functions called "shape polynomials".

3. Prove the convergence of the generators to a limit operator Ω^2_∞ acting on shape polynomials.

4. Deduce the existence of a limit process on $\mathbb{T}_2^c := \mathbb{T}^c \cap \tilde{\mathbb{T}}_2$ through classical martingale problem arguments [Ethier, Kurtz 09'].

The limit process is Feller, continuous, ergodic and symmetric for the law of an "algebraic" Brownian tree.

What about $\gamma < 2$?

Aldous's observation extends to the case $\gamma<$ 2, but

Problem : the sample shape topology can be extended to $\tilde{\mathbb{T}}$ but is no longer compact (star trees admit no convergent subsequence).

What about $\gamma < 2$?

Aldous's observation extends to the case $\gamma<$ 2, but

Problem : the sample shape topology can be extended to $\tilde{\mathbb{T}}$ but is no longer compact (star trees admit no convergent subsequence).

Solution : define a topology that makes star trees converge.

What about $\gamma < 2$?

Aldous's observation extends to the case $\gamma<$ 2, but

Problem : the sample shape topology can be extended to $\tilde{\mathbb{T}}$ but is no longer compact (star trees admit no convergent subsequence).

Solution : define a topology that makes star trees converge.

Topology based on sampling subtrees called "hierarchies" : [Forman, Haulk, Pitman 18'; Forman 20']

- **1.** Take *m* points $u := (u_1, \ldots, u_m) \in T^m$ in a tree (T, c).
- **2.** Attach a leaf I_k on each of the points u_k $(1 \le k \le m)$.

3. Define the hierarchy $\hat{s}_{(T,c)}(u)$ induced by u in (T,c) as the labelled tree in \mathfrak{T}_m induced by the leaves (l_1, \ldots, l_m) in (T,c),

14 / 28

Illustration of a sampled hierarchy

Sample hierarchy topology

For
$$m \geq 3$$
, $\mathfrak{t} \in \mathfrak{T}_m$ and $[\mathcal{T}, c, \mu] \in \mathbb{T}$,
 $\Psi^{m,\mathfrak{t}}([\mathcal{T}, c, \mu]) := \int_{\mathcal{T}^m} \hat{\mathfrak{s}}_{(\mathcal{T}, c)}(u) \mu^{\otimes m}(\mathrm{d} u).$

 $\Psi^{m,\mathfrak{t}}([\mathcal{T}, c, \mu])$: probablity of obtaining the hierarchy $\mathfrak{t} \in \mathfrak{T}_m$ if we sample *m* points from $[\mathcal{T}, c, \mu]$.

Sample hierarchy topology on \mathbb{T} : induced by $(\Psi^{m,\mathfrak{t}})_{m \geq 3, \mathfrak{t} \in \mathfrak{T}_m}$.

In this topology, the star trees converge to an atom of mass 1.

More generally : accumulation of mass results in creation of atoms.

Sample hierarchy topology

For
$$m \geq 3$$
, $\mathfrak{t} \in \mathfrak{T}_m$ and $[\mathcal{T}, c, \mu] \in \mathbb{T}$,
 $\Psi^{m,\mathfrak{t}}([\mathcal{T}, c, \mu]) := \int_{\mathcal{T}^m} \hat{\mathfrak{s}}_{(\mathcal{T}, c)}(u) \mu^{\otimes m}(\mathrm{d} u).$

 $\Psi^{m,\mathfrak{t}}([\mathcal{T}, c, \mu])$: probablity of obtaining the hierarchy $\mathfrak{t} \in \mathfrak{T}_m$ if we sample *m* points from $[\mathcal{T}, c, \mu]$.

Sample hierarchy topology on \mathbb{T} : induced by $(\Psi^{m,\mathfrak{t}})_{m\geq 3,\mathfrak{t}\in\mathfrak{T}_m}$.

In this topology, the star trees converge to an atom of mass 1.

More generally : accumulation of mass results in creation of atoms.

Theorem

The sample hierarchy topology on \mathbb{T} is compact.

Convergence of the chains

Hierarchy polynomials : linear combinations Ψ of $(\Psi^{m,t})_{m \ge 3, t \in \mathfrak{T}_m}$, dense subalgebra of cont. functions on \mathbb{T} (Stone-Weierstrass).

Theorem (Convergence of generators)

$$\lim_{n \to +\infty} \sup_{\mathcal{T}:=[\mathcal{T},c,\mu] \in \mathbb{T}^{[n]}} |\Omega_n^{\gamma} \Psi(\mathcal{T}) - \Omega_{\infty}^{\gamma} \Psi(\mathcal{T})| = 0,$$

where

$$\Omega^{\gamma}_{\infty}\Psi^{m,\mathfrak{t}}(\mathcal{T}):=\int_{\mathcal{T}^{m}}\Omega^{\gamma}_{m}\mathbb{1}_{\{\mathfrak{t}\}}(\hat{\mathfrak{s}}(u))\mu^{\otimes m}(\mathrm{d} u).$$

Convergence of the chains

Hierarchy polynomials : linear combinations Ψ of $(\Psi^{m,t})_{m \ge 3, t \in \mathfrak{T}_m}$, dense subalgebra of cont. functions on \mathbb{T} (Stone-Weierstrass).

Theorem (Convergence of generators)

$$\lim_{n \to +\infty} \sup_{\mathcal{T}:=[\mathcal{T},c,\mu] \in \mathbb{T}^{[n]}} |\Omega_n^{\gamma} \Psi(\mathcal{T}) - \Omega_{\infty}^{\gamma} \Psi(\mathcal{T})| = 0,$$

where

$$\Omega^{\gamma}_{\infty}\Psi^{m,\mathfrak{t}}(\mathcal{T}):=\int_{\mathcal{T}^{m}}\Omega^{\gamma}_{m}\mathbb{1}_{\{\mathfrak{t}\}}(\hat{\mathfrak{s}}(u))\mu^{\otimes m}(\mathrm{d} u).$$

Theorem (Convergence of the chains)

The chains converge in law (for the sample hierarchy topology) to a limit process $X := (X_t)_{t \in \mathbb{R}_+}$ on \mathbb{T} with (pre)generator Ω_{∞}^{γ} .

Convergence of the chains

Hierarchy polynomials : linear combinations Ψ of $(\Psi^{m,t})_{m \ge 3, t \in \mathfrak{T}_m}$, dense subalgebra of cont. functions on \mathbb{T} (Stone-Weierstrass).

Theorem (Convergence of generators)

$$\lim_{n \to +\infty} \sup_{\mathcal{T}:=[\mathcal{T},c,\mu] \in \mathbb{T}^{[n]}} |\Omega_n^{\gamma} \Psi(\mathcal{T}) - \Omega_{\infty}^{\gamma} \Psi(\mathcal{T})| = 0,$$

where

$$\Omega^{\gamma}_{\infty}\Psi^{m,\mathfrak{t}}(\mathcal{T}):=\int_{\mathcal{T}^{m}}\Omega^{\gamma}_{m}\mathbb{1}_{\{\mathfrak{t}\}}(\hat{\mathfrak{s}}(u))\mu^{\otimes m}(\mathrm{d} u).$$

Theorem (Convergence of the chains)

The chains converge in law (for the sample hierarchy topology) to a limit process $X := (X_t)_{t \in \mathbb{R}_+}$ on \mathbb{T} with (pre)generator Ω_{∞}^{γ} .

Properties in common with $\gamma = 2 : X$ is continuous, Feller, ergodic, reversible for the law \mathcal{M}_{γ} of an algrebraic γ -stable tree. **Difference** : X can be started at any point of \mathbb{T} .

Spectral decomposition of the limiting generator

 $\Pi_m : \text{hierarchy polynomials of order} \le m \text{ (for } m \ge 3\text{)}.$ (= linear combinations from { $\Psi^{k,\mathfrak{t}} : k \in [\![3,m]\!], \mathfrak{t} \in \mathfrak{T}_k$ })

Observation : for $m \ge 3$, $\Psi^{m,\mathfrak{t}} = \sum_{\mathfrak{t}' \in \mathfrak{T}_{m+1} : \mathfrak{t} \nearrow \mathfrak{t}'} \Psi^{m,\mathfrak{t}'}.$ $\implies \Pi_m = \operatorname{Vect}(\{\Psi^{m,\mathfrak{t}} : \mathfrak{t} \in \mathfrak{T}_m\}).$

Set $\lambda_3 := 0$ and $\lambda_m := m((m-2)\gamma - 1)$ for $m \ge 4$. $V_m \subset \prod_m$: subspace of \prod_m that can be described explicitely.

Theorem (Eigendecomposition of the generator in $L^2(\mathcal{M}_{\gamma})$)

For $m \ge 3$, $-\lambda_m$ is an eigenvalue of Ω_{∞}^{γ} with eigenspace V_m . Moreover, we have the orthogonal direct sum

$$L^2(\mathcal{M}_\gamma) = \bigoplus_{m \ge 3} V_m,$$

 $\dim(V_3) = 1$, and $\dim(V_m) = |\mathbb{T}^{[m]}| - |\mathbb{T}^{[m-1]}|$ for $m \ge 4$.

Combinatorial description of the eigenspaces $(V_m)_{m\geq 4}$

 $\Pi_m : \text{linear combinations of } \{\Psi^{m,\mathfrak{t}} : \mathfrak{t} \in \mathfrak{T}_m\} \\ \mathfrak{a} : \mathfrak{T}_m \to \mathbb{T}^{[m]} : \text{canonical map (forgets labels)}$

Observation : for all $\mathfrak{t}, \mathfrak{t}' \in \mathfrak{T}_m$ s.t. $\mathfrak{a}(\mathfrak{t}) = \mathfrak{a}(\mathfrak{t}'), \ \Psi^{m,\mathfrak{t}} = \Psi^{m,\mathfrak{t}'}.$ \implies For $\mathcal{T} \in \mathbb{T}^{[m]}$, define

$$\Psi^{m,\mathcal{T}} = \sum_{\mathfrak{t} \in \mathfrak{a}^{-1}(\{\mathcal{T}\})} \Psi^{m,\mathfrak{t}}.$$

 $\Psi^{m,\mathcal{T}}$: probability of sampling the unlabelled shape \mathcal{T} .

Proposition : The family $\{\Psi^{m,\mathcal{T}} : \mathcal{T} \in \mathbb{T}^{[m]}\}$ is a basis for Π_m . $\implies \dim(\Pi_m) = |\mathbb{T}^{[m]}|.$

$$\begin{split} V_m: \text{polynomials} \sum_{\mathcal{T} \in \mathbb{T}^{[m]}} \alpha_{\mathcal{T}} \Psi^{m,\mathcal{T}} \text{ such that, for all } \mathcal{S} \in \mathbb{T}^{[m-1]}, \\ \sum_{\mathcal{T} \in \mathbb{T}^{[m]}} \pi_{\gamma}(\mathcal{S},\mathcal{T}) \alpha_{\mathcal{T}} = \mathbf{0}, \end{split}$$

19/28

 $V_{3} = \Pi_{3}, V_{4} = \{ \alpha_{\mathcal{B}}\mathcal{B} + \alpha_{\mathcal{C}}\mathcal{C} \in \Pi_{4} : 3(\gamma - 1)\alpha_{\mathcal{B}} + (2 - \gamma)\alpha_{\mathcal{C}} = 0 \},$ $V_{5} = \text{subspace of } \alpha_{\mathcal{D}}\mathcal{D} + \alpha_{\mathcal{E}}\mathcal{E} + \alpha_{\mathcal{F}}\mathcal{F} \in \Pi_{5} \text{ such that}$ $5(\gamma - 1)\alpha_{\mathcal{E}} + 2(2 - \gamma)\alpha_{\mathcal{E}} = 0,$ $4(\gamma - 1)\alpha_{\mathcal{E}} + (3 - \gamma)\alpha_{\mathcal{F}} = 0.$

20 / 28

Eigenstructure of the continuous-time Markov chain

For
$$m \geq 3$$
, let $s_m : \mathbb{R}^{\mathfrak{T}_m} \to \Pi_m$ be the linear surjection given by
$$s_m \left(\sum_{\mathfrak{t} \in \mathfrak{T}_m} \alpha_{\mathfrak{t}} \mathbb{1}_{\{\mathfrak{t}\}} \right) = \sum_{\mathfrak{t} \in \mathfrak{T}_m} \alpha_{\mathfrak{t}} \Psi^{m,\mathfrak{t}}$$

Corollary : Ω_m^{γ} has eigenvalues $\{-\lambda_k : k \in [\![3,m]\!]\}$ with respective eigenspaces $\{s_m^{-1}(V_k) : k \in [\![3,m]\!]\}$.

Eigenstructure of the continuous-time Markov chain

For
$$m \geq 3$$
, let $s_m : \mathbb{R}^{\mathfrak{T}_m} \to \Pi_m$ be the linear surjection given by
$$s_m \left(\sum_{\mathfrak{t} \in \mathfrak{T}_m} \alpha_{\mathfrak{t}} \mathbb{1}_{\{\mathfrak{t}\}} \right) = \sum_{\mathfrak{t} \in \mathfrak{T}_m} \alpha_{\mathfrak{t}} \Psi^{m,\mathfrak{t}}$$

Corollary : Ω_m^{γ} has eigenvalues $\{-\lambda_k : k \in [\![3,m]\!]\}$ with respective eigenspaces $\{s_m^{-1}(V_k) : k \in [\![3,m]\!]\}$.

Sketch of proof : Recall that

$$\Omega^{\gamma}_{\infty}\Psi^{m,\mathfrak{t}}([\mathcal{T},c,\mu]) = \int_{\mathcal{T}^{m}} \Omega_{m}\mathbb{1}_{\{\mathfrak{t}\}}(\hat{\mathfrak{s}}(u))\mu^{\otimes m}(\mathrm{d} u).$$

For all
$$f := \sum_{\mathfrak{t}\in\mathfrak{T}_m} \alpha_{\mathfrak{t}} \mathbb{1}_{\{\mathfrak{t}\}} \in \mathbb{R}^{\mathfrak{T}_m}$$
, $\lambda \in \mathbb{R}$ and $[T, c, \mu] \in \mathbb{T}$,
 $(\Omega_{\infty}^{\gamma} - \lambda) s_m f([T, c, \mu]) = 0 \iff \int_{T^m} (\Omega_m^{\gamma} - \lambda) f(\hat{\mathfrak{s}}(u)) \mu^{\otimes m}(\mathrm{d}s) = 0.$

By density, $(\Omega_{\infty}^{\gamma} - \lambda)s_m f \equiv 0 \iff (\Omega_m^{\gamma} - \lambda)f \equiv 0$. But $(\Omega_{\infty}^{\gamma} - \lambda)s_m f \equiv 0$ iff $\exists k \in [3, m]$ s.t. $\lambda = \lambda_k$ and $s_m f \in V_k$.

Eigenstructure of the discrete-time Markov chain

 M_m^{γ} : transition matrix of the discrete-time Markov chain on \mathfrak{T}_m .

Corollary : M_m^{γ} has eigenvalues $\left\{1 - \frac{\lambda_k}{\lambda_m} : k \in [\![3, m]\!]\right\}$ with respective eigenspaces $\{s_m^{-1}(V_k) : k \in [\![3, m]\!]\}$.

Proof : Observe that $M_m^{\gamma} = I_m + \frac{1}{\lambda_m} \Omega_m^{\gamma}$.

Eigenstructure of the discrete-time Markov chain

 M_m^{γ} : transition matrix of the discrete-time Markov chain on \mathfrak{T}_m .

Corollary : M_m^{γ} has eigenvalues $\left\{1 - \frac{\lambda_k}{\lambda_m} : k \in [\![3, m]\!]\right\}$ with respective eigenspaces $\{s_m^{-1}(V_k) : k \in [\![3, m]\!]\}$.

Proof : Observe that $M_m^{\gamma} = I_m + \frac{1}{\lambda_m} \Omega_m^{\gamma}$.

Consequence :

$$\tau_{\mathsf{rel}}^{m} = \frac{\lambda_{m} - \lambda_{4}}{\lambda_{m}} = \frac{m((m-2)\gamma - 1))}{4(2\gamma - 1)} = \Theta(m^{2})$$

 $\tau_{\rm rel}^m$: relaxation time of the discrete-time Markov chain on \mathfrak{T}_m . The order of $\tau_{\rm rel}^m$ is consistent with [Sørensen 21'].

Eigenstructure of the discrete-time Markov chain

 M_m^{γ} : transition matrix of the discrete-time Markov chain on \mathfrak{T}_m .

Corollary : M_m^{γ} has eigenvalues $\left\{1 - \frac{\lambda_k}{\lambda_m} : k \in [\![3, m]\!]\right\}$ with respective eigenspaces $\{s_m^{-1}(V_k) : k \in [\![3, m]\!]\}$.

Proof : Observe that $M_m^{\gamma} = I_m + \frac{1}{\lambda_m} \Omega_m^{\gamma}$.

Consequence :

$$\tau_{\mathsf{rel}}^{m} = \frac{\lambda_{m} - \lambda_{4}}{\lambda_{m}} = \frac{m((m-2)\gamma - 1))}{4(2\gamma - 1)} = \Theta(m^{2})$$

 $\tau_{\rm rel}^m$: relaxation time of the discrete-time Markov chain on \mathfrak{T}_m . The order of $\tau_{\rm rel}^m$ is consistent with [Sørensen 21'].

Open question : mixing time of order m^2 ?

Spectral decomposition of the L^2 semigroup

 $(P_t)_{t\geq 0}$: Markov semigroup of the process X (with generator Ω_{∞}^{γ})

Theorem

For
$$t > 0$$
, there exists $\varphi_t \in L^2(\mathcal{M}_{\gamma}^{\otimes 2})$ such that, for $f \in L^2(\mathcal{M}_{\gamma})$,
 $P_t f(\cdot) = \int_{\mathbb{T}} \varphi_t(\cdot, \mathcal{T}) f(\mathcal{T}) \mathcal{M}_{\gamma}(\mathrm{d}\mathcal{T}) \in L^2(\mathcal{M}_{\gamma}).$
In particular, P_t is self-adjoint and trace-class on $L^2(\mathcal{M}_{\gamma})$

with spectrum $\{e^{-\lambda_m t} : m \ge 3\}$ and eigenspaces $\{V_m : m \ge 3\}$.

Spectral decomposition of the L^2 semigroup

 $(P_t)_{t\geq 0}$: Markov semigroup of the process X (with generator Ω_{∞}^{γ})

Theorem

For
$$t > 0$$
, there exists $\varphi_t \in L^2(\mathcal{M}_{\gamma}^{\otimes 2})$ such that, for $f \in L^2(\mathcal{M}_{\gamma})$,

$$P_t f(\cdot) = \int_{\mathbb{T}} \varphi_t(\cdot, \mathcal{T}) f(\mathcal{T}) \mathcal{M}_{\gamma}(\mathrm{d}\mathcal{T}) \in L^2(\mathcal{M}_{\gamma}).$$

In particular, P_t is self-adjoint and trace-class on $L^2(\mathcal{M}_{\gamma})$ with spectrum $\{e^{-\lambda_m t} : m \ge 3\}$ and eigenspaces $\{V_m : m \ge 3\}$.

Corollary: For all $f \in L^2(\mathcal{M}_{\gamma})$ and $t \in \mathbb{R}_+$, $\|P_t f - \mathcal{M}_{\gamma}(f)\|_{L^2(\mathcal{M}_{\gamma})} \leq e^{-\lambda_4 t} \|f - \mathcal{M}_{\gamma}(f)\|_{L^2(\mathcal{M}_{\gamma})}$

Spectral decomposition of the L^2 semigroup

 $(P_t)_{t\geq 0}$: Markov semigroup of the process X (with generator Ω_{∞}^{γ})

Theorem

For
$$t > 0$$
, there exists $\varphi_t \in L^2(\mathcal{M}_{\gamma}^{\otimes 2})$ such that, for $f \in L^2(\mathcal{M}_{\gamma})$,

$$P_t f(\cdot) = \int_{\mathbb{T}} \varphi_t(\cdot, \mathcal{T}) f(\mathcal{T}) \mathcal{M}_{\gamma}(\mathrm{d}\mathcal{T}) \in L^2(\mathcal{M}_{\gamma}).$$

In particular, P_t is self-adjoint and trace-class on $L^2(\mathcal{M}_{\gamma})$ with spectrum $\{e^{-\lambda_m t} : m \ge 3\}$ and eigenspaces $\{V_m : m \ge 3\}$.

Corollary : For all $f \in L^2(\mathcal{M}_{\gamma})$ and $t \in \mathbb{R}_+$,

$$\left\| \mathsf{P}_t f - \mathcal{M}_\gamma(f)
ight\|_{L^2(\mathcal{M}_\gamma)} \leq e^{-\lambda_4 t} \left\| f - \mathcal{M}_\gamma(f)
ight\|_{L^2(\mathcal{M}_\gamma)}$$

For all $f : \mathbb{T} \to \mathbb{R}$ continuous for the sample hierarchy topology, $\sup_{\mathcal{T} \in \mathbb{T}} |P_t f(\mathcal{T}) - \mathcal{M}_{\gamma}(f)| \xrightarrow[t \to +\infty]{} 0.$

23 / 28

イロン 不得 とうほう イロン 二日

Conjecture : continuity of the integral kernel

Recall :
$$(P_t)_{t\geq 0}$$
 semigroup of the limit process X , satisfying
 $P_t f(\cdot) = \int_{\mathbb{T}} \varphi_t(\cdot, \mathcal{T}) \mathcal{M}_{\gamma}(\mathrm{d}\mathcal{T}), \quad \forall f \in L^2(\mathcal{M}_{\gamma}).$

Conjecture :

 $\varphi_t(\cdot, \cdot)$ is jointly continuous in both its variables and in time.

Conjecture : continuity of the integral kernel

Recall :
$$(P_t)_{t\geq 0}$$
 semigroup of the limit process X , satisfying
 $P_t f(\cdot) = \int_{\mathbb{T}} \varphi_t(\cdot, \mathcal{T}) \mathcal{M}_{\gamma}(\mathrm{d}\mathcal{T}), \quad \forall f \in L^2(\mathcal{M}_{\gamma}).$

Conjecture :

 $arphi_t(\cdot,\cdot)$ is jointly continuous in both its variables and in time.

Sufficient condition :

Find orthonormal basis $(\phi_{m,k})_k$ of V_m with $\sup_k \|\phi_{m,k}\|_{\infty} \ll e^{m^2}$.

Why?
$$\varphi_t(\cdot, \cdot) = \sum_{m \ge 3} e^{-\lambda_m t} \sum_{k=1}^{\dim(V_m)} \phi_{m,k}(\cdot) \phi_{m,k}(\cdot) \in L^2(\mathcal{M}_{\gamma}^{\otimes 2})$$

Conjecture : continuity of the integral kernel

Recall :
$$(P_t)_{t\geq 0}$$
 semigroup of the limit process X , satisfying
 $P_t f(\cdot) = \int_{\mathbb{T}} \varphi_t(\cdot, \mathcal{T}) \mathcal{M}_{\gamma}(\mathrm{d}\mathcal{T}), \quad \forall f \in L^2(\mathcal{M}_{\gamma}).$

Conjecture :

 $arphi_t(\cdot,\cdot)$ is jointly continuous in both its variables and in time.

Sufficient condition :

Find orthonormal basis $(\phi_{m,k})_k$ of V_m with $\sup_k \|\phi_{m,k}\|_{\infty} \ll e^{m^2}$.

Why?
$$\varphi_t(\cdot, \cdot) = \sum_{m \ge 3} e^{-\lambda_m t} \sum_{k=1}^{\dim(V_m)} \phi_{m,k}(\cdot) \phi_{m,k}(\cdot) \in L^2(\mathcal{M}_{\gamma}^{\otimes 2})$$

Consequences if the conjecture is true :

- \implies Convergence in the stronger sample shape topology
- \implies Strong Feller property

 \implies The diffusion instantaneously enters \mathbb{T}^c and stays within it ("big bang" phenomenon when started from the trivial tree) = \cdot

24 / 28

Generator of the Markov chain

$$\begin{split} \Omega_n^\gamma &: \text{generator of the continuous-time Markov chain on } \mathfrak{T}_n.\\ \Omega_n^\gamma f(\mathfrak{t}) &:= \sum_{l=1}^n \sum_{h \in \mathcal{H}(\mathfrak{t}_{\wedge l})} \pi_{t_{\wedge l}}^\gamma(h) \left(f(\mathfrak{t}^{(l,h)}) - f(\mathfrak{t}) \right), \end{split}$$

where

- $\mathfrak{t}_{\wedge \mathit{I}}$: labelled tree \mathfrak{t} with the leaf labelled I removed,
- $\mathcal{H}(\mathfrak{t}_{\wedge l})$: set of edges and branch points of $\mathfrak{t}_{\wedge l}$,
- $\pi_{\mathfrak{t}_{\wedge I}}^{\gamma}(h)$: Marchal's weight associated to h in $\mathfrak{t}_{\wedge I}$, i.e. $\pi_{\mathfrak{t}_{\wedge I}}^{\gamma}(h) = \begin{cases} \gamma - 1, & \text{if } h \text{ is a leaf} \\ d - 1 - \gamma, & \text{if } h \text{ is a branch point of degree } d \ge 3 \end{cases}$ • $\mathfrak{t}^{(I,h)}$: labelled tree \mathfrak{t} after the leaf I has been moved to h.

Total Marchal's weight on a tree \mathfrak{t} with n leaves :

$$\pi_{\mathfrak{t}}^{\gamma}(\mathcal{H}(\mathfrak{t})):=\sum_{h\in\mathcal{H}(\mathfrak{t})}\pi_{\mathfrak{t}}^{\gamma}(h)=(n-1)\gamma-1.$$

25 / 28

 Ω_{∞}^{γ} : generator of the limiting process, acting on $\bigcup_{m\geq 3} \Pi_m$.

$$\begin{split} \Omega^{\gamma}_{\infty}\Psi^{m,\mathfrak{t}}(\mathcal{T}) &:= \int_{T^{m}} \Omega^{\gamma}_{m} \mathbb{1}_{\{\mathfrak{t}\}}(\mathfrak{t}')\,\hat{\mathfrak{s}}_{*}\mu^{\otimes m}(\mathrm{d}\mathfrak{t}') \\ &= \int_{\mathfrak{T}_{m}} \sum_{h\in\mathcal{H}(\mathfrak{t}'_{\wedge l})} \pi^{\gamma}_{\mathfrak{t}'_{\wedge l}}(h) \left(\mathbb{1}_{\{\mathfrak{t}\}}(\mathfrak{t}'^{(l,h)}) - \mathbb{1}_{\{\mathfrak{t}\}}(\mathfrak{t}')\right)\,\hat{\mathfrak{s}}_{*}\mu^{\otimes m}(\mathrm{d}\mathfrak{t}') \\ &\text{But,} \quad \mathfrak{t}'^{(l,h)} = \mathfrak{t} \implies \mathfrak{t}_{\wedge l} = \mathfrak{t}'_{\wedge l} \quad \& \quad \exists !h_{l}\in\mathcal{H}(\mathfrak{t}_{\wedge l}),\,\mathfrak{t}^{(l,h_{l})} = \mathfrak{t}. \\ \implies \Omega^{\gamma}_{\infty}\Psi^{m,\mathfrak{t}} = \sum_{l=1}^{m} \left(\pi^{\gamma}_{\mathfrak{t}_{\wedge l}}(h_{l})\Psi^{m,\mathfrak{t}_{\wedge l}} + \sum_{h\in\mathcal{H}(\mathfrak{t}_{\wedge l})} \pi^{\gamma}_{\mathfrak{t}_{\wedge l}}(h)\Psi^{m,\mathfrak{t}}\right) \\ \implies (\Omega^{\gamma}_{\infty} + m((m-2)\gamma - 1))\Psi^{m,\mathfrak{t}} = \sum_{l=1}^{m} \pi^{\gamma}_{\mathfrak{t}_{\wedge l}}(h_{l})\Psi^{m,\mathfrak{t}_{\wedge l}} \in \Pi_{m-1} \\ \implies \Omega^{\gamma}_{\infty} \text{ is triangular with eigenvalues } (-m((m-2)\gamma - 1))_{m\geq 3}. \end{split}$$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q (~ 26 / 28

Derivation of the eigenspaces

Recall :

$$(\Omega_{\infty}^{\gamma} + \lambda_m) \Psi^{m,\mathfrak{t}} = \sum_{l=1}^{m} \pi_{\mathfrak{t}_{\wedge l}}^{\gamma}(h_l) \Psi^{m-1,\mathfrak{t}_{\wedge l}}, \ \Psi^{m,\mathcal{T}} := \sum_{\mathfrak{t} \in \mathfrak{a}^{-1}(\{\mathcal{T}\})} \Psi^{m,\mathfrak{t}}$$

 V_m : subspace of $\Psi := \sum_{\mathcal{T} \in \mathbb{T}^{[m]}} \alpha_{\mathcal{T}} \Psi^{m,\mathcal{T}} = \sum_{\mathfrak{t} \in \mathfrak{T}_m} \alpha_{\mathfrak{a}(\mathfrak{t})} \Psi^{m,\mathfrak{t}}$ s.t.

$$(\Omega_{\infty}^{\gamma} + \lambda_{m})\Psi = 0 \iff \sum_{\mathfrak{t}\in\mathfrak{T}_{m}} \alpha_{\mathfrak{a}(\mathfrak{t})} \sum_{l=1}^{m} \pi_{\mathfrak{t}_{\wedge l}}^{\gamma}(h_{l})\Psi^{m-1,\mathfrak{t}_{\wedge l}} = 0$$
$$\iff \sum_{\mathfrak{s}\in\mathfrak{T}_{m-1}} \Psi^{m-1,\mathfrak{s}} \sum_{\mathfrak{t}\in\mathfrak{T}_{m}:\mathfrak{s}\nearrow\mathfrak{t}} \pi(\mathfrak{s},\mathfrak{t})\alpha_{\mathfrak{a}(\mathfrak{t})} = 0$$
$$\iff \sum_{\mathcal{S}\in\mathfrak{T}^{[m]}} \Psi^{m-1,\mathcal{S}} \sum_{\mathcal{T}\in\mathfrak{T}^{[m]}:\mathcal{S}\nearrow\mathfrak{T}} \pi(\mathcal{S},\mathcal{T})\alpha_{\mathcal{T}} = 0$$

 $\begin{aligned} \pi(\mathfrak{s},\mathfrak{t}) \text{ (resp. } \pi(\mathcal{S},\mathcal{T})\text{) : probability to get from } \mathfrak{s} \text{ to } \mathfrak{t} \text{ (resp. } \mathcal{S} \text{ to } \mathcal{T}\text{)}. \\ \text{Because } (\Psi^{m-1,\mathcal{S}})_{\mathcal{S}\in\mathbb{T}^{[m-1]}} \text{ is linearly independent :} \\ \iff \forall \mathcal{S}\in\mathbb{T}^{[m-1]}, \sum_{\mathcal{T}\in\mathbb{T}^{[m]}:\mathcal{S}\nearrow\mathcal{T}} \pi(\mathcal{S},\mathcal{T})\alpha_{\mathcal{T}} = 0 \end{aligned}$

27 / 28

Thank you for your attention.

28 / 28

2

イロト イヨト イヨト イヨト