Pólya Urns An analytic combinatorics approach

Basile Morcrette

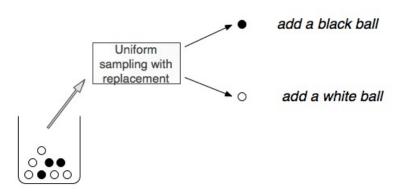
Algorithms project, INRIA Rocquencourt. LIP6, UPMC

CALIN Seminar 07/02/2012

Outline

- 1. Urn model
- 2. An exact approach boolean formulas
- 3. Singularity analysis family of *k*-trees
- 4. Saddle-point method preferential growth models
- 5. Towards other urn models unbalanced, with random entries

1. Urns models



- ▶ an urn containing balls of two colours
- ▶ rules for urn evolution

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Balanced Pólya urns

$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \quad \alpha, \delta \in \mathbb{Z}, \quad \beta, \gamma \in \mathbb{N}$$

Balanced urn : $\alpha + \beta = \gamma + \delta$ (deterministic total number of balls)

A given initial configuration (a_0, b_0) : a_0 balls \bullet (counted by x)

 b_0 balls \circ (counted by y)

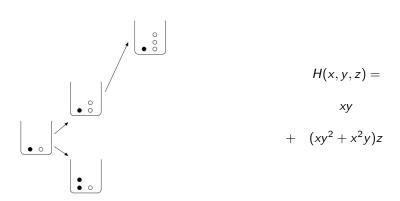
Definition

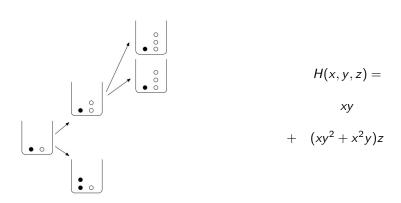
History of length n: a sequence of n evolutions (n rules, n drawings)

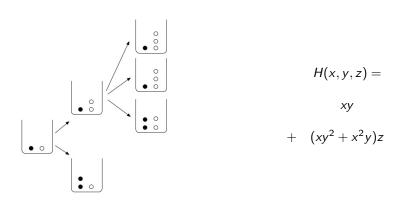
$$H(x,y,z) = \sum_{n,a,b} H_{n,a,b} x^a y^b \frac{z^n}{n!}$$

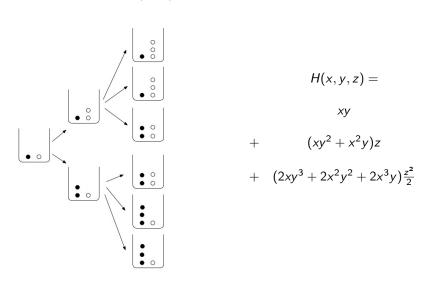
 $H_{n,a,b}$: number of histories of length n, beginning in the configuration (a_0,b_0) , and ending in (a,b)

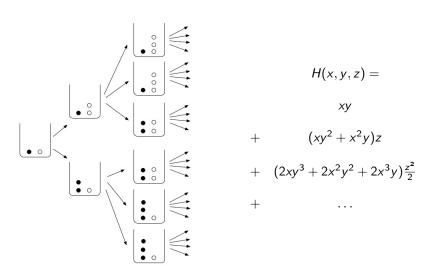
$$H(x, y, z) = xy$$









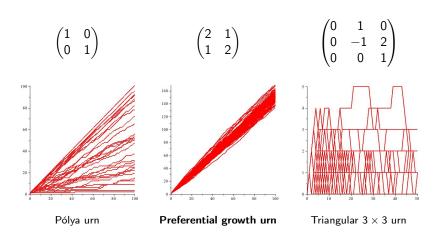


Various behaviours

Problem : Understand the urn composition after n steps, and asymptotically when n tends to ∞ .

Various behaviours

Problem : Understand the urn composition after n steps, and asymptotically when n tends to ∞ .



Probabilistic results

$$\mathsf{Urn}\,\begin{pmatrix}\alpha&\beta\\\gamma&\delta\end{pmatrix}\qquad\qquad\mathsf{Ratio}\;\rho=\frac{\alpha-\gamma}{\alpha+\beta}$$

▶ Small urns : $\rho \leqslant \frac{1}{2}$

Gaussian limit law [Smythe96] [Janson04]

▶ Large urns : $\rho > \frac{1}{2}$

Non gaussian laws [Mahmoud] [Janson04] [Chauvin–Pouyanne–Sahnoun11]

Tools:

- embedding in continuous time [Jan04] [ChPoSa11]
- · martingales, central limit theorem

Balanced urns and analysis

- ► First steps : [Flajolet–Gabarro–Pekari05], Analytic urns
- ► [Flajolet–Dumas–Puyhaubert06], on urns with negative coefficients, and triangular cases
- ► [Kuba-Panholzer-Hwang07], unbalanced urns

Analytic approach: theorem [FIDuPu06]

Urn
$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$
 and $\begin{cases} (a_0, b_0) \\ \alpha + \beta = \gamma + \delta \end{cases} \implies \text{with } \begin{cases} \dot{X} = X^{\alpha+1} Y^{\beta} \\ \dot{Y} = X^{\gamma} Y^{\delta+1} \end{cases}$

Isomorphism proof

Differenciate = Pick

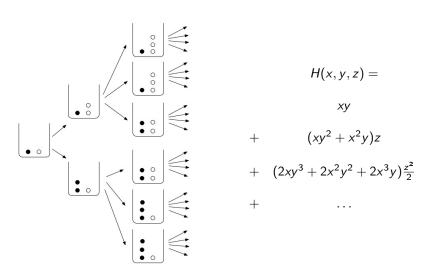
$$\partial_x[xx \dots x] = (\cancel{x}x \dots x) + (\cancel{x}\cancel{x} \dots x) + \dots + (\cancel{x}x \dots \cancel{x})$$
$$x\partial_x[xx \dots x] = (\cancel{x}x \dots x) + (\cancel{x}x \dots x) + \dots + (\cancel{x}x \dots \cancel{x})$$

Let
$$\mathfrak{D} = x^{\alpha+1}y^{\beta}\partial_x + x^{\gamma}y^{\delta+1}\partial_y$$

Then $\mathfrak{D}[x^ay^b] = ax^{a+\alpha}y^{b+\beta} + bx^{a+\gamma}y^{b+\delta}$

Counting histories - Example

Take the urn $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $(a_0,b_0)=(1,1).$



Isomorphism proof

$$Differenciate = Pick$$

$$\partial_x[xx\dots x] = (\cancel{x}x\dots x) + (\cancel{x}\cancel{x}\dots x) + \dots + (xx\dots\cancel{x})$$

$$x\partial_x[xx\dots x] = (\cancel{x}x\dots x) + (x\cancel{x}\dots x) + \dots + (xx\dots \cancel{x})$$
Let $\mathfrak{D} = x^{\alpha+1}y^\beta\partial_x + x^\gamma y^{\delta+1}\partial_y$
Then
$$\mathfrak{D}[x^ay^b] = ax^{a+\alpha}y^{b+\beta} + bx^{a+\gamma}y^{b+\delta}$$

$$\mathfrak{D}^n[x^{a_0}y^{b_0}] = \sum_{a,b} H_{n,a,b}x^ay^b$$

$$H(x,y,z) = \sum_{n\geq 0} \mathfrak{D}^n[x^{a_0}y^{b_0}] \frac{z^n}{n!}$$

Isomorphism proof

Differenciate = Pick
$$x \partial_x [xx \dots x] = (\underline{x}x \dots x) + (x\underline{x} \dots x) + \dots + (xx \dots \underline{x})$$

$$\mathbf{\mathfrak{D}} = x^{\alpha+1} v^{\beta} \partial_x + x^{\gamma} v^{\delta+1} \partial_x$$

$$\mathfrak{D}[x^{a}y^{b}] = ax^{a+\alpha}y^{b+\beta} + bx^{a+\gamma}y^{b+\delta}$$

$$\mathfrak{D}^n[x^{a_0}y^{b_0}] = \sum_{a,b} H_{n,a,b}x^a y^b$$

$$H(x, y, z) = \sum_{n \ge 0} \mathfrak{D}^{n} [x^{a_0} y^{b_0}] \frac{z^{n}}{n!}$$

Let (X(t), Y(t)) be solu-

$$= X^{\alpha+1} Y^{\beta} \qquad X(t=0) = x$$
$$= X^{\gamma} Y^{\delta+1} \qquad Y(t=0) = y$$

$$\partial_{t}(X^{a}Y^{b})$$

$$= aX^{a-1}\dot{X}Y^{b} + bX^{a}Y^{b-1}\dot{Y}$$

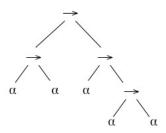
$$= aX^{a+\alpha}Y^{b+\beta} + bX^{a+\gamma}Y^{b+\delta}$$

$$H(X(t),Y(t),z)=\sum \partial_t^n \left[X(t)^{a_0}Y(t)^{b_0}\right]\frac{z^n}{n!}=X(t+z)^{a_0}Y(t+z)^{b_0}$$

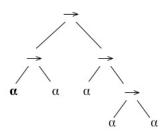
 $\partial_t^n(X^aY^b) = \mathfrak{D}^n\left[x^ay^b\right]_{X\to X}$

Then
$$t = 0$$
, and it's over !!

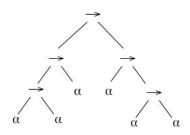
- Motivation : quantify the fraction of tautologies among all logic formulas having only one logic operator : implication. [Mailler11]
- ▶ Probabilistic model : uniform growth in leaves (BST model)
 - ► choose randomly a leave
 - replace it by a binary node and two leaves



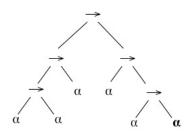
- Motivation : quantify the fraction of tautologies among all logic formulas having only one logic operator : implication. [Mailler11]
- ▶ Probabilistic model : uniform growth in leaves (BST model)
 - ► choose randomly a leave
 - replace it by a binary node and two leaves



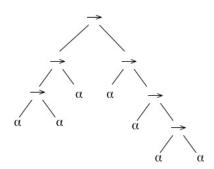
- Motivation : quantify the fraction of tautologies among all logic formulas having only one logic operator : implication. [Mailler11]
- ▶ Probabilistic model : uniform growth in leaves (BST model)
 - ► choose randomly a leave
 - replace it by a binary node and two leaves



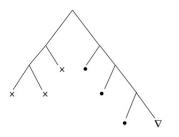
- Motivation : quantify the fraction of tautologies among all logic formulas having only one logic operator : implication. [Mailler11]
- ▶ Probabilistic model : uniform growth in leaves (BST model)
 - ► choose randomly a leave
 - replace it by a binary node and two leaves



- Motivation : quantify the fraction of tautologies among all logic formulas having only one logic operator : implication. [Mailler11]
- ▶ Probabilistic model : uniform growth in leaves (BST model)
 - choose randomly a leave
 - replace it by a binary node and two leaves



A 3×3 urn model



3 colors, with rules:

$$\begin{array}{ccccc} \nabla & \rightarrow & \bullet \nabla \\ \bullet & \rightarrow & \times \times \\ \times & \rightarrow & \times \times \end{array} \qquad \left(\begin{array}{cccc} 0 & 1 & 0 \\ 0 & -1 & 2 \\ 0 & 0 & 1 \end{array} \right)$$

Corresponding urn:

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & -1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

Generating function of histories

$$H(y,z) = \exp\left(\ln\left(rac{1}{1-z}
ight) + (y-1)z
ight)$$

z counts the length of history, y counts the number of • balls.

Poisson Law in subs-trees

Let $U_{k,n}$ be the number of left sub-trees of of size k directly hanging on the right branch of a random tree of size n.

Theorem

- $lackbox{ }U_{1,n}$ converges in law, $U_{1,n} \underset{n o \infty}{\longrightarrow} U_1$,
- ▶ $U_1 \sim \mathcal{P}$ oisson (1), with rate of convergence $O\left(\frac{2^n}{n!}\right)$.

Poisson Law in subs-trees

Let $U_{k,n}$ be the number of left sub-trees of of size k directly hanging on the right branch of a random tree of size n.

Theorem

- ▶ $U_{1,n}$ converges in law, $U_{1,n} \xrightarrow[n \to \infty]{} U_1$,
- ▶ $U_1 \sim \mathcal{P}$ oisson (1), with rate of convergence $O\left(\frac{2^n}{n!}\right)$.

Generalisation With a $(k+2) \times (k+2)$ urn

Theorem

- ▶ $U_{k,n}$ converges in law, $U_{k,n} \xrightarrow[n \to \infty]{} U_k$,
- ▶ $U_k \sim \mathcal{P}$ oisson $\left(\frac{1}{k}\right)$, with rate of convergence $O\left(\frac{(2k)^n}{n!}\right)$.

3. An urn for *k*-trees

Motivation: model of graphs [Panholzer–Seitz 2010]

Definition

A k-tree T is

▶ either a *k*-clique

• or there exists a vertex f with a k-clique as neighbor and $T \setminus f$ is a k-tree

Ordered: distinguishable children.

Increasing: vertices labelled in apparition order

3. An urn for *k*-trees

Motivation: model of graphs [Panholzer–Seitz 2010]

Definition

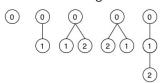
A k-tree T is

- ▶ either a *k*-clique
- or there exists a vertex f with a k-clique as neighbor and $T \setminus f$ is a k-tree

Ordered: distinguishable children.

Increasing: vertices labelled in apparition order

increasing ordered 1-tree (or PORT)



3. An urn for *k*-trees

Motivation: model of graphs [Panholzer–Seitz 2010]

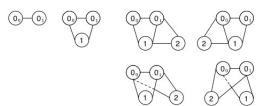
Definition

A k-tree T is

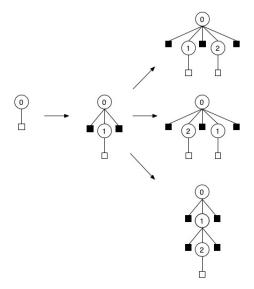
- ▶ either a *k*-clique
- or there exists a vertex f with a k-clique as neighbor and $T \setminus f$ is a k-tree

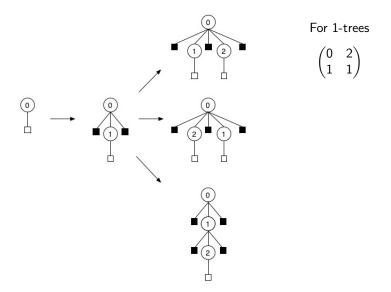
Ordered: distinguishable children.

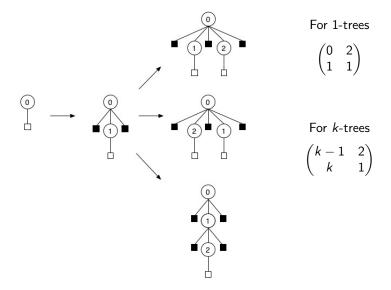
Increasing: vertices labelled in apparition order

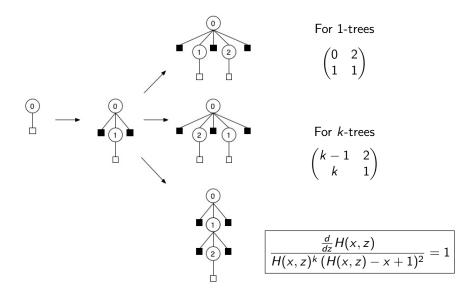


increasing ordered 2-tree









Singularity analysis

$$\frac{\frac{d}{dz}H(x,z)}{H(x,z)^k\left(H(x,z)-x+1\right)^2}=1$$

Ingredients:

- partial fraction expansion
- integration
- variable substitution

$$\mathbf{X}^{k} e^{-\mathbf{X}} \prod_{i=1}^{k-1} \exp\left(\left(1 - \frac{k}{i}\right) \left(1 - \mathbf{X}^{-1}\right)^{i}\right) = \exp\left(-1 - b^{k+1} \left(\mathbf{K}_{k}(b) - z\right)\right)$$

some analysis...

$$p_n(b) = \left(\frac{1}{(k+1)K_k(b)}\right)^n \left(1 + O\left(\frac{1}{n}\right)\right)$$

Normal limit law

If X_n counts the number of \square balls in the urn U_1 after n draws. Case k=1: number of leaves in a PORT of size n.

Theorem

$$\mathbb{P}\left\{\frac{X_n-\frac{2}{3}n}{\sqrt{\frac{n}{9}}}\leqslant t\right\}=\Phi(t)+O\left(\frac{1}{\sqrt{n}}\right).$$

Local limit law

Theorem

Let $p_{n,k} = \mathbb{P}\{X_n = k\}$. The X_n distribution satisfies a gaussienne local limit law with rate of convergence $O\left(\frac{1}{\sqrt{n}}\right)$, i.e.

$$\sup_{t\in\mathbb{R}}\left|\frac{\sqrt{n}}{3}p_{n,\lfloor 2n/3+t\sqrt{n}/3\rfloor}-\frac{1}{\sqrt{2\pi}}e^{-t^2/2}\right|\leqslant\frac{1}{\sqrt{n}}\,.$$

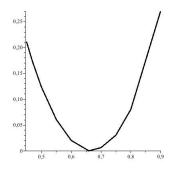
$$\mathbb{P}\left\{\frac{X_n - \frac{2}{3}n}{\sqrt{\frac{n}{9}}} \leqslant t\right\} \underset{n \to \infty}{\longrightarrow} \underbrace{\frac{\sqrt{3n}}{2}} \mathbb{P}\left\{X_n = \left\lfloor \frac{2n}{3} + t \frac{\sqrt{n}}{3} \right\rfloor\right\} \underset{n \to \infty}{\longrightarrow} \underbrace{\frac{\sqrt{3n}}{3}}_{\text{total substitutes}}$$

Large deviations

exponentially small bound on the devation from the mean : quantify rare events.

Theorem

- ▶ if 0.42 < t < 2/3, $\mathbb{P}(X_n \leqslant tn) \approx e^{-nW(t)}$ (left tail)
- ▶ if 2/3 < t < 0.73, $\mathbb{P}(X_n \geqslant tn) \approx e^{-nW(t)}$ (right tail)



4. Preferential growth urns

Motivation : characterization of additive 2×2 urns (positive coefficients). Approach : finding a class of urns with "nice" generating functions.

Theorem [M12]

The balanced urns class $\begin{pmatrix} 2\alpha & \beta \\ \alpha & \alpha+\beta \end{pmatrix}$, with $\alpha>0,\,\beta\geqslant0$, has an algebraic bivariate generating function.

The histories GF H(x, 1, z) cancels the following polynomial in Y

$$(z-a-b(x)) Y^{2\alpha+\beta} + b(x) Y^{\alpha} + a$$

with
$$b(x) = \frac{x^{-\alpha} - 1}{\alpha + \beta}$$
 and $a = (2\alpha + \beta)^{-1}$.

Proof

$$\frac{1}{2\alpha+\beta}Y^{-(2\alpha+\beta)} + \frac{x^{-\alpha} - y^{-\alpha}}{\alpha+\beta}Y^{-(\alpha+\beta)} = -\left(z - \frac{x^{-\alpha} - y^{-\alpha}}{\alpha+\beta} - \frac{1}{2\alpha+\beta}\right)$$

Balanced urn $a + b = a_0 + b_0 + n\sigma$. We set y = 1.

$$\left[\left(z - \frac{x^{-\alpha} - 1}{\alpha + \beta} - \frac{1}{2\alpha + \beta} \right) Y^{2\alpha + \beta} + \frac{x^{-\alpha} - 1}{\alpha + \beta} Y^{\alpha} + \frac{1}{2\alpha + \beta} = 0 \right]$$

First observations

The balance
$$\sigma=2\alpha+\beta$$
 The ratio $\rho=\frac{\alpha}{2\alpha+\beta}\leqslant\frac{1}{2}$ For $x=1$, equation becomes : $(z-\sigma^{-1})Y^{\sigma}+\sigma^{-1}=0$

Thus, for $(a_0, b_0) = (0, 1)$

$$H(1,1,z) = (1-\sigma z)^{-1/\sigma} \qquad h_n \sim \frac{\sigma^n n^{1/\sigma-1}}{\Gamma(1/\sigma)}$$

Proposition

Let X_n be the random variable counting the number of x-colored balls in the urn after n steps. Then,

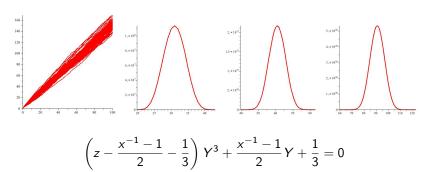
$$\mathbb{E}(X_n) = \frac{\alpha(2\alpha + \beta)}{\alpha + \beta} n + \frac{\alpha}{\alpha + \beta} \frac{\Gamma(\frac{1}{2\alpha + \beta})}{\Gamma(\frac{\alpha + 1}{2\alpha + \beta})} n^{\frac{\alpha}{2\alpha + \beta}} + \frac{\alpha}{\alpha + \beta} + O\left(n^{\frac{\alpha}{2\alpha + \beta} - 1}\right),$$

$$\mathbb{V}(X_n) = \frac{\alpha^3(2\alpha + \beta)}{(\alpha + \beta)^2} n + O\left(n^{\frac{\alpha + \beta}{2\alpha + \beta}}\right).$$

Example $\alpha = 1$, $\beta = 1$

$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \qquad \qquad \begin{array}{ccc} x & \rightarrow & x \, x \, y \\ y & \rightarrow & x \, y \, y \end{array}$$

Preferential growth



Saddle-point method for x=1

$$\left(z - \frac{1}{3}\right) Y^3 + \frac{1}{3} = 0$$

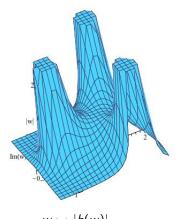
$$y_n = \frac{1}{2i\pi} \oint \frac{Y(z)}{z^{n+1}} dz$$

$$y_n = \frac{3^{n+1}}{2i\pi} \oint a(w)h(w)^{n+1} dw$$

$$\begin{cases} a(w) &= 1 - w \\ h(w) &= \frac{1}{w(w^2 - 3w + 3)} \end{cases}$$

$$h'(w) = \frac{-3(w - 1)^2}{w^2(w^2 - 3w + 3)^2}$$

integrate with a right contour...



 $w \mapsto |h(w)|$ 3 poles 1 double saddle-point in w = 1

Saddle-point method for x=1 (next)

$$t \in [0..L]$$
(1) $w(t) = 1 + te^{i2\pi/3}$
(2) $w(t) = 1 + te^{-i2\pi/3}$

$$h(w(t))^n = \exp\left(-n(t^3 + O(t^6))\right)$$
Choose $L... \ nL^3 \to \infty \ \text{and} \ nL^6 \to 0$
We set $L \sim n^{-1/4}$

$$\int_{(1)} + \int_{(2)} : \int_0^\infty ue^{-u^3} du \ \text{and} \ \int_{(3)} \exp(-n(t^{-11/12}))$$

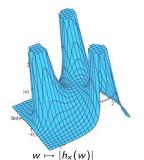
$$y_n = \frac{3^n}{\Gamma(1/3)} \left(n^{-2/3} + O(n^{-11/12})\right)$$

Saddle-point method for $x \neq 1$

$$\left(z - \frac{x^{-1} - 1}{2} - \frac{1}{3}\right) Y^3 + \frac{x^{-1} - 1}{2} Y + \frac{1}{3} = 0$$

$$y_n = \frac{3^{n+1}}{2i\pi} \oint a_x(w) h_x(w)^{n+1} dw$$

$$h_x'(1) = h'(x^{-1}) = 0$$



3 poles 2 saddle-points in w

2 saddle-points in
$$w = 1$$
 and $w = x^{-1}$

$$x=1+\frac{\tilde{x}}{\sqrt{n}},\ |\tilde{x}|<1$$

$$y_n(x) \sim \frac{3^n n^{-2/3}}{\Gamma(1/3)} \exp\left(\frac{3}{2}\sqrt{n}\tilde{x} - \frac{3}{8}\tilde{x}^2\right)$$

$$p_n(x) = \frac{y_n(x)}{y_n(1)} \sim \exp\left(\frac{3}{2}\sqrt{n}\tilde{x} - \frac{3}{8}\tilde{x}^2\right)$$

Gaussian limit law

Let X_n be the random variable couting the number of \bullet balls in the urn after n steps.

Theorem

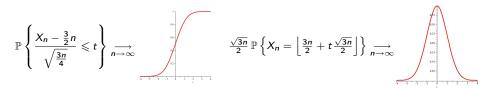
$$\mathbb{P}\left\{\frac{X_n-\frac{3}{2}n}{\sqrt{\frac{3n}{4}}}\leqslant t\right\}=\Phi(t)+O\left(\frac{1}{\sqrt{n}}\right).$$

Local limit law

Theorem

We set $p_{n,k} = \mathbb{P}\{X_n = k\}$. The X_n distribution satisfies a local limit law of gaussian type with speed of convergence $O\left(\frac{1}{\sqrt{n}}\right)$, i.e.

$$\sup_{t\in\mathbb{R}}\left|\frac{\sqrt{3n}}{2}p_{n,\lfloor 3n/2+t\sqrt{3n}/2\rfloor}-\frac{1}{\sqrt{2\pi}}e^{-t^2/2}\right|\leqslant \frac{1}{\sqrt{n}}\,.$$

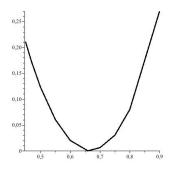


Large deviations

► Exponentially small bound on the large deviation with regards to the mean : quantification on rare events

Theorem

- ▶ si 0.42 < t < 2/3, $\mathbb{P}(X_n \leqslant tn) \approx e^{-nW(t)}$ (left tail)
- ▶ si 2/3 < t < 0.73, $\mathbb{P}(X_n \geqslant tn) \approx e^{-nW(t)}$ (right tail)



General case

$$\left(z - \frac{x^{-\alpha} - 1}{\alpha + \beta} - \frac{1}{2\alpha + \beta}\right) Y^{2\alpha + \beta} + \frac{x^{-\alpha} - 1}{\alpha + \beta} Y^{\alpha} + \frac{1}{2\alpha + \beta} = 0$$

$$y_n(x) = \frac{\sigma^{n+1}}{2i\pi} \oint a_x(w) h_x(w)^{n+1} dw$$

 $h_{x}(w): \sigma = 2\alpha + \beta \text{ poles}$

Saddle-point in $\frac{1}{\alpha}$ with multiplicity $\alpha + \beta - 1$

The other α saddle-points in $1 - (1 - x^{-\alpha})^{1/\alpha}$

$$x\sim 1+{\it O}(n^{-1/2})$$
 and $L\sim n^{-{1\over \sigma+1}}$

$$y_n(x) \sim \frac{\sigma^n n^{\frac{1-\sigma}{\sigma}}}{\Gamma(1/\sigma)} \exp\left(\frac{\alpha \sigma}{\alpha + \beta} \sqrt{n} \tilde{x} - \frac{\alpha^3 \sigma}{2(\alpha + \beta)^2} \tilde{x}^2\right)$$
$$p_n(x) \sim \exp\left(\frac{\alpha \sigma}{\alpha + \beta} \sqrt{n} \tilde{x} - \frac{\alpha^3 \sigma}{2(\alpha + \beta)^2} \tilde{x}^2\right)$$

Until now... on balanced urns

Urn Model	Objects	Gen. Fun.	Tools	Laws
$\begin{pmatrix} 0 & 1 & 0 \\ 0 & -1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$ triangular	boolean formulas	explicit	exact formulas	Poisson Law with rate of convergence
$\binom{k-1}{k} \binom{2}{1}$ additive 1 parameter	increasing ord. <i>k</i> -trees	implicit	singularity analysis	limit and local (gauss.) laws, and large deviations
$\begin{pmatrix} 2\alpha & \beta \\ \alpha & \alpha + \beta \end{pmatrix}$ additive 2 parameter	preferential growth	implicit, algebraic	(coalescing) saddle-point method	limit and local (gauss.) laws, and large deviations

a generic approach for all algebraic balanced additive urn models (Guess'N'Prove from A. Bostan)

5. What's next?

- 1. Diminishing urns
- 2. Unbalanced urns
- 3. Balanced urns with random entries

1. Diminishing balanced urns

$$\mathcal{K} = \begin{pmatrix} -\alpha & -\beta \\ -\gamma & -\delta \end{pmatrix}, \qquad \alpha + \beta = \gamma + \delta \qquad \alpha, \ \beta, \ \gamma, \ \delta \ge 0.$$

$$\begin{cases}
\dot{X} = X^{-\alpha+1} Y^{-\beta} \\
\dot{Y} = X^{-\gamma} Y^{-\delta+1}
\end{cases} \qquad K = X^{a_0} Y^{b_0}$$

$$X = X(x, y, z) \qquad Y = Y(x, y, z)$$

$$\tilde{X} = X(x, y, -z)^{-1} \qquad \tilde{Y} = Y(x, y, -z)^{-1}$$

Then

$$\begin{cases} \dot{\tilde{X}} &= \tilde{X}^{\alpha+1} Y^{\beta} \\ \dot{\tilde{Y}} &= \tilde{X}^{\gamma} Y^{\delta+1} \end{cases} \mathcal{H} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \qquad H = \tilde{X}^{a_0} \tilde{Y}^{b_0}$$

$$\boxed{K(x, y, z) = [x^{\geq 0} y^{\geq 0}] \ H(x^{-1}, y^{-1}, -z)^{-1}}$$

$$K(x, y, z) = \frac{1}{2i\pi} \oint \oint \frac{H(u^{-1}, v^{-1}, -z)^{-1}}{(x - u)(y - v)} du \ dv$$

1. Diminishing balanced urns

$$\mathcal{K} = \begin{pmatrix} -\alpha & -\beta \\ -\gamma & -\delta \end{pmatrix}, \qquad \alpha + \beta = \gamma + \delta \qquad \alpha, \ \beta, \ \gamma, \ \delta \ge 0.$$

$$\begin{cases} \dot{X} = X^{-\alpha+1} Y^{-\beta} \\ \dot{Y} = X^{-\gamma} Y^{-\delta+1} \end{cases} \qquad K = X^{a_0} Y^{b_0}$$

$$X = X(x, y, z) \qquad Y = Y(x, y, z)$$

$$\tilde{X} = X(x, y, -z)^{-1} \qquad \tilde{Y} = Y(x, y, -z)^{-1}$$

Then

$$\begin{cases} \dot{\tilde{X}} &= \tilde{X}^{\alpha+1} Y^{\beta} \\ \dot{\tilde{Y}} &= \tilde{X}^{\gamma} Y^{\delta+1} \end{cases} \mathcal{H} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \qquad H = \tilde{X}^{a_0} \tilde{Y}^{b_0}$$
$$\boxed{K(x, y, z) = [x^{\geq 0} y^{\geq 0}] \ H(x^{-1}, y^{-1}, -z)^{-1}}$$

 $K(x,y,z) = \frac{1}{2i\pi} \oint \oint \frac{H(u^{-1},v^{-1},-z)^{-1}}{(x-u)(y-v)} du dv$

To be continued...

$$\phi_n(x,y) = \sum_{a,b} p_{n,a,b} x^a y^b$$
$$x^a y^b \longrightarrow \frac{a}{a+b} x^{a+\alpha} y^{b+\beta} + \frac{b}{a+b} x^{a+\gamma} y^{b+\delta}$$

$$\phi_n(x,y,t) = \sum_{a,b} p_{n,a,b} x^a y^b t^{a+b}$$

$$x^{a}y^{b}t^{a+b} \xrightarrow{?} \frac{a}{a+b}x^{a+\alpha}y^{b+\beta}t^{a+b+\alpha+\beta} + \frac{b}{a+b}x^{a+\gamma}y^{b+\delta}t^{a+b+\gamma+\delta}$$

$$\phi_{n}(x,y,t) = \sum_{a,b} p_{n,a,b} x^{a} y^{b} t^{a+b}$$

$$x^{a} y^{b} t^{a+b} \xrightarrow{?} \frac{a}{a+b} x^{a+\alpha} y^{b+\beta} t^{a+b+\alpha+\beta} + \frac{b}{a+b} x^{a+\gamma} y^{b+\delta} t^{a+b+\gamma+\delta}$$

$$\Im[x^{a} y^{b} t^{a+b}] = \int_{0}^{t} x^{a} y^{b} w^{a+b} \frac{dw}{w} = x^{a} y^{b} \frac{t^{a+b}}{a+b}$$

$$\mathfrak{D} = x^{\alpha+1} y^{\beta} t^{\alpha+\beta} \partial_{x} + x^{\gamma} y^{\delta+1} t^{\gamma+\delta} \partial_{y}$$

$$\phi_{n}(x, y, t) = \sum_{a,b} p_{n,a,b} x^{a} y^{b} t^{a+b}$$

$$x^{a} y^{b} t^{a+b} \xrightarrow{\mathfrak{D} \circ \mathfrak{I}} \frac{a}{a+b} x^{a+\alpha} y^{b+\beta} t^{a+b+\alpha+\beta} + \frac{b}{a+b} x^{a+\gamma} y^{b+\delta} t^{a+b+\gamma+\delta}$$

$$\mathfrak{I}[x^{a} y^{b} t^{a+b}] = \int_{0}^{t} x^{a} y^{b} w^{a+b} \frac{dw}{w} = x^{a} y^{b} \frac{t^{a+b}}{a+b}$$

$$\mathfrak{D} = x^{\alpha+1} y^{\beta} t^{\alpha+\beta} \partial_{x} + x^{\gamma} y^{\delta+1} t^{\gamma+\delta} \partial_{y}$$

$$\phi_{n}(x,y,t) = \sum_{a,b} p_{n,a,b} x^{a} y^{b} t^{a+b}$$

$$x^{a} y^{b} t^{a+b} \xrightarrow{\mathfrak{D} \circ \mathfrak{I}} \frac{a}{a+b} x^{a+\alpha} y^{b+\beta} t^{a+b+\alpha+\beta} + \frac{b}{a+b} x^{a+\gamma} y^{b+\delta} t^{a+b+\gamma+\delta}$$

$$\mathfrak{I}[x^{a} y^{b} t^{a+b}] = \int_{0}^{t} x^{a} y^{b} w^{a+b} \frac{dw}{w} = x^{a} y^{b} \frac{t^{a+b}}{a+b}$$

$$\mathfrak{D} = x^{\alpha+1} y^{\beta} t^{\alpha+\beta} \partial_{x} + x^{\gamma} y^{\delta+1} t^{\gamma+\delta} \partial_{y}$$

$$\phi_{n+1} = \mathfrak{D} \circ \mathfrak{I}(\phi_{n})$$

$$\phi_n(x,y,t) = \sum_{a,b} p_{n,a,b} x^a y^b t^{a+b}$$

$$x^a y^b t^{a+b} \xrightarrow{\mathfrak{D} \circ \mathfrak{I}} \frac{a}{a+b} x^{a+\alpha} y^{b+\beta} t^{a+b+\alpha+\beta} + \frac{b}{a+b} x^{a+\gamma} y^{b+\delta} t^{a+b+\gamma+\delta}$$

$$\mathfrak{I}[x^a y^b t^{a+b}] = \int_0^t x^a y^b w^{a+b} \frac{\mathrm{d}w}{w} = x^a y^b \frac{t^{a+b}}{a+b}$$

$$\mathfrak{D} = x^{\alpha+1} y^\beta t^{\alpha+\beta} \partial_x + x^\gamma y^{\delta+1} t^{\gamma+\delta} \partial_y$$

$$\phi_{n+1} = \mathfrak{D} \circ \mathfrak{I}(\phi_n)$$
Let $\psi_n = \mathfrak{I}(\phi_n)$. i.e. $\psi_n = \sum_{a,b} p_{n,a,b} x^a y^b \frac{t^{a+b}}{a+b}$

$$\phi_n = t \partial_t \psi_n \quad \text{and} \quad t \partial_t \psi_{n+1} = \mathfrak{D}(\psi_n)$$

The differential system does not hold anymore...

$$\phi_{n}(x, y, t) = \sum_{a,b} p_{n,a,b} x^{a} y^{b} t^{a+b}$$

$$x^{a} y^{b} t^{a+b} \xrightarrow{\mathfrak{D} \circ \mathfrak{I}} \frac{a}{a+b} x^{a+\alpha} y^{b+\beta} t^{a+b+\alpha+\beta} + \frac{b}{a+b} x^{a+\gamma} y^{b+\delta} t^{a+b+\gamma+\delta}$$

$$\mathfrak{I}[x^{a} y^{b} t^{a+b}] = \int_{0}^{t} x^{a} y^{b} w^{a+b} \frac{dw}{w} = x^{a} y^{b} \frac{t^{a+b}}{a+b}$$

$$\mathfrak{D} = x^{\alpha+1} y^{\beta} t^{\alpha+\beta} \partial_{x} + x^{\gamma} y^{\delta+1} t^{\gamma+\delta} \partial_{y}$$

$$\phi_{n+1} = \mathfrak{D} \circ \mathfrak{I}(\phi_{n})$$

Let
$$\psi_n = \Im(\phi_n)$$
. i.e. $\psi_n = \sum_{a,b} p_{n,a,b} x^a y^b \frac{t^{a+b}}{a+b}$
$$\phi_n = t \partial_t \psi_n \quad \text{and} \quad t \partial_t \psi_{n+1} = \mathfrak{D}(\psi_n)$$

Finally $t\partial_t = x\partial_x + y\partial_y$, thus $\Psi = \sum_n \psi_n z^n$ verifies

$$\left[\left[(x-zx^{\alpha+1}y^{\beta})\partial_x+(y-zx^{\gamma}y^{\delta+1})\partial_y\right](\Psi(x,y,z))=x^{a_0}y^{b_0}\right]$$

3. Balanced urns with random entries

$$\begin{pmatrix} 1-\mathcal{B} & \mathcal{B} \\ \mathcal{B} & 1-\mathcal{B} \end{pmatrix}, \text{ with } \mathcal{B} \sim \mathrm{Ber}(p)$$

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ with proba } p \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ with proba } 1-p$$
Again, $H(x,y,z) = X(x,y,z)^{a_0} \ Y(x,y,z)^{b_0}$, with
$$\begin{cases} \dot{X} &= p \ X \ Y + (1-p) \ X^2 \\ \dot{Y} &= p \ X \ Y + (1-p) \ Y^2 \end{cases}$$

Probability to have a black balls and b white balls after n draws:

$$p_{n,a,b} = \frac{[x^a y^b z^n] H(x,y,z)}{[z^n] H(1,1,z)}.$$

True for any balanced urn $\begin{pmatrix} \mathcal{A} & \sigma^{-\mathcal{A}} \\ \sigma^{-\mathcal{B}} & \mathcal{B} \end{pmatrix}$, with σ constant, and \mathcal{A}, \mathcal{B} random variables on a finite state space $\{-1, 0, 1, \ldots, \sigma\}$. [M., Mahmoud, 2012]

3. Balanced urns with random entries

