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Introduction

2

Which colored point would you rather call a ”median”?
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Tukey and Tverberg

2

Tukey depth:
Minimum number of data
points in any closed half-
space containing query
point q

Tverberg depth:
Max. number of vertex
disjoint simplices whose
intersection contains q

Centerpoint theorem:
’S÷q : TD(S, q) Ø |S|

d+1

Tverbergs theorem:
’S÷q : TvD(S, q) Ø |S|

d+1

TD = 4
TvD = 3
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Combinatorial Depth Measures

2

fl : S
Rd ◊ Rd æ RØ0

(S, q) ‘æ fl(S, q)

”combinatorial”: depends only on relative position of S

and q (order type), not on distances

Standard depth in R1:

0 1 2 3 4 3 2 1 0
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A ”bad” measure

2

Convex hull peeling depth:

depth 2 no deep query point
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Super-additive Depth Measures

2

fl is super-additive if
(1) ’S, q, p : |fl(S, q) ≠ fl(S fi {p}, q)| Æ 1
(2) ’S, q : fl(S, q) = 0 if q ”œ conv(S)
(3) ’S, q : fl(S, q) Ø 1 if q œ conv(S)
(4) ’S1 Û S2 = S : fl(S, q) Ø fl(S1, q) + fl(S2, q)

Theorem [S’, ’23]:
Let fl be a super-additive depth measure. Then ’S, q

TD(S, q) Ø fl(S, q) Ø TvD(S, q) Ø 1
d TD(S, q).
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Central Depth Measures

fl is central if
(1) ’S, q, p : |fl(S, q) ≠ fl(S fi {p}, q)| Æ 1
(2) ’S, q : fl(S, q) = 0 if q ”œ conv(S)
(3) ’S÷q : fl(S, q) Ø |S|

d+1
(4) ’S, p, q : fl(S fi {p}, q) Ø fl(S, q)

Theorem [S’, ’23]:
Let fl be a central measure. Then ÷c(d) s.t. ’S, q

TD(S, q) Ø fl(S, q) Ø c(d) · TD(S, q).
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Enclosing Depth

k

k

k

q is k-enclosed

Enclosing depth:
ED(S, q) = max k s.t. q is k-enclosed

Lemma:
fl central. Then
fl(S, q) Ø ED(S, q) ≠ (d + 1).

Lemma:
÷c(d) s.t.
ED(S, q) Ø c(d) · TD(S, q).
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The 2D case
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The 2D case
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The 2D case
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The 2D case

for every halfline: b Ø r

Ø k/3

k/3

k/3
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The 2D case

for every halfline: b Ø r

Ø k/3

k/3

k/3

ED(S, q) Ø 1
3 TD(S, q).
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The general case
Assume points are on sphere around q

Take witness-hyperplane for Tukey depth k

Project to larger side, color red and blue

for each half-space: b Ø r

Want:

or
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The Same Type Lemma
Theorem [Bárány, Valtr, ’98]:
Let X1, . . . , Xm be point sets in Rd. Then there is a
constant c(d, m) and subsets Yi ™ Xi s.t.
• |Yi| Ø c · |Xi| and
• each selection y1 œ Y1, . . . , ym œ Ym has the same

order type.
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Constant Fraction Radon
Theorem [S’, ’23]:
Let P = R fi B be a point set in Rd s.t. for every half-
space we have b Ø r. Then there is a constant c(d) and
subsets R1, . . . , Ra ™ R and B1, . . . , Bb ™ B s.t.
• a + b = d + 2,
• |Ri| Ø c · |R| and |Bj | Ø c · |R| and
• for each selection

r1 œ R1, . . . , ra œ Ra, b1 œ B1, . . . , bb œ Bb we have
the sme order type and
conv(r1, . . . , ra) fl conv(b1, . . . , bb) ”= ÿ.

Constant Fraction Radon in Rd ∆ Enclosing Depth in Rd+1
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Radon in 2D

|R|/3 |R|/3
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Radon in 2D

|R|/6

|R|/6

|R|/6

|R|/6



Department of Computer Science Patrick Schnider CALIN, Feb. 27, 2024

Radon in 2D

|R|/6

|R|/6

|R|/6

|R|/6

left

right

left > right
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Radon in 2D

|R|/6

|R|/6

|R|/6

|R|/6

right

left

right > left
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Radon in 2D

Kirchberger: if the colors have a common intersection, then
some d + 2 elements do.

|R|/6

|R|/6

|R|/6

|R|/6

left = right

Ø |R|/6

Ø |R|/6
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Radon: the general case

|R|/3

|R|/3
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Radon: the general case

|R|/3

|R|/3

Ø |R|/3d

Ø |R|/3d

Ø |R|/3d

Ø |R|/3d
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Radon: the general case

|R|/3

|R|/3

Ø |R|/3d

Ø |R|/3d

TD Ø |R|/3d

ED Ø c · TD

Ø |R|/3d

Ø |R|/3d
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Radon: the general case

|R|/3

|R|/3

TD Ø |R|/3d

ED Ø c · TD

Enclosing depth in Rd≠1 ∆
Constant Fraction Radon in Rd
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Conclusion
• Combinatorial depth measures are intimately related to

fundamental results in discrete geometry

• Many related algorithmic questions:

• Complexity of finding a Centerpoint/Tverberg point

• Complexity of computing Enclosing depth in general
dimension? (Known O(nd2))

• Many depth measures are an approximation of Tukey
depth

• Improve factors?

Thank you!


