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Potts and O(n) non-linear σ-models

I Potts Model: variables σi ∈ {0, 1, . . . , q − 1};
exp(−βH(σ)) = exp

[∑
〈ij〉 Jijδ(σi , σj)

]
Symmetry: ‘global’ permutations in Sq.

I O(n) non-linear σ-model: variables ~σi ∈ Rn;

exp(−βH(σ)) =
∏

i

(
2δ(|σ2

i | − 1)
)

exp
[∑

〈ij〉 wij(1− ~σi · ~σj)
]

Symmetry: ‘global’ rotations in O(n) (continuous!).

I If 1
2

(
(~σi · ~σj)

2 − 1
)

instead of (~σi · ~σj − 1):
extra ‘local’ Z2 symmetry ~σi → εi~σi , with ε = ±1.
In other words, the ~σ’s are in the projective space: RPn−1.[

RPn−1 :=
{
~x ∈ Rn r {0}

}
�~x ∼ λ~x

]
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Some goals:

I Find relations between Potts and O(n) non-lin. σ-models,
and with combinatorial “generating functions”
(i.e. countings of graphical structures);

I Understand analytic continuation in q for Potts Model,
and in n for O(n);

I Understand computational complexity for the generating
function (and existence of FPRAS), as a fn. of q and of n;

I Understand asymptotic freedom in a geometric and
non-perturbative way, in D = 2 Euclidean lattice,
for our ‘favourite’ model: Potts [q → 0; J/q fixed]
≡ O(n) non-lin σ-model [n→ −1] ≡ Spanning Forests.
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Analytic continuation is easy for Potts...

[Fortuin-Kasteleyn (1972), relating Potts p.fn. to the Tutte Poly.]

ZG =
∑
σ

e−βH(σ) =
∑
σ

∏
(ij)

(
1 + vij δ(σi , σj)

) [
vij := eJij − 1

]
=
∑
H⊆G

∏
(ij)∈E(H)

vij

(∑
σ

∏
(ij)∈E(H)

δ(σi , σj)

)
=
∑
H⊆G

qK(H)
∏

(ij)∈E(H)

vij .
[
K (H) = #

{comp.
in H

}]
Recognize the (slightly reparametrized and rescaled)
multivariate Tutte Polynomial of G , and even better on next slide...
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...and leads to the Random Cluster Model

Recall: ý L(H), the cyclomatic number, is the number of
linearly-independent cycles in H.

ý Euler formula states that V − K = E − L.

ZRC(G ; ~w ;λ, ρ) =
∑
H⊆G

λK(H)−K(G) ρL(H)
∏

(ij)∈E(H)

wij

[
λρ = q

wij = vij/ρ

]
Tutte: w = 1; x := Z [ s s] = 1 + λ and y := Z [ s ] = 1 + ρ.

λ→ 0 Connected
Random −−−−−−−→ subgraphs −−−−−−−→ Spanning
Cluster (dual if G planar) m λ, ρ→ 0 Trees
Model −−−−−−−→ Spanning −−−−−−−→ (Kirchhoff)

ρ→ 0 Forests
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Planar duality

If graph G is connected and planar:
ý Spanning Forests and Connected Subgraphs are dual;
ý Trees are self-dual, and the intersection of the two sets.

More generally: E (Ĥ) = Ê (H)
c
, and L(Ĥ) = K (H)− 1,

so duality acts as λ↔ ρ and wij ↔ 1/wij .

Temperley-Lieb Algebra with parameter
√
λρ plays a role.
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Comput. complexity of Random-Cluster Partition Function

ZRC(G ; ~w ;λ, ρ) is ‘hard’ to calculate (#P) in general, except for
some special loci in the (λ, ρ) plane: [Welsh, 1990]

-2 -1 1 2 3 4

-2

-1

1

2

3

4
I Trivial if λρ = q = 1 (percolation);

I Computable in poly-time as a
Pfaffian if λρ = 2 (Ising) and G is
planar [Kasteleyn; Kač, Ward; 60’s]

I Computable in poly-time at
exceptional special points
(λ, ρ) = (−2,−2), (−2,−1),
(−1,−2) and (0, 0).

Sp. Forests

(0, 0): Spanning Trees, counted by a determinant through
Matrix-Tree Theorem [Kirchhoff, 1848 (!)]
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I Computable in poly-time at
exceptional special points
(λ, ρ) = (−2,−2), (−2,−1),
(−1,−2) and (0, 0).

Sp. Forests

(0, 0): Spanning Trees, counted by a determinant through
Matrix-Tree Theorem [Kirchhoff, 1848 (!)]

S. Caracciolo, A.D. Sokal and 〈A. Sportiello -〉 Clifford representation of the Forest Algebra



Potts and O(n) non-lin. σ-model in StatMech
OSP(1|2) – Spanning-Forest correspondence

A Clifford representation of Temperley-Lieb

Potts and O(n) non-linear σ-models: an intro
More on Potts: the Random Cluster Model
More on O(n): OSP(n|2m) Models

Comput. complexity of Random-Cluster Partition Function

ZRC(G ; ~w ;λ, ρ) is ‘hard’ to calculate (#P) in general, except for
some special loci in the (λ, ρ) plane: [Welsh, 1990]

-2 -1 1 2 3 4

-2

-1

1

2

3

4
I Trivial if λρ = q = 1 (percolation);

I Computable in poly-time as a
Pfaffian if λρ = 2 (Ising) and G is
planar [Kasteleyn; Kač, Ward; 60’s]
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The Matrix-Tree Theorem [Kirchhoff, 1848]

ZRC(G ; ~w ;λ = ρ = 0) =
∑
T⊆G
trees

∏
(ij)∈E(T )

wij = det L(i0)

where i0 is any vertex of G (the ‘root’), L(i0) is the minor of L with
row and col. i0 removed, and L is the graph Laplacian matrix:

Lij =


−wij (ij) ∈ E (G )
0 (ij) 6∈ E (G )∑

k∼i wik i = j
L ∼ −∇2

From Gaussian Integral formula in complex Grassmann Algebra:

ZRC(G ; ~w ;λ = ρ = 0) =

∫
DV (G)(ψ, ψ̄) ψ̄i0ψi0 exp(ψ̄Lψ)
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A digression on Grassmann Calculus

For i = 1, .., n, introduce the formal symbols θi , with θiθj = −θjθi ,
and symbols ∂i ≡ (

∫
dθi ), with formal rules:

{∂i , θj} = δij (cfr. with [
d

dxi
, xj ] = δij)

{∂i , ∂j} = {θi , θj} = 0 [
d

dxi
,

d
dxj

] = [xi , xj ] = 0∫
dθi (θi a + b) = a (so that

Z
dθf (θ + χ) =

Z
dθf (θ)) .

As θ2
i = 0, the most general monomial

∏
i θ

ni
i has ni = 0, 1 (this

justifies the name ‘fermion’). Remark∫
dθn · · · dθ1

∏
i=1,...,n

θni
i =

{
1 ni = 1 ∀i
0 otherwise
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Special application, for n × n antisymmetric matrix A,∫
dθn · · · dθ1 exp

(
1
2θAθ

)
= pfA = (det A)

1
2 .

A “complex” structure is natural: consider the case of 2n symbols
ψ̄1, . . . , ψ̄n and ψ1, . . . , ψn, and D(ψ, ψ̄) := dψndψ̄n · · · dψ1dψ̄1.
Then, for any matrix A∫

D(ψ, ψ̄) F (Aψ̄,Bψ) = det A det B

∫
D(ψ, ψ̄) F (ψ̄, ψ) ;∫

D(ψ, ψ̄) exp(ψ̄Aψ) = det A ;∫
D(ψ, ψ̄) ψ̄i1ψj1 · · · ψ̄ikψjk exp(ψ̄Aψ) = ε(I , J) det AI ,J .

These are the fermionic counterparts of Jacobian of a linear
transformation, Gaussian Integral and Wick Theorem for bosons.
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An extension of the Matrix-Tree Theorem

In the following we will prove an extension to arbitrary λ of
Kirchhoff Formula (λ→ 0)

ZRC(G ; ~w ;λ, ρ = 0) =

∫
DV (G)(ψ, ψ̄) exp(ψ̄Lψ)

× exp

[
λ

(∑
i

ψ̄iψi +
∑
(ij)

wij ψ̄iψi ψ̄jψj

)]

=

∫
DV (ψ, ψ̄) exp

[
λ
∑

i

ψ̄iψi +
∑
(ij)

wij

(
(ψ̄i−ψ̄j)(ψi−ψj)− λψ̄iψi ψ̄jψj

)]

Non-Gaussian integral, as expected from intrinsic hardness of the
counting problem. However consequences can be drawn from such
an expression.
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Analytic continuation is hard for O(n) models...

Dimensional reduction tools can be useful?
Generalize O(n) to OSP(n|2m) models:

~σ = (φ(a))a=1,...,n |~σ|2 =
n∑

a=1

(φ(a))2

~σ = (φ(a)︸︷︷︸
B

; ψ̄(b), ψ(b)︸ ︷︷ ︸
F

) a=1,...,n
b=1,...,m

⇓

|~σ|2 =
n∑

a=1

(φ(a))2 + 2λ
m∑

a=1

ψ̄(b)ψ(b)

For n ≥ 1 and m ≥ 0, analytic continuation should depend on
n − 2m only. [Parisi-Sourlas, 1979; Cardy, 1983]

Simplest non-trivial choice: OSP(1|2), i.e. ~σ = (φ; ψ̄, ψ).
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A different approach: Nienhuis Loop-Gas Model

Nienhuis [1982] considers an O(n)-invariant
model with a logarithmic action:

exp(−βH(σ)) = exp
[∑
〈ij〉

log
(
1+

wij

n
~σi ·~σj

)]
Then, on a cubic graph, and for any one-body measure (also the
Gaussian one...), reduces to a combinatorial model of loop gas,
with a topological weight n per loop.

4 Easy analytic continuation in n, through a geometric model;

8 Log-action: many terms; Blind to one-body measure...
issues of universality?
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More on O(n): OSP(n|2m) Models

Dense O(n) Loops, Potts, and Temperley-Lieb algebra

The rules:

¶ fill the square lattice with
· give weight n to each cycle.

This model of dense loops has special
algebraic properties ý TL Algebra

e2
i = n ei eiei±1ei = ei

[ei , ej ] = 0 if |i − j | > 1.

ý Potts Model on the square lattice (rot. 45◦), for n =
√

q
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Potts and O(n) non-lin. σ-model in StatMech
OSP(1|2) – Spanning-Forest correspondence

A Clifford representation of Temperley-Lieb

The theorem
Thermodynamic properties
Robustness of OSP(1|2) symmetry for interacting forests

OSP(1|2) – Spanning-Forest correspondence

Theorem: the OSP(1|2) non-linear σ-model partition function is
related to the Random Cluster partition function at ρ = 0

ZOSP(1|2)(G ;−~w/λ) = ZRC(G ; ~w ;λ, ρ = 0)

at a perturbative level. For the RP0|2 model, the relation is
non-perturbative.

§§§
...Let’s prove it...

From the δ’s, for each i we have φ2
i + 2λψ̄iψi = 1.

~σi = εi (
√

1− 2λψ̄iψi ; ψ̄i , ψi ) = εi (1− λψ̄iψi ; ψ̄i , ψi ),
[
εi = ±1

]
Forget about ε’s (say, all +1). [this why ‘perturbative’...]
A Jacobian in the resolution of the δ’s gives∏

i

1√
1− 2λψ̄iψi

= exp
(
λ
∑

i

ψ̄iψi

)
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The action, in both cases

OSP(1|2) : S = −
∑
(ij)

wij

λ

(
1− ~σi · ~σj

)
RP0|2 : S = −

∑
(ij)

wij

2λ

(
1− (~σi · ~σj)

2
)

gives the peculiar expression

S =
∑
(ij)

wij f
(λ)
ij f

(λ)
ij := (ψ̄i − ψ̄j)(ψi − ψj)− λψ̄iψi ψ̄jψj

and we are left to prove our “generalized Matrix-Tree theorem”:∫
D(ψ, ψ̄) exp

[
λψ̄ψ +

∑
(ij)

wij f
(λ)
ij

]
= ZRC(G ; ~w ;λ, ρ = 0)
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I Define τA :=
∏

i∈A ψ̄iψi . Generalize fij to fA, with A ⊆ V (G ):

fA = λ(1− |A|)τA +
∑
i∈A

τAri −
∑

(i 6=j)∈A

ψ̄iψjτAr{i ,j}

I Check the algebraic lemma, for A ∩ B 6= ∅:

fAfB =

{
fA∪B |A ∩ B| = 1
0 |A ∩ B| ≥ 2 (corollary: f 2

ij = 0)

I Expand the action: exp
(∑

(ij)

wij fij

)
=

∑
E ′⊆E(G)

∏
(ij)∈E ′

wij fij

I If H = (V ,E ′) has any cycle,
∏

fij = 0 by the lemma.

I Otherwise, it is a forest F = {Tα}, and
∏

fij =
∏
α fV (Tα)

(again by the lemma).
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The theorem
Thermodynamic properties
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So, our fermionic integral has already been reduced to a sum over
spanning forests, and factors wij are appropriate. We still have to
prove that the remaining fermionic integral of each summand gives
exactly λK(F ).

Of course, the integral factorizes on various V (Tα), and we can
concentrate on a single component, with V (Tα) = U:

∫
D(ψ, ψ̄)

∏
i

(
♠
1 +λψ̄iψi︸ ︷︷ ︸

♣

)
[ ♠︷ ︸︸ ︷
λ(1− |U|)τU +

∑
i

τUri︸︷︷︸
♣

−
∑
(i 6=j)

ψ̄iψjτUr{i ,j}

]

Term ♠ contributes λ(1− |U|). Terms ♣i contribute λ each.
So we get a factor λ(1− |U|+

∑
i∈U 1) = λ, as claimed. �
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Conclusions in the “continuum limit”

ZOSP(1|2) =

∫
D(ψ, ψ̄) eλψ̄ψ+ψ̄∇2ψ+ λ

2
ψ̄ψ∇2ψ̄ψ = ZRC(λ, ρ = 0)

which generalizes Kirchhoff Theorem

Z ′
[

massless
fermion

]
=

∫
D(ψ, ψ̄) ψ̄0ψ0 eψ̄∇

2ψ = ZRC(λ = 0, ρ = 0)

Of course, the theory at λ = 0 (Spanning Trees) is critical. In
D = 2, it is a c = −2 logarithmic CFT.

O(n) model RG calculations say facts on Potts near q = 0.
In particular, in D = 2, they predict asymptotic freedom in the
region λ > 0, perturbatively near 0.
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E.g., our present understanding for Potts on the square lattice
(combined with Baxter solution):

q

vij

−1

0

0 1 2 3 4

phase
ferromagnetic

phase
high temperature

phase
antiferrom.

non-physical
region

Spanning trees
Marginally unstable

(asymptotic freedom)

Infinite temperature

Antiferrom. transition

Marginally stable
Spanning trees
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Robustness of OSP(1|2) symmetry for interacting forests

The set of {f (λ)
ij }1≤i<j≤n generates all functions of scalar products

{~σi · ~σj} for n unit vectors in RP0|2, as an algebra of polynomials.
So the most general function S(ψ̄, ψ) invariant under OSP(1|2)
global rotation is of the form

S(ψ̄, ψ) =
∑
(ij)

wij fij +
∑
(ijk)

wijk fijk + · · ·+
∑

(ij ;kl)

wij ;kl fij fkl + · · ·

Represent terms as

i

j

i

j

k
i

j

k

l
wij wijk wij ;kl
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then ∫
D(ψ, ψ̄) eλψ̄ψ+S(ψ̄,ψ) =

∑
F⊆G

hyperforests

λK(F ) P(w ; F )

with G a hypergraph with edges (i1 · · · ik) corresponding to k-uples
such that some coefficient w is non-zero, and P(w ; F ) is a
polynomial in the w ’s whose k-uples appear as hyper-edges in F .

Even for the most general OSP(1|2)-invariant action, restriction to
cycle-free sub-(hyper)graphs, i.e. forests, appears as an algebraic
consequence of symmetry, and even at the level of the Grassmann
sub-algebra of fij ’s, before integration.
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Linear-space dimension of the polynomial algebra of fij ’s

As fi = 1 and f∅ = λ, the most general monomial in the
polynomial algebra generated by fij ’s is labeled by a partition
C = (C1, . . . ,Ck) of [n]:

C ∈ Π(n) : fC := fC1 · · · fCk

They must be a redundant basis for the linear space of global
OSP(1|2)-invariant functions, as |Π(n)| = Bn ∼ n!, while the
whole Grassmann Algebra has dimension only 4n. . .

I Which dimension has the linear space?

I There is any natural non-redundant basis of fC ’s?

I Which relations do generate the kernel?
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a few answers...

¶ý The dimension of the linear space is Cn = 1
n+1

(2n
n

)
∼ 4nn−3/2,

the n-th Catalan number;

·ý A basis is NC(n), the non-crossing partitions. C ∈ NC(n) iff
for all A, B distinct blocks of C, and all a, c ∈ A and b, d ∈ B, it
is never a < b < c < d .

¸ý A single 4-point relation generates the kernel:

Rabcd = λfabcd +fabfcd +fac fbd +fad fbc−fabc−fabd−facd−fbcd = 0
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A better look at Rabcd = 0

λfabcd fabfcd fac fbd fad fbc −fabc −fabd −facd −fbcd

a

b c

d

Can be used to recursively write a fC with C crossing as a linear
combination of fC′ ’s, with all C′ non-crossing.

Consider Clifford Algebra. Other OSP(1|2)-invariant objects are:

pi := ∂i ∂̄i (1 + λψ̄iψi ) =
∫

dψidψ̄ie
λψ̄iψi

Some algebra:

p2
i = λpi ; [pi , pj ] = [pi , fjk ] = 0︸ ︷︷ ︸

i 6=j ,k

; (pi fA) = fAri if i ∈ A.
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Clifford Algebra and Rb
ac = 0

With pi ’s we get a three-point relation in Clifford Algebra: Rb
ac = 0.

It is an easy check that Rb
ac fbd = Rabcd .

Compare the terms appearing in Rabcd and in Rb
ac :

λfabcd fabfcd fac fbd fad fbc −fabc −fabd −facd −fbcd

a

b c

d

λfabc fabpbfbc fac fbcpbfab
−fabcpb −fab −pbfabc −fbc

a

b′

b

c
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Exchange operator and Rab = 0

Another interesting OSP(1|2)-invariant in Clifford Algebra is the
“exchange” operator

Bab :=
(
1− (ψ̄a − ψ̄b)(∂̄a − ∂̄b)

)(
1− (ψa − ψb)(∂a − ∂b)

)
BabP(ψ̄a, ψa, ∂̄a, ∂a, ψ̄b, · · · ) = P(ψ̄b, ψb, ∂̄b, ∂b, ψ̄a, · · · )Bab

With Bab we can build a two-point relation Rab = 0:

λfab 1 Bab fabpapbfab
−fabpb −pbfab −pafab −fabpa

a′

a b

b′

and Rbc fabfcd = Rabcd .
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Comments on Rabcd , Rb
ac and Rab

The three relations Rabcd = 0, Rb
ac = 0 and Rab = 0 are different

forms of a single “fundamental” OSP(1|2) relation, which, at a
level of diagrams, relates the only 4-point crossing partition to the
other seven 2-block non-crossing ones.

They all involve eight fermions, and have eight terms, four positive
and four negative.

A version of Rabcd = 0 for λ = 0 (thus with seven terms) was also
in [Kenyon-Wilson, 2006].

An important completeness proof for the set of related observables
is in [Ko-Smolinsky, 1991] and [Di Francesco-Golinelli-Guittier, 1996].
It is at λ = 0, but extends immediately from block-triangularity of
the T-L Gram matrix.
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Recognizing even/odd Temperley-Lieb

We have seen some algebraic rules for fij ’s and pi ’s:

f 2
i i+1 = 0 ; [fi i+1, fj j+1] = 0 ; fi i±1 pi fi i±1 = fi i±1 ;

p2
i = λpi ; [pi , pj ] = 0 ; pi fi i±1 pi = pi ;

[pi , fj j+1] = 0 if j 6= i , i − 1.

. . . look similar to Temperley-Lieb Algebra [1971],

e2
i = λei ; eiei±1ei = ei ; [ei , ej ] = 0 if |i − j | ≥ 2.

by identifying e2i = pi and e2i+1 = fi i+1, but e2
i = λparity(i)

with λeven = λ and λodd = 0.
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...comments on Temperley-Lieb

Indeed, T-L describes the transfer matrix of the Random Cluster
Model, on planar graphs, at λ = ρ =

√
q, and allows to “integrate”

the model, say on the square lattice, on Baxter critical parabola.

Instead, this algebra describes the line λ > 0, ρ = 0 corresponding
to spanning forests.

As a result of ρ = 0, we do not need to deal with L(H), and
through Rabcd = 0 we can build a transfer matrix on NC(n) also
for non-planar graphs.

This is related to a modification of Martin-Saleur Partition Algebra
[1993], in which cycles are forbidden.
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Conclusions

I We put in correspondence the OSP(1|2) non-linear σ-model
with Spanning Forests, i.e. Potts Model for q → 0 and
vij/q = wij fixed.

I Even the most general OSP(1|2)-invariant action admits a
combinatorial expansion in terms of sub-hyperforests only
(no cycles in subgraphs). The symmetry is a precious
guideline when building proofs.

I Study of linear independence in the symmetric subalgebra led
to a ‘fundamental’ relation Rabcd = 0, generalizing the one for
spanning trees, i.e. free-fermion theory.

I The tools developed led naturally to an algebra representing
the “Even/odd” Temperley-Lieb.
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Things left apart

I Combinatorial interpretation of fermionic observables.
Probabilistic understanding of Ward identities.

I Raise to a OSP(1|2m)–Spanning-Forest relation.
For higher m, can access more probabilistic observables,
and build more faithful representations of Partition Algebra.

I You can add a “vector field”, and count unicyclics
with topological weights proportional to the circuitation.

I Relation between Spanning Forests and Abelian Sandpile
Model, through Dhar work and a Biggs-Merino theorem.

I In the ASM, our fermionic methods allow to manipulate
Dhar invariants Qi . Understanding the group structure
of the recurrent configurations, beside mere counting!

I . . .
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