
Wolfgang Mulzer
Institut für Informatik

Long Alternating Paths Exist

Pavel ValtrWolfgang Mulzer

Charles-University

Prague

FU Berlin
Berlin



2

The Problem

W. Mulzer and P. Valtr – Long Alternating Paths Exist

2n points, convex, n red, n blueGiven:

Want: (noncrossing) alternating path: alternate between red 
and blue, every point used at most once, no crossings

No!
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The Problem

W. Mulzer and P. Valtr – Long Alternating Paths Exist

Given:

Want: (noncrossing) alternating path: alternate between red 
and blue, every point used at most once, no crossings

Question: What is the longest alternating path? 
algorithmically easy (dynamic programming)

2n points, convex, n red, n blue
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The Problem

W. Mulzer and P. Valtr – Long Alternating Paths Exist

Given:

Want: (noncrossing) alternating path: alternate between red 
and blue, every point used at most once, no crossings

Question: What is the longest alternating path as a function of n, 
alt(n)? (min over all colorings) 

2n points, convex, n red, n blue
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Easy Lower Bound (Erdős, 1980s)

W. Mulzer and P. Valtr – Long Alternating Paths Exist

Take any halving line. 
One side has  n/2 red points. 
Other side has  n/2 blue points.
Connect into an alternating path with n points.
Thus: alt(n)  n
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Better Lower Bounds

W. Mulzer and P. Valtr – Long Alternating Paths Exist

Theorem [Kynčl, Pach and Tóth ‘08]: alt(n)  n + #runs/2 - 1 

run: maximal sequence of consecutive points of the same color 

Theorem [Mészáros‘11]: alt(n)  n + (n - 1) / #runs 

Corollary: alt(n)  n + (n) 
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Our Result

W. Mulzer and P. Valtr – Long Alternating Paths Exist

Theorem:   > 0: alt(n)  (1+ )n 

Remark: also for monochromatic matchings

can also interpreted as a statement about 
(anti)palindromic subsequences in circular 
words.
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More Background: Upper Bounds

W. Mulzer and P. Valtr – Long Alternating Paths Exist

[Erdős, 1980s]

alt(n)  1.5n + 2

0.5n 0.5n

0.25n

0.75n
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[Erdős, 1980s]

alt(n)  1.5n + 2

0.5n 0.5n

0.25n

0.75n

Assume alt(n) > 1.5n + 2

0.5n red points.
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More Background: Upper Bounds

W. Mulzer and P. Valtr – Long Alternating Paths Exist

[Erdős, 1980s]

alt(n)  1.5n + 2

[Abellanas, Garcia, Hurtado, and Tejel ‘03; Kynčl, Pach and Tóth ’08; 
Mészáros ’11]

alt(n)  4n/3  1.33n 

[Csóka, Blázsik, Király and Lenger ’20]

alt(n)  (4 - 22)n  1.17n
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Our Approach – Chunks

W. Mulzer and P. Valtr – Long Alternating Paths Exist

k-chunk k points of one color and <k points of other color

k-configuration partition into k-chunks

index (chunk) #points minority color/#points majority color

red 2-chunk

blue 2-chunk

2-configuration

red 2-chunk

blue 2-chunk

index 
(configuration)

average index over all chunks
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Our Approach – Configurations

W. Mulzer and P. Valtr – Long Alternating Paths Exist

Suppose: For every k, we can find a canonical k-configuration
k on P 

Observation 1: If 1000 has index  0.1, a long alternating path 
exists. 

Reason: There must be many runs.
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Our Approach – Configurations

W. Mulzer and P. Valtr – Long Alternating Paths Exist

Suppose: For every k, we can find a canonical k-configuration
k on P 

Observation 2: If n/1000 has index <0.1, a long alternating path 
exists. 

Reason: There must be a large unbalanced chunk.

 Kynčl, Pach and Tóth



21

Our Approach – Configurations

W. Mulzer and P. Valtr – Long Alternating Paths Exist

Suppose: For every k, we can find a canonical k-configuration
k on P 

Thus: We can focus on a canonical 3k-configuration 
3k with 1000 < 3k < n/1000 and index  0.1 
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Our Approach – Separated Matchings

W. Mulzer and P. Valtr – Long Alternating Paths Exist

We now look at separated matchings.

separated matching: plane bichromatic matching, all 
segments intersected by one line

Obvious: separated matching with k edges  
alternating path with 2k points 
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Our Approach – Separated Matchings
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We look at separated matchings.

separated matching: plane bichromatic matching, all 
segments intersected by one line

Obvious: separated matching with k edges  
alternating path with 2k points 

We show:   > 0  suitable 3k   sep. matching of (1/2+)n   
                                      edges
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Our Approach – Chunk Matchings

W. Mulzer and P. Valtr – Long Alternating Paths Exist

chunk matching: match 3k-chunks in 3k along a chunk-halving-line

red chunk

blue chunk

red chunk

blue chunk

random chunk 
matching

pick chunk-halving-line uniformly at random
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Our Approach – Chunk Matchings

W. Mulzer and P. Valtr – Long Alternating Paths Exist

Observation:

red 3k-chunk

blue 3k-chunk

3k edges

chunk matching  separated matching
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Our Approach – Chunk Matchings

W. Mulzer and P. Valtr – Long Alternating Paths Exist

Observation: chunk matching  separated matching

max{r1, r2} edges

blue 3k-chunk

blue 3k-
chunk
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Our Approach – Chunk Matchings

W. Mulzer and P. Valtr – Long Alternating Paths Exist

Observation: chunk matching  separated matching

max{r1, r2} edges

blue 3k-chunk

blue 3k-chunk

Fact: A random chunk matching yields a separated matching of  
expected size n/2 (# edges).

Proof: Brute-force calculation.
Crucial: bound max{r1, r2}  (r1 + r2)/2  
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Our Approach – Proof Strategy

W. Mulzer and P. Valtr – Long Alternating Paths Exist

Suppose: 3k-configuration 3k of index 0.1 is at hand

Consider: random chunk matching in 3k 

Lemma: If the individual chunk indices in 3k have “large 
variance”, we get a separated matching with (1/2 + )n 
edges in expectation.

red 3k-chunkred 3k-chunk
max{b1, b2} >> (b1 + b2)/2 

edges
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Our Approach – Proof Strategy

W. Mulzer and P. Valtr – Long Alternating Paths Exist

Suppose:

Consider: random chunk matching in 3k 

Lemma:

Otherwise: Consider refined k-configuration k for 3k (it exists).

Lemma: If k has “large variance”, we get a separated matching 
with (1/2 + )n edges in expectation.

3 red k-chunks 3 red k-chunks

If 3k has “large variance”, we get a separated matching 
with (1/2 + )n edges in expectation.

3k-configuration 3k of index 0.1 is at hand
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Our Approach – Proof Strategy

W. Mulzer and P. Valtr – Long Alternating Paths Exist

Remains: 3k-configuration 3k and refined k-configuration k  with 
“uniform” chunks.

Main trick: gain when matching two 3k-chunks of the same color!

max{b1, b2} edges

red 3k-chunkred 3k-chunk
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Our Approach – Proof Strategy

W. Mulzer and P. Valtr – Long Alternating Paths Exist

Remains:

Main trick:

(4/3)max{b1, b2} 
edges

3k-configuration  3k and refined k-configuration k  with 
“uniform” chunks.

gain when matching two 3k-chunks of the same color!
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Questions?

W. Mulzer and P. Valtr – Long Alternating Paths Exist

very technical

very small  

What is the right bound for alt(n)?

Conclusion
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