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Permutation
2 Q 1A 6 119 8 7 4 5 113

v v v v v v v v v
o ) o L) o o ) [

[ ) []
4 01 WY 9 6 8 / 14 g €

Word: Cycles: Matrix:
21016987453 (1,2,10,3)(4,6,8)(5,9)(7) 0100000000
Descents Total number of cycles (1) 8 8 8 g g g 8 8 (1)
Peaks Number of cycles of 0000010000
Patterns length i 0000000010
Longest increasin Conjugacy class 0000000100
8 8 Jugacy 0000001000
subsequence 0001000000
RSK 0000100000
0010000000

Question: we fix the value of a function, we study another.

Example in LIPN: Bassino et al.
* Condition: Separable i.e. 0 occurrence of the patterns 2413 and 3142
* Function to study: Longest increasing subsequence / proportion of

other patterns.
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Cycle Structure and Spectrum

® #total number of cycles
¢ #, number of cycles of length i
If0 < p <gand GCD(p, q) = 1, then
Multiplicity of eigenvalue ed® s Y #rq(0)
r>1

In particular:
#(0) = Multiplicity of eigenvalue 1

Tr(c*) =Y i#;(0) and k#.(0) =) Tr@ )
ilk ilk
Where p(i) is the Mobius function defined as:

) = 0 if i is divisible by the square of a prime number,
w = (-1)" if i is the product of r distinct prime numbers.
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Conjugacy Classes

The conjugacy class of o is {mon™', 1 € G,}.

Theorem

Let o, p be two permutations.
There is equivalence between:

® o and p are in the same conjugacy class

® o and p have the same cycle structure, i.e., Vi > 1, #;(0) = #;(p).
® o and p have the same spectrum (considering multiplicities)

® Vi>1,Tr(c?) = Tr(p").
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Conjugacy invariant

¢ Definition: ¢, is conjugacy invariant if for all p,
1 d
PO, =0,

® ¢, is conjugacy invariant if and only if P(o,, = 0) is a function of the
cycle structure of o.
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Conjugacy invariant

¢ Definition: ¢, is conjugacy invariant if for all p,

1 d
PO, =0,
® ¢, is conjugacy invariant if and only if P(o,, = 0) is a function of the
cycle structure of o.

¢ Example 1: Ewens
#0

P =0)= .
(Un U) Chﬂ

¢ Example 2: Uniform permutation within a conjugacy class.
¢ Example 3: Uniform Involutions / Derangements.

Morally: Conditioned on the cycle structure, the permutation is chosen
uniformly.
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Descents

We denote by D(0) ={i:0(i+1) < a(i)}.

We assume that (g,,),.., is a sequence of random permutations such that for
all n, o, is conjugacy invariant of size n.

Furthermore, we suppose that 2 — «

Theorem (Kim and Lee 2020)

2
card(D(0,)- =" d

\/ﬁ n—oo

1-4a3+3a*
JV(O, a12+ a )

Goal: prove similar results for other functions.
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Classical Pattern

Let = be a permutation of size k. An occurrence of the (classical) pattern x in
a permutation ¢ is a vector (i, -+, i;) with i; < --- < i} such that o (i;) ... o (i})
has the same relative order as the elements of 7.
Examples:
¢ For the permutation o = 2173456,
the vector (i,, i,, i3) = (2,3,7) is an occurrence of the pattern 7 = 132
(176 has the same relative order as & = 132.)
® An occurrence of 21 is an inversion.

® Anoccurrence of 123+ k is an increasing subsequence of length k.
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Vincular Pattern

Definition

Let 7 be a permutation of size k and A be a subset of [k — 1]. An occurrence of
the vincular pattern (,A) in a permutation o is a vector (i,, -+, i;) with
iy < -+ < i, satisfying:

® (iy,-, ;) is an occurrence of the classical pattern z in o.

® ForeverysinA,ig, =i,+1.

Examples:
® (m,9): is the classical pattern x
® An occurrence of (21, {1}): is a descent
¢ For the permutation ¢ = 2173456, the vector (i,, i, i5) = (2,3,7)

* isan occurrence of the pattern (7 = 132,A = {1})
® notan occurrence of (r = 132,A={1,2})

Notation: 91™*(g) : pattern counts (number of occurrences of the patterns).
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Uniform case
Fix IT = (7, A), and let k be the size of 7.

Theorem (Hofer (2018))

We assume that o,, uniform of size n

No,) -EOM(0,) 4

pk—3—card@) n—oo

N (0,03).

With

* 0g%>0.

Generalises:
® k =2: Fulman (2004)
* Consecutive: Goldstein (2005)
* Monotone: Bona (2010)
® (lassical: Janson et al. (2015)
* Without positivity: Féray (2013)
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Recall: Ewens distribution.

#o
Ploc,=0) = .
n,0

Fix I1 = (,A), and 0 > 0. Let k be the size of 7.

Theorem (Féray (2013))

We assume that a,, follows the Ewens distribution with parameter 0. Then,

No,) -EM0,)

nk— % —card(A) n—oo

N (0,03).
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oce

Few cycles

Let o, is conjugacy invariant of size n

Theorem (Kammoun 2020)

|
l |

#o,) d 0
Vn e

‘ﬂ"(a,.) El@,) d 2
Then, k- —cardia) - A (0,01).

We assume that

Theorem (Hamaker and Rhoades (2022))

We assume that: for all i #;(c,) — 0.
n—oo

—En1 d
Then, n (7] =E i (07) N (0,03)
pk-E-cad) oo

|

If we combine both techniques.

Theorem (Not written anywhere)

‘E
i

#: d
We assume that: for all i ("") 0.
00
Mo -EN"@,) _d 2
Then, I T R '/V(O' on)
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Q0

Our result
FixI1 = (1,A),

Theorem (Féray and Kammoun (2023))

[ |

#(0,) _d
n

We assume that ,, is conjugacy invariant of size n and that

#(o,) d
=2 —— B. Then

n—o00

a,
n—oo

o, -E@,) d 2
k= —card(a) e A, Uﬂ,aﬁ)'

Moreover, ifA = @, then Uﬁyayﬁ =0 ifand only if (a, B) = (1,0).

Remarks:
* Hofer (2018) implies that Ufw,o > 0 for any I1.
e Itiseasy to see that o7, , = 0 for any I1. (Identity)
° oﬁ,aﬁ is a polynomial in (a & B). (Hamaker and Rhoades (2022))

® Dubach (2024) proved the same result for classical patterns (A = @) +
speed of convergence.

Conjecture: forany I, o, , = 0 if and only if (a, f) = (1,0).

Questions: for which patterns, aﬁyaﬁ does not depend on g ? (consecutive)? 1437
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Comparison techniques

¢ Initially for the longest increasing subsequence / RSK (Kammoun
2018).

® Works for other combinatorial structures (coloured permutations,
k-arrangements, etc.)

We give the proof of

Theorem (Kammoun 2020)
oy d
#<_ﬁ) £

We assume that 0.

WMo,)-Enl@,) d 2
Then, e et — H(0,00).

n—oo
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Simple random walk a directed version of the Cayley graph of &,.

¢ Ifwe start from any conjugacy invariant measure, the stationary
measure is Ewens with parameter 0.

* In each step, N" varies at most by 2 p*~< @1,

|9(5,) - NN(a")| < [M(0,) - NG EY)| + | N (@EY) - N0y

k—card(A)-1 (#o,n + #U:mf)
—_—

~log(n)
We want that |["(a,,) - N (o4")| = o(nk-crd-1),
It is sufficient that #a,, = 0(1/n).

2
<—n

k!

17/37



efinitions Results Proofs Universality (Aléa days)
o} 00 000 00

00 00 ©0000000 0000

¢} 8900

OOO

Weighted dependency graphs

Initially developed by Féray (2018).
Works for other combinatorial structures.
We give a proof of

Theorem (Féray and Kammoun (2023))

|

# d
We assume that g, is conjugacy invariant of size n and that ‘[‘T"] _—

n—oo
#o(oy)
n

— p. Then

a,

o, -En@,) d
nk—%—card[A)

N (0,07 ,p).

n—oo
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Cumulants

K, (X, e X,) = (£, £, log(E(eZ1 7%9))
For simplicity, we write x,(X) := x,(X, -+, X).

® X ~.#(m,c? ifand onlyifforall r > 3, x,(X) =

* If X, and X, are independent, then «,(X; + X,) = x,(X;) + k,(X,)
° x,X+C)=x,X)ifr=2

* k. (aX)=a"x,(X)

e If{X,,...X;} and {Y;,,,... Y,} are independent (and non-empty), then
Kr(Xl’ X YH—I' Yr) =0

Proof of the CLT Forr >3

Nis

EX X, L
Kr(ll—n(l))_l(r( =l ’): 1 ZK(X)— K(Xl)_o(]]

vn Vo) niis
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Weak dependency

e If{X,,...,X,} are "weakly dependent", then x,.(Xj, ..., X,) = 0.

* Dependency graphs: a graph with weights on the edges. Vertices are
indexed by random variables, and weights measure the "dependency".

¢ If the weights are sufficiently "small", we have a CLT for the sum of the
variables.
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Uniform Permutation

* Example: 0, is uniform and A;; = 1[o,,(i) = j].
e Ifi+#jand k # m, then

1 1
= =EA)EA; ).

E(A. . A. )= ~
AiAjm) nn-1 n

o if k# m, thenE(4;4;,,) = 0and E@A, )E@A;,,) = 5.
Forany U = (iy, j,)1<¢<r let G(U), be the complete graph with vertices U and
1 ifi=korj=1

the weight of ((i, ), (k, D)) is { L otherwise
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Uniform Permutation

Theorem (Féray 2018)

Forallr > 1, there exists C, such that: For all integers n, for allU = (iy,j;)1<r<;

K, (A; jr iy ) < CMU) D)

irrjr
where
® M (U) is the maximum weight of a spanning tree of G (U).

® card(U) is the number of distinct elements in U.

For example, if U = ((1,4),(1,2),(4,3),(1,2)), G(U) = ~ ’@

Forall n, (A, 4,A, 2, A43,4,,) < C,2n~*=Cyn™*
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New graphs

* G!(U), the complete graph with vertices U and the weight of
(i, )),(k, 1) is1ifi=korj=1lori=jork=1land L otherwise.

D
For example, if U = ((1,4), (1,2), (4,3),(1,2)), G} (U) = ~ 0@

(2)

For example, if U = ((1,4), (1,2), (4,3),(1,2)), G*(U) = o 9

@

* G*(U):=(n},E=U)
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Uniform Permutation within a Conjugacy Class

o, is uniform within the conjugacy class A and A, ; = 1{o(i) = j].

Theorem (Féray and Kammoun 2023)

Forallr > 1, there exists C, such that: For all integers n, for allU = (i,j;)1<¢<;

Kr(A 'Airrjr) < CrM(U)nCC(U)—card(U)

B fhoooc
where

® M (U) is the maximum weight of a spanning tree of G*(U), the complete
graph with vertices U and the weight of ((i,]), (k, 1)) is1 ifi=k orj=1or
i=jork=1,and?* otherwise.

® card(U) is the number of distinct elements in U.

® CC(U) the number of nontrivial connected components in the graph
G*) = ([n],E =U)
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Application: Patterns

If we denote by X™* the number of occurrences of the pattern (r,A), we
have

Ay —
x®=eh= Y > Ay A

ip<ee<ip ) f1>-~-'jl§
igp1=ig+1forseA I 1< <=1y

To conclude: The magic of weighted dependency graphs: We can "easily"
move from controlling mixed cumulants of {A,-,j 1(i,)) € [n]z} to controlling

mixed cumulants of {Ailv,-2 Ay iy frs s ip i) € [n]zr}.
We obtain
Kr(X(n,A) (Uﬁ)) < Ck’rnr(k—card(A)—l)+l’

and thus

r

< Ck,rnl_é

k—card(A)—%

i (X“”‘)(aﬁ) ~EX"™ (@) )
i n

niversality (Aléa days)
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Motivation: universality

Central Limit Theorem
Let X;,X,,...,X, be i.i.d with Var(X;) = 0% < +oo. Then,

l n d
EZXI-—[E(XI) = N (0,0%)
i=1

N

The limit is universal (does not depend on the distribution of X;).

Symmetry/independence + control = universality
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Fisher-Tippett-Gnedenko Theorem

Let X,,X,,...,X, beiidand M, = max(X,,X,, ..., X,,).
Suppose there exist constants a,, > 0 and b,, such that, for every real x,

P(M"—_h" < x) —_ G(x)
a,

where G (x) is a non-degenerate cumulative distribution function. Then, Gis
the cumulative distribution function of a Gumbel, Fréchet, or Weibull
variable.

The limit fluctuations depend on the tail of the distribution of X;.

Symmetry/Independence + Control = Universality
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Wigner Matrices
Let’s define the symmetric matrix M as
ay, Gy e e Gy,
1 | ®e @ o a,

Ay, Gppy e e Gy

The entries {a; ;},.,.;, are i.i.d. such that E(a,,) = 0and E(a} ) = 1.

Let A, < A, < ... < A, be the eigenvalues of M.
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Histogram of Eigenvalues

Universality (Aléa days)
0®00

N(0,1) 1 avec proba 0.5 et -1 avec proba 0.5

-20 -15 -10 -05 00 05 10 15 20 20 -15 -10 -05
Valeur propre Valeur propre

Gaussian entries

10 15 20

Entries 1 or —1
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Wigner’s theorem

"The histogram of eigenvalues is not far from a semi-circle"

The empirical spectral measure of the eigenvalues of M

1 n
— Y6,
i=1

converges weakly to the semi-circular law of Wigner as n tends to infinity.
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Butalso’,
¢ The largest eigenvalue converges to 2
® The fluctuations of the largest eigenvalue are of Tracy-Widom type
® Large deviations of the largest eigenvalues are universal
¢ The joint limit fluctuations of the first k eigenvalues are universal
® The local limit laws are universal
® The fluctuations of the number of points in [a,b] are universal

And for random permutations?

*Some conditions apply on the moments / the tail of the distribution
31/37
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Longest Decreasing Subsequence

® (o(iy),...,0(i})) is a decreasing subsequence of o if i; < i, < --- < i} and
o(i)) > >0(i).
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Longest Decreasing Subsequence

® (o(iy),...,0(i})) is a decreasing subsequence of o if i; < i, < --- < i} and
o(i)) > >0(i).

® LDS(0): The length of the longest decreasing subsequence of o.
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Longest Decreasing Subsequence

(0(iy),...,0(i}) is a decreasing subsequence of ¢ if i; < i, < -+ < i, and
o(i)) > >0(i).

LDS(0): The length of the longest decreasing subsequence of o.

Example:
8

1 2 3 4 5 6 7
1 8 7 5 2 4 3

LDS(o) =5.

32/37



finitions Results Proofs

Universality (Aléa days)
000 0
00000000 8
o}

n
(o]
000
[ ]
¢]

Longest Decreasing Subsequence: Universality

. . . . . #
We assume that o, is conjugation invariant and % —a

Theorem (Dubach Theorem (Kammoun 2018)

(2024+)) If
ne min,_;_, ((ZI . j(o' )] fzn (o, ))
LDS(o,) a P 0, then, LDS“’%[ —— Tracy Widom

\/ﬁ n—oo
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Ifa, is conjugacy invariant and#(c,) = o(\/n). Then,
&(‘;") satisfies a LD principle
* with speed +/n and rate function ],y .
* with speed n and rate function Jpg
With,
2xcosh™ % ifx>2

+00 ifx<2’

]LDS,%(x) = {

—1+Z+2In(3)- 2+ £)n(2%) ifo<xs<2

4+x2

]LDS,I x)=40 ifx >2

+00 frx=0
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In other words: if o, is conjugation invariant and #(co) "is low" then

1+ 2 2mn(2) -2+ Z)In(22))n ifxelo,2]
4 2 2 4+Xx

[« ,

—log(IP(LDS(U") zx)) _ J2xcosh (5) Vn %fx>2
Vn +00 ifx<0

0 ifx=2

The same phenomenon appears for A, (Wigner Matrices).
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What we know

Type 1: Local events Type 2: LLN / first order /
o P(Sc D)) global convergence
1
* P(g(10) > 10) ® Faam
e LDS

Jn

The limit depends only on #—nl

Type 3: fluctuations (Poisson / Type 4: others
Normal
) ° LDS—? Vn
° Tr((anpnnnalglpglnn)zozzl) ne
. S—E e Large deviations.
nfirz Universality if # is low.

The limit depends on #—n‘ and % for There is still much work to be
some a done.
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Merci de votre attention
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