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Orientation, chirotope of labelled points

Orientation of three labelled points

+1  if pp,pg, pr oriented CCW,
q x(p,g,r) =1 —1 ifpp,pg,pr oriented CW,
0 if pp,pg, b aligned.

Xp Xq Xr

x(p,q.r)=sign| yo yq ¥r
1 1 1

P Remark: x(p,q,r) = x(q,r,p) = x(r,p, q)



Orientation, chirotope of labelled points

Chirotope of labelled points set
o Point set P = {py}eex labelled by X

o Points in general position (no three aligned,
no parallel lines)

o xp:(X)s = {-1,+1}

B +1 if px,py, p, oriented CCW,

xp(x,y,z) = { —1 if p,py,p, oriented CW.




Orientation, chirotope of labelled points

Chirotope of labelled points set
o Point set P = {p/}sex labelled by X
o Points in general position (no three aligned,

( no parallel lines)
A o xp: (X)s = {-1,+1}

| 41 if px,py,p, oriented CCW,
Xp(x.y,2) = { —1 if py,py, p, oriented CW.

o Chirotopes allow to abstract from
coordinates




Chirotopes encode many useful properties

Example of properties

o [p,q] € Conv(P)
& Vx € X\ {p.q},x(p,q,x) = cst




Chirotopes encode many useful properties

Example of properties
o o [p,q] € Conv(P)
@ & Vx € X\ {p,q},x(p,q,x) = cst
o x € A(p,q,r) &
xp(p, q,x) = xp(q,r,x) = xp(r, p,x)



Chirotopes encode many useful properties

Example of properties
o [p,q] € Conv(P)
& Vx e X\{p.q},x(p,q,x) = cst
o x € A(p,q,r) &
a b X’P(pv q,X) :XP(CIa rvX) :XP(r7p7X)
o (p,q) separates [a, b]
< x(p,g,a) = —x(p,q,b)
P o [p,q] and [a, b] are intersecting < . ..



Chirotopes

Chirotopes are a useful combinatorial and geometric object...

o Finite number t, of chirotopes on n elements

o Useful for exact algorithms, not depending on coordinates

o Can be used for benchmarking algorithms
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Chirotopes are a useful combinatorial and geometric object...

o Finite number t, of chirotopes on n elements

o Useful for exact algorithms, not depending on coordinates

o Can be used for benchmarking algorithms

...but also quite complex to understand!
o Decide whether f : (X)3 — {—1,1} is realizable is NP-hard
[Shor 91]
o Number of chirotopes t, exactly known only for n < 11 (up to
relabelling) [Aichholzer et al 2002]

o Best known asymptotics t, = n*"*®(n/1081) [Goodman and
Pollak 93]



Chirotopes

Chirotopes are a useful combinatorial and geometric object...

o Finite number t, of chirotopes on n elements

o Useful for exact algorithms, not depending on coordinates

o Can be used for benchmarking algorithms

...but also quite complex to understand!

o Decide whether f : (X)3 — {—1,1} is realizable is NP-hard
[Shor 91]

o Number of chirotopes t, exactly known only for n < 11 (up to
relabelling) [Aichholzer et al 2002]

o Best known asymptotics t, = n*"*®(n/1081) [Goodman and
Pollak 93]

The space of chirotopes is hard to explore!



Mutually avoiding sets, modular decomposition
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Mutually avoiding sets, modular decomposition
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Mutually avoiding sets, modular decomposition

Chirotope is read following proxies!

x(a,d, B) = x(a,d, x)



Mutually avoiding sets, modular decomposition




Mutually avoiding sets, modular decomposition

Chirotope is read following proxies!

x(a,d,B) = x(a,d,x")  x(a,E,B)=x(y",E,z")



Converse operation: Bowtie operation

o x sign function on X U {x*}, and £ on Y U {y*}
o the bowtie k d:efxx*bd & is defined on X U'Y by:

k(x1,x2,x3) = x(x1,x2,x3) if x1,x2,x3 are all in X;
K(x1,x2,y) = x(x1,x,x*) if xi,xp arein X and y isin Y;
K(x,y2,y3) = &(v*,y2,y3) if xisin X and y»,y3 are in Y;
k(y1,v2,3) = &0a,y2,y3)  ifyi,ye,y3areallin Y.

o x x+Xy« { is a realizable chirotope if and only if x and £ are
realizable and x* and y* are extreme in x and &.
[Bouvel,Féray,Goaoc,K ]



First properties of decomposition

o k is indecomposable if there is no nontrivial decomposition
K = XX* My* é-

o Every chirotope admits a decomposition built from
indecomposable chirotopes

o Every decomposition can be represented by a
(indecomposable) chirotope tree

o It allows a nice description of a realizable chirotope while

avoiding providing a full realization



First properties of decomposition

o k is indecomposable if there is no nontrivial decomposition
K= X x* My* &

o Every chirotope admits a decomposition built from
indecomposable chirotopes

o Every decomposition can be represented by a
(indecomposable) chirotope tree

o It allows a nice description of a realizable chirotope while
avoiding providing a full realization

o Is the chirotope tree canonical (unique)?



Convex issue

Two trees with the same associated chirotope:




Convex issue

Two trees with the same associated chirotope:




Unicity of decomposition

A chirotope tree is canonical:
o If every node is either convex or indecomposable

o There is no edge between two convex nodes

Proposition: Every chirotope admits a unique canonical tree (up
to relabelling the proxies) [BFGK]



Proof sketch

Define two transformations on chirotope trees:
o % that merges two adjacent convex nodes

X .
o — that decomposes a nonconvex node in two

Proposition: [BFGK.] The transformation = := YN
terminates and is locally confluent: if T = T; and T = T, then
there exists T3 such that T; =* T3 and T, =* Ts;.

The main difficulty resides in the case where a node can be
decomposed in two manners.



Good/Bad news

Good news:

o Chirotope trees provide a nice way to build chirotopes from
smaller ones

o Unicity gives a simple way to prove that two chirotopes built
recursively are different

Bad news: For n large enough we have [BFGK_|

dp/t, = O(n3)



Triangulations

A triangulation of a point set P is a maximal crossing-free set of
edges between elements of P.

The set of triangulations of P only depends on its chirotope.

We write 7,; the set of triangulations of a chirotope k.



Triangulations

Many questions are still open:

o For every k on n elements,

| 7| = O(30") [Sharir and Sheffer, 2011]
|Tx| = ©(2.63") [Aichholzer et al, 2016]

o It is conjectured that the minimal is O(3.47") [Hurtado and
Noy 97]

o Max known: Koch chains has =~ 9.08" triangulations
[Rutschmann and Wettstein 2022]

Algorithmically: Compute the number of triangulations of a given
point set:

o O(n?2™) [Alvarez and Seidel 2013]
o O(nt+eM)Vr) [Marx and Miltzow 2016]



Triangulations of bowties
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Triangulations of bowties

T = 7y 0 (T)
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Triangulations of bowties

Txy



Triangulations of bowties

TeT,



Triangulations of bowties

*

T" = mx oy (T)



Triangulations of bowties

Bijection between:
o Triangulations of kK = x ,«X« £

o Triplets of triangulations of x, £, and maximal crossing-free
families of edged between the neighbors of x* and y*

ITal = D (5o C1Pxe () °1Pey (v).

a,b>2



Triangulations of bowties

Two ingredients:

| Txy| only depends on a and b:

= ()= (25)



Triangulations of bowties

Two ingredients: Triangulation polynomial
XX* Z xegr () Px,x*(l) = ’7;<’
TeTy

Example: Py (x) = x3(x+1) and P¢ «(y) = y*(1 +y + y?).




Triangulations of bowties

Bijection between:
o Triangulations of K = x +X+ &

o Triplets of triangulations of x, £, and maximal crossing-free
families of edged between the neighbors of x* and y*

Tl = Y L2 BCTPxe (¥) Iy P1Pey ()

a,b>2



Triangulations of chirotope trees

mszu; 0

125618, 1

11533,8

0 s

1017898

144635.8

122636.1

9101, 1
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101107,8

128656, 1
111356, 1

122328,0
153344.8

12188,8

108621.0

1435330

156775, 8

149387,

36 nodes, each decorated with
a chirotope of size 9, adding up
to 254 elements.

Number of triangulations?



Triangulations of chirotope trees

o Same ideas with the same bijection.

o However the full triangulation polynomial of every node is
needed:

k
degr(x/")
Qe i1 (1 oxie (i hicicien) = D %o T via-
TeTe i=1 xpxreT
i<j
o and the formula are more complex, as we compute
multivariate polynomials instead of just a number.

Conclusion: [BFGK.] the number of triangulation of a chirotope
tree can be computed in polynomial time from the full
triangulation polynomials of its nodes.



Triangulations of chirotope trees

O 122656, 1 116110,0 ‘ 141548,8

/

144635.8

9101, 1

1011078

128656.1 1485308

12188,8

108621.0

149387,

T 122328,0

36 nodes, each decorated with
a chirotope of size 9, adding up
to 254 elements.

Number of triangulations:
| T«| ~ 5.92966751.10'8°

computed exactly in a few
seconds using sage.



Computing triangulation polynomials

[ ]
X x3 x4

o First idea: enumerate all triangulations with Sage and deduce
the polynomial



Computing triangulation polynomials

[ ]
. .X* X* X*
X 3 4

o First idea: enumerate all triangulations with Sage and deduce
the polynomial — bug in Sage!

" A

python3.10 43,30 Go

FlorentKoechlinMachAir:~ florent$ sage

SageMath version 9.6, Release Date: 2022-85-15
Using Pythen 3.18.3. Type "help(}" for help.

: PointConfiguration.set_engine( 'internal');

: points = [[64374, 11701, [28595,16],[1162, 658], [28874, 33881, [29974, 943
i 61,

: [30590, 22299], [49434, 11393], (56042, 11982], [42392, 33338], [33404, 64
: 87811;

i p = PointConfiguration({peints);

: p_fine = p.restrict_to_fine_triangulations();

: ‘Llst trlangulatluns = list{p_fine.triangulations()) #does not seem to ternm

.-’usr/local/b sage. line 2@: B4@61 Killed: 9 Jusr/binfenv - PATH="$PATH" $MIN_ENV "$SYMLINK"/wen
R g - )



Computing triangulation polynomials

[ ]
. .X* X* X*
X 3 4

o First idea: enumerate all triangulations with Sage and deduce
the polynomial — bug in Sage!

R

python3.10 43,30 Go

FlorentKoechlinMachAir:~ florent$ sage

SageMath version 9.6, Release Date: 2022-85-15
Using Pythen 3.18.3. Type "help(}" for help.

sage: PoimtConfiguration.set_enginel'internal'});

....: points = [[64374, 11701, [28595,16],[1162, 6581, [28874, 3308], [29974, 943
i 61,

[35595, 22299], [49434, 11393], [56042, 11982], [42392, 33338], [33404, 64
....: B7811;

vuwni p = PointConfiguration({peints);

....: p_fine = p.restrict_to_fine_triangulations();

L.t list trlangulatlnns = list{p_fine.triangulatiens(}) [ r

r
!usr/local/bln/sage hne 20: 54%1 Killed: 9 Jusr/binfenv - PATH="$PATH" $MIN_ENV "$SYMLINK"/wen

o Better idea: adapt the O(n?2") algorithm of [Alvarez and
Seidel 2013] to compute the polynomial



Chain Triangulations: an analyzable case
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© Xn+1 = Xny,MW1 X1

o We introduce P,(y) def Py, yr(¥) and Qs (x,y) = x3y3



Chain Triangulations: an analyzable case

yik X2 ynf

© Xn+1 = Xny,MW1 X1

o We introduce Pa(y) & Py, () and Qy sz (x, ) = x3y3

o Pn1(y) = Xa b2 Rap(y) [y1Pa(y) [X"1Qu(x, y)



Chain Triangulations: an analyzable case

II %8 X3 Ii II Yn—1 Ii

© Xn+1 = Xny,MW1 X1
o We introduce P,(y) &' Py, yr(¥) and Qs (x,y) = x3y3
o Pn1(y) = Xa b2 Rap(y) [y1Pa(y) [X"1Qu(x, y)

Th

1
Rab y 37 a+b l 3

e
In Xp yn+1 §-

yn+1



Chain Triangulations: an analyzable case

Tn B . .
2 X3 V-1 X Ya
4

4

3
o Pryi(y) — u{TyPn(Y) = —(1{7},)2Pn(1) + 1}/—7}/"3;»(1)

o Let us introduce F(y, u) def Zkzl Pk(y)uk

(1 - (1“”;)2> Fly,u) = uy® (1 - fy)z F(1,u)+ %@F(l, u))



Chain Triangulations: an analyzable case

Tn B . .
2 X3 V-1 X Ya
4 4 3

Poia(y) = gz Paly) = — o Pall) + 155 Ph(1)

Let us introduce F(y,u) < > i1 Prly)u®

e}

(e]

(1 - (1“y;)2> Fly,u) = uy® (1 - fy)z F(1,u)+ ﬁa},F(L u))

o

Kernel method: find y(u) analytic canceling the kernel.
We obtain F(1,u) =3 -, |Ty,|u" (A066357 !) and

o

T 3-2v2 16"
’ X,,‘ ~n—oo 7\/% 32




Conclusion

o We have seen a canonical chirotope decomposition
o Natural sens of "factorizing” chirotope

o The decomposition can be used to compute the number of
triangulations of complex chirotopes

Many open questions:

o What is the complexity of computing the canonical
decomposition?

o Can more complex configurations be analyzed analytically?

o Can we unify it with other classical constructions?



Further work: faster computation

X

el = D (1P () °1Pey (v)

a,b>2
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X

Pyxs(x +1) Pgy«(x+1)
|77€|: ) .
x+1 x+1 X




Further work: faster computation

X

IT,| = Py (x + 1) Pey+(x+1)
" x+1 7 x4+1 .

25/28



Further work: faster computation

X

IT,| = Py (x + 1) Pey+(x+1)
" x+1 7 x4+1 .

25/28



Further work: Binary chain

o Start with x1 =

o Recursively build t,:

tn+l =

o Then if Qp(x) = (x+ 1)Pp(x+1):

S

Za,x = Qnt1(x) = 1)* (Za, )
=k

i=0 k=2

o Not analyzable for now, but greatly improves the possible
number of iterations



Further work: Koch Chains [Rutschmann and Wettstein
2022]

Ky

o Chain: x-increasing sequence of points xi, ..., X, such that
[xixi+1] is forced in every triangulation

o every known configuration with many triangulations is a chain

o Every chain can be decomposed with only two operators A
and V, and the basic chain of two points [Rutschmann and
Wettstein 2022]



Further work: Koch Chains [Rutschmann and Wettstein
2022]

Ky

Koch chain: best known configuration with maximal number

(@]

of triangulations ~ 9.08"
o Construction similar to ours (with "phantom” proxies)
o Similar techniques for counting triangulations

o We managed to generalize their construction beyond chains,
but it seems that only chains reach the best number of
triangulations



Further work: Koch Chains [Rutschmann and Wettstein
2022]

Ky

Koch chain: best known configuration with maximal number
of triangulations ~ 9.08"

o

e}

Construction similar to ours (with "phantom” proxies)

o

Similar techniques for counting triangulations

o We managed to generalize their construction beyond chains,
but it seems that only chains reach the best number of
triangulations

Conlusion: still many things to look at! Thank you!



