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1. |Urns models|

Uniform
sampling with
replacement

/ & add a black ball
K‘

o add a white ball

> an urn containing balls of two colours

6 )

» rules for urn evolution
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Balanced Pélya urns

(a ﬂ) a,0 €Z, pB,vyeN

v 4
Balanced urn : |a+ 3 = 7 + d | (deterministic total number of balls)
A given initial configuration (ag, bg) : ag balls e (counted by x)

bo balls o (counted by y)

Definition
History of length n : a sequence of n evolutions (n rules, n drawings)
a bZ
X ¥y Z Z Hn abX'y
n,a,b

Hp.ap : number of histories of length n, beginning in the configuration
(a0, bo), and ending in (a, b)
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Combinatorics of histories - Example
We consider this urn ((1) (1)> with (ag, bo) = (1,1).

H(x,y,z) =

Xy
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Combinatorics of histories - Example
We consider this urn ((1) (1)> with (ag, bo) = (1,1).

Z U H(x,y,z) =

® O Xy

4 + (0 +x%y)z
® O \
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Combinatorics of histories - Example
We consider this urn ((1) (1)> with (ag, bo) = (1,1).

[e}e o]

H(x,y,z) =

< .
A

+ (0 +x%y)z
® O \

L]
[eNeNel

(X ]
[e)ye]
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Combinatorics of histories - Example

We consider this urn ((1) (1)> with (ag, bo) = (1,1).

K
A

L.C
N

[e}e o]

L]
[eNeNel

(X ]
[e)ye]

LN ]
(o} e]

H(x,y,z) =
xy
Ry

3 2.2 3.,\2%
+  (2xy° +2x%y° +2x°y) 5
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Combinatorics of histories - Example
We consider this urn ((1) (1)> with (ag, bo) = (1,1).

[e}e o]

/NN NN /RN /N

: H(x,y.2) =
/ ® O
AN Xy
et + (xv? +x%y)z

(o} e]

3 2.2 3.,\2%
+  (2xy° +2x%y° +2x°y) 5

N

+
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Various behaviours

Problem : Understand the urn composition after n steps, and asymptot-
ically when n tends to co.
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Various behaviours

Problem : Understand the urn composition after n steps
ically when n tends to co.

(9 By

, and asymptot-

: | ".tgﬂw.ﬁllﬁﬁl"”l\lllll
: Y

Triangular 3 X 3 urn

Pélya urn Preferential growth urn
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Probabilistic results

Urn (a ﬂ) Ratio p = "’
o+

v 4

» Small urns : p < %
Gaussian limit law [Smythe96] [Janson04]

» Large urns: p > %
Non gaussian laws [Mahmoud] [Janson04]
[Chauvin—Pouyanne-Sahnoun11]
Tools :
e embedding in continuous time [Jan04] [ChPoSall]

e martingales, central limit theorem

7/35



Balanced urns and analysis

> First steps : [Flajolet—Gabarro—Pekari05], Analytic urns

> [Flajolet-Dumas—Puyhaubert06], on urns with negative coefficients,
and triangular cases

» [Kuba—-Panholzer-Hwang07], unbalanced urns

Analytic approach : theorem [FIDuPu06]

H = X ybo

bo)
Urn (a ﬂ) and { (20, %0 = . X = Xotlyp
) a+pB=v+4 with v o— xvys
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Isomorphism proof

Differenciate = Pick

Oclxx ... x] = (¥x...x) + (xX...

XOx[xx ... x] = (xx...x)+ (xx...

Let ® = x*t1yB9, + x"*y‘”lay

Then

I

@[Xayb] _ aXa+ayb+[-3 + bXa+'yyb+5
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Counting histories - Example

Take the urn (é (1)> and (ap, bo) = (1,1).

[e}e o]

/NN NN /RN /N

o Hix,y.2) =
/ ® O
o5 S xy
g - (92 +x%y)z

(o} e]

+ (2xy3 +2x%y2% + 2x3y)§

5

+

9/35



Isomorphism proof

Differenciate = Pick

Oclxx ... x] = (¥x ... x) + (xX...x)+ ...+ (xx...%)
XOx[xx ... x] = (xx...x)+ (xx...x)+ ...+ (xx...x)
Let ® = x21yPo, + x7yot19,

Then | D[x?y?] = axatoybt0 4 pxatvyb+o

gn[xaoybo] — Z Hn,a,bxayb
a,b

H(x,y,z ZCD [xa°yb°]

n>0
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Isomorphism proof

H(x,y,z) ZTD [xa°yb°]
n>0

H(X(t) => o7 [x

n>0

Then t =0, and it's over !!

Let (X(t), Y(t)) be solu-

tion of

{3 =

Xatlys X(t=
X7 yott Y(t=
d:(X?YP)

aXa 1XYb 4 pxayb-1y

_ ‘aXa+o¢ ybHB L pxaty yb+s ‘

or(xay®

n

V()] =

)

=X(t+2)*Y(t+z)>

=" [Xayb] X X

y—=Y
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2. |Urns and random trees]

» Motivation : quantify the fraction of tautologies among all logic
formulas having only one logic operator : implication. [Maillerl11]

> Probabilistic model : uniform growth in leaves (BST model)

» choose randomly a leave
> replace it by a binary node and two leaves

N\
/N /N
/\

o o
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2. |Urns and random trees]

» Motivation : quantify the fraction of tautologies among all logic
formulas having only one logic operator : implication. [Maillerl11]

> Probabilistic model : uniform growth in leaves (BST model)

» choose randomly a leave
» replace it by a binary node and two leaves

7 %
/N /N
7%, AR

o —

/N

o

a
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A 3 x 3 urn model

3 colors, Corresponding
with rules : urn :
V — eV 0 1 0
e — XX 0o -1 2
X — XX 0 0 1

Generating function of histories

H(y,z) = exp <|n (1_12> +(y - 1)z>

z counts the length of history,
y counts the number of e balls.
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Poisson Law in subs-trees

Let Uk, be the number of left sub-trees of of size k directly hanging on
the right branch of a random tree of size n.

Theorem

» U, converges in law, Uy, — Uj,
n—oo

» U; ~ Poisson (1), with rate of convergence O (i—?)
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Poisson Law in subs-trees

Let Uk, be the number of left sub-trees of of size k directly hanging on
the right branch of a random tree of size n.

Theorem

» U, converges in law, Uy, — Uj,
n—oo

» U; ~ Poisson (1), with rate of convergence O (i—?)

Generalisation With a (k +2) x (k +2) urn

Theorem

> Uy n converges in law, Ux , — Uk,
n—oo

n!

» U ~ Poisson (%) with rate of convergence O ((2,().1)_
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3. |An urn for k-trees)

Motivation : model of graphs [Panholzer-Seitz 2010]

Definition
A k-tree T is
» either a k-clique

> or there exists a vertex f with a k-clique as neighbor and T\f is a
k-tree

Ordered : distinguishable children.
Increasing : vertices labelled in apparition order
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Definition
A k-tree T is
» either a k-clique

> or there exists a vertex f with a k-clique as neighbor and T\f is a
k-tree

Ordered : distinguishable children.
Increasing : vertices labelled in apparition order

increasing ordered 1-tree (or PORT)
; I
OROIONOIONO)
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3. |An urn for k-trees)

Motivation : model of graphs [Panholzer-Seitz 2010]

Definition
A k-tree T is
» either a k-clique

> or there exists a vertex f with a k-clique as neighbor and T\f is a
k-tree

Ordered : distinguishable children.
Increasing : vertices labelled in apparition order

©)
0

)

®
®
®
oo

increasing ordered 2-tree
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Urn Model

()
OO
ll
?HH
lll

14/35



Urn Model

/
?H@:

o For 1-trees
OO, (0 2)
. i 11
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Urn Model

. oy
I N
- N

For k-trees

(5 0)
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Urn Model

/
e

For 1-trees
0 2
11

For k-trees

(5 0)

di’zH(x,z)

H(x,2)k(H(x,z) = x + 1)2

1
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Singularity analysis

4z H(x. 2)
H(x,z)k (H(x,z) — x + 1)
Ingredients :

» partial fraction expansion

> integration

» variable substitution

- H exp ((1 - k> (1- xl)’> = exp (—1 — b1 (Ki(b) — 2))

some analysis...

0~ () (+0())
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Normal limit law

If X,, counts the number of (I balls in the urn U; after n draws.
Case k = 1 : number of leaves in a PORT of size n.

Theorem
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Local limit law

Theorem
Let ppx = P{X, = k}. The X, distribution satisfies a gaussienne local
limit law with rate of convergence O (%) i.e.
1
< —.

n

NG 1 e
sup ?pn,L2n/3+t\/ﬁ/3J - Ee e

teR

@P{x,,: {%"Hﬁj
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Large deviations

» exponentially small bound on the devation from the mean : quantify

rare events.

Theorem

> if 0.42 <t <2/3, P(X,
» if 2/3 <t <0.73, P(X,

(left tail)
(right tail)

0.204

0,154

0,104

0.6

0.7

0.8

09
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4. |Preferential growth urns

Motivation : characterization of additive 2 x 2 urns (positive coefficients).
Approach : finding a class of urns with “nice” generating functions.

Theorem [M12]

2a 16} .
The balanced urns class (a a+6>’ with « > 0, 8 > 0, has an

algebraic bivariate generating function.

The histories GF H(x, 1, z) cancels the following polynomial in Y

(z—a — b(x)) Y?>**P 4 b(x) Y™ + a

—Q

-1 and a= (2a 4+ 8)"L.

with b(x) = Xa 5
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Proof

N — 2041 vy B .
Differential system : { ); )?i ya+§+1 X = %X
X Y
— — xayh
Xo+l = ya+l XY

y - —x —Q

L ot X oY oy _ (X )
2a+ a+p a+f 20+ 3
Balanced urn a+ b = ag + by + no. We set y = 1.

x *—-1 1 x *—-1 1
_ _ Y2a+6+ y(x_,'_ =0
(Z a+t B 2a+ﬂ) a+t B 2a+ 0
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First observations

The balance 0 = 2a + (3 The ratio p = ﬁ < %
For x = 1, equation becomes : (z — o 1)Y? +0671 =0
Thus, for (ag, bo) = (0, 1)

npl/o—1
H(1.1.2) = (1 — oz)" /7 LT
(1,1,2) = (1 —02z2) h F(1/0)

Proposition
Let X,, be the random variable counting the number of x-colored balls in
the urn after n steps. Then,

_a20+8) o ) o0 o« -1
B(Xn) = =075 "Tar ATy [+a+ﬁ+o(" 1),
— a3(2a + ﬁ) 2048
V) = = n+0<n x)
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Examplea =1, =1

21 X — XXY
1 2 y — Xyy

Preferential growth
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Saddle-point method for x=1

1\ ;1

1 Y(z2) q

Yn = i |zt

Yo = 32": ]f a(w)h(w)™ Ldw
a(w) = 1-w
1
hlw) = w(w? — 3w + 3)

/ _ _3(W_ 1)2
hw) = w2(w? — 3w + 3)?

integrate with a right contour...

w i [h(w)|
3 poles
1 double saddle-point in w =1
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Saddle-point method for x=1 (next)

t € [0..L] . e
(1) w(t) =1+ te/3 ) :
(2) W(t) =14+ te—i27r/3 // (1) b
/
/
3 6 ’ . !
n __ _ | L
h(w(t))" = exp (—n(t* + O (t°)) |
\
Choose L... nL3 — oo and nl® — 0 Y @
We set L ~ n~1/4 N .
/ —|—/ : / ve "’ du and / exponentially small
(1) 2 Jo (3)
_ 3 —2/3 ~11/12
Y= F/3) (2P0 ()
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Saddle-point method for x # 1

x1—-1 1 3 x -1 1
(Z— ) —§>Y+ 2 Y+§—0

3n+1 1
Yo = 5 j{ax(w)hx(w)""‘ dw
W (1) =H(x") =0 =
w = | hx(w)]
3 poles
2 saddle-points in w = 1 and
_ w=x"1
- h . x=1+—"—, ] <1
// \ \/— | |
/
| 0 . 3" —-2/3 3 . 3~2
. *, ~ —_ =
I\ ¥n(X) Ta3) exp( V/nk = )
\
\ o (x - -
. J . pn(x) = }; (1; exp (3/n% — 3%%)
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Gaussian limit law

Let X, be the random variable couting the number of e balls in the urn
after n steps.

Theorem

x
\
NI
S

N

t :<D(t)+0(

Sl
N

»g
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Local limit law

Theorem
We set p, x = P{X, = k}. The X, distribution satisfies a local limit law
of gaussian type with speed of convergence O (%) i.e.

1

v3n 1 <L

42
1 et/

sup 2 pn,|_3n/2+t\/37n/2j - /271'

teR

S
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Large deviations

» Exponentially small bound on the large deviation with regards to the
mean : quantification on rare events

Theorem
> si 042 < t <2/3, P(X, < tn) ~ e "W (left tail)
> si2/3<t<0.73 P(X,>tn)~ e "W (right tail)

0.204

0,154

0,104
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General case
—o_q 1 —o_q 1
(z—x - )Y2a+ﬂ+x Yo 4 —0

a+p 2+ (3 a+ 0 2a + (3

n+1

Va(x) = 02i7r %ax(w)hx(w)”“dw

he(w) : 0 =2a+ 3 poles

///_\. ®
/
r i
/ \\\\\\\\\\\
Saddle-point in 1 { s @
with multiplicity « + 8 — 1 \
\
The other « saddle-points Ve
inl—(1—x @)Y/e T s .

x~ 140 Y2)and L~ n 71

) = T (L7 5 )

r(1/0) 2o+ )
[e%e) ~ (,YSO' ~2
i-on ()
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Until now... on balanced urns
. Gen.

Urn Model Objects Fun Tools Laws
010 Poisson Law
0—12 boolean L. .

00 1 formulas explicit exact formulas with rate of
triangular convergence
limit and local
(k*1 2) increasing o singularity (gauss.) laws,
k 1 implicit .
additive 1 parameter ord. k-trees analysis and large
deviations
(coalescing) limit and local
coalescin
2a B preferential implicit, -g (gauss.) laws,
a atf h lcebrai saddle-point dl
additive 2 parameter growt algebraic method an ) a.rge
deviations

a generic approach for all algebraic balanced additive urn models
(Guess'N’Prove from A. Bostan)
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5. |What's next?

1. Diminishing urns
2. Unbalanced urns

3. Balanced urns with random entries
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1. Diminishing balanced urns

’C:(_Cj _§)7 a+B=v+5  a B, 7, >0
X = X-otly-p b
{ Y = X7yl K= X%*y™
X =X(x,y,2) Y =Y(x,y,2)
X:X(Xv}/v_z)il \N/: Y(Xv)@_z)il
Then
v _ yvat+l v ~ ~
{)f e H:(O‘ ﬂ) H=X%yb
Y X7 Y6+1 Y 0
K(x,y,2) = [x=°y=°) H(x ",y %, —2)*
K(x,y,z) j{% ’_Z) du dv
~ 2in (x—u)(y —v)
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1. Diminishing balanced urns

’C:(_Cj _§)7 a+B=v+5  a B, 7, >0
X — X-atly-p
{ Y = X7yl K= X%y
X =X(x,y,2) Y =Y(x,y,2)
X:X(Xv}/v_z)il \N/: Y(Xv)/v_z)il
Then
Y _ yvat+l v ~ ~
{)f e H:(O‘ ﬂ) H=X%yb
Y X7 Y5+1 Y 1)
K(x,y,2) = POy Hx y ™t —2) 7
K(x,y,z) j{% ’_Z) du dv
~ 2ir (x—u)(y —v)

To be continued...
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2. Unbalanced urns
The differential system does not hold anymore...

¢n(X7 }/) = Z pn,a,bXa.yb
a,b

a b a  ata, b+p b a+y  b+5
X —)a+bx y +a+bx y

33/35



2. Unbalanced urns
The differential system does not hold anymore...

X yv anabxaybta+b

?7 a .
a b a+b Xa+a b+ﬁta+b+u+ﬂ+ a+y

Xyt a = y b+3 patbty+d

—FX

a+b y
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2. Unbalanced urns
The differential system does not hold anymore...

+b
XY7 anabx t?

?7 a .
X2 ta+b xata b+ ta+b+u'+ﬂ + xaty b+d ta+b+'y+6
y a+b y a+b y
t dw tath
j Xa bta+b _ Xa bWa+b _ Xa b
[x7y "] X W =Y

D = xTy Pty 4 xVy T,
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2. Unbalanced urns
The differential system does not hold anymore...

+b
XY7 anabx t?

DoJ 4 b bta+p b iy bis,atbiots
Xaybta+b Xa+ay +ﬁta+ By X fyy t 0%
at+b at+b
t dw tatb
J[x? bta+b _ x? bWa+b — x? b
[xTy "t Xy W =Y

D= x°‘+1yﬁ o9, + X7y5+1 t“’*‘say
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2. Unbalanced urns
The differential system does not hold anymore...

$n(X,¥,1) =D Pnapx’y’t""
a,b

DoJ 4 b bta+p b iy bis,atbiots
Xaybta+b Xa+ay +ﬁta+ By X fyy t 0%
at+b at+b
t dw tatb
J[x? bta+b _ x? bWa+b — x? b
[xTy "t Xy W =Y

D= x°‘+1yﬁ o9, + X7y5+1 t“’*‘say

Pni1 =D 0 I(¢n)
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2. Unbalanced urns
The differential system does not hold anymore...

$n(X,¥,1) =D Pnapx’y’t""
a,b

DoJ 4 b bta+p b iy bis,atbiqts
Xaybta+b Xa+ay +[3t_a+ By X fyy t 0%
a+b a+b
t dw tatb
5 X2 bta+b — X2 bWa+b — x? b
[x7y "] Xy W =Y

D= x°‘+1y5 o9, + X7y5+1 t“’*‘say

Gni1 =D 0 I(¢n)
Let ¥n = I(¢n). i.e. Yn =3, 4 Pnabx’y’ iy
¢n = tat'(/)n and t6t¢n+1 - @('(/Jn)
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2. Unbalanced urns
The differential system does not hold anymore...

$n(X,¥,1) =D Pnapx’y’t""
a,b

DoJ 4 b bta+p b iy bis,atbiqts
Xaybta-&-b_)ixa-ﬁ—ay +ﬁta+ by~ _x fyy t v
a+b a+b
¢ dw tath
5 X2 bta+b — X2 bWa+b — x? b
[x7y "] Xy W =Y

D= x°‘+1y5 o9, + va5+1 t“’*day

¢n+1 =Do j(¢n)

A a+th

Let Yo = I(6n). i€ Yo=Y, 5 Pnasx®yP iy
¢n = tatl/),, and t8t¢n+1 - @('(/Jn)

Finally t0; = x0x + y0,, thus W = %" 4,z" verifies

[(x = 2x*TyP)0, + (v — 2x7y° )9, ] (W(x,y,2)) = xToyP
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3. Balanced urns with random entries

(188 1§B>, with B ~ Ber(p)

01 . 10 .
(1 O) with proba p <0 1) with proba 1 — p

Again, H(x,y,z) = X(x,y,2)®* Y(x,y,z)>* , with

X = pXY+(1-p) X2
Y = pXY+(1-p)Y?

Probability to have a black balls and b white balls after n draws:

[xy*z"|H(x, y, 2)
[z"H(1,1, z)

Pn,a,b =

True for any balanced urn (%, 7). with o constant, and A, B
random variables on a finite state space {—1, 0, 1,..., o}.
[M., Mahmoud, 2012]
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3. Balanced urns with random entries

01 . 10 .
(1 0) with proba p (0 1> with proba 1 —p
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