Clifford representation of an algebra related to spanning forests

Università degli Studi di Milano

Andrea Sportiello

work in collaboration with S. Caracciolo and A.D. Sokal

Seminar at "Laboratoire d'Informatique de Paris-Nord" Université Paris XIII January 19th 2010

Potts and O(n) non-linear σ -model in Statistical Mechanics

Potts and O(n) non-linear σ -models

More on Potts: the Random Cluster Model

More on O(n): supersymmetry and OSP(n|2m) Models

OSP(1|2) – Spanning-Forest correspondence

The theorem

Thermodynamic properties

Robustness of OSP(1|2) symmetry for interacting forests

A Clifford representation of Temperley-Lieb

Linear-space dimension of the polynomial algebra

Getting $R_{abcd} = 0$ from $R_{ac}^b = 0$, from $R^{ab} = 0$

Even/odd Temperley-Lieb and Partition Algebras

Potts and O(n) non-linear σ -models

- Potts Model: variables $\sigma_i \in \{0, 1, \dots, q-1\}$; $\exp(-\beta \mathcal{H}(\sigma)) = \exp\left[\sum_{\langle ij \rangle} J_{ij} \delta(\sigma_i, \sigma_j)\right]$ Symmetry: 'global' permutations in \mathcal{S}_q .
- ▶ O(n) non-linear σ -model: variables $\vec{\sigma}_i \in \mathbb{R}^n$; $\exp(-\beta \mathcal{H}(\sigma)) = \prod_i \left(2\delta(|\sigma_i^2|-1)\right) \exp\left[\sum_{\langle ij\rangle} w_{ij}(1-\vec{\sigma}_i\cdot\vec{\sigma}_j)\right]$ Symmetry: 'global' rotations in O(n) (continuous!).
- If $\frac{1}{2}((\vec{\sigma}_i \cdot \vec{\sigma}_j)^2 1)$ instead of $(\vec{\sigma}_i \cdot \vec{\sigma}_j 1)$: extra 'local' \mathbb{Z}_2 symmetry $\vec{\sigma}_i \to \epsilon_i \vec{\sigma}_i$, with $\epsilon = \pm 1$. In other words, the $\vec{\sigma}$'s are in the projective space: \mathbb{RP}^{n-1} . $\left[\mathbb{RP}^{n-1} := \left\{\vec{x} \in \mathbb{R}^n \setminus \{0\}\right\} \middle/ \vec{x} \sim \lambda \vec{x}\right]$

Potts and O(n) non-linear σ -models

- Potts Model: variables $\sigma_i \in \{0, 1, \dots, q-1\}$; $\exp(-\beta \mathcal{H}(\sigma)) = \exp\left[\sum_{\langle ij \rangle} J_{ij} \delta(\sigma_i, \sigma_j)\right]$ Symmetry: 'global' permutations in \mathcal{S}_q .
- ▶ O(n) non-linear σ -model: variables $\vec{\sigma}_i \in \mathbb{R}^n$; $\exp(-\beta \mathcal{H}(\sigma)) = \prod_i \left(2\delta(|\sigma_i^2|-1)\right) \exp\left[\sum_{\langle ij\rangle} w_{ij}(1-\vec{\sigma}_i\cdot\vec{\sigma}_j)\right]$ Symmetry: 'global' rotations in O(n) (continuous!).
- If $\frac{1}{2}((\vec{\sigma}_i \cdot \vec{\sigma}_j)^2 1)$ instead of $(\vec{\sigma}_i \cdot \vec{\sigma}_j 1)$: extra 'local' \mathbb{Z}_2 symmetry $\vec{\sigma}_i \to \epsilon_i \vec{\sigma}_i$, with $\epsilon = \pm 1$. In other words, the $\vec{\sigma}$'s are in the projective space: \mathbb{RP}^{n-1} .

$$\left[\operatorname{RP}^{n-1} := \left\{ \vec{x} \in \mathbb{R}^n \setminus \{0\} \right\} / \vec{x} \sim \lambda \vec{x} \right]$$

Potts and O(n) non-linear σ -models

- Potts Model: variables $\sigma_i \in \{0, 1, \dots, q-1\}$; $\exp(-\beta \mathcal{H}(\sigma)) = \exp\left[\sum_{\langle ij \rangle} J_{ij} \delta(\sigma_i, \sigma_j)\right]$ Symmetry: 'global' permutations in \mathcal{S}_q .
- ▶ O(n) non-linear σ -model: variables $\vec{\sigma}_i \in \mathbb{R}^n$; $\exp(-\beta \mathcal{H}(\sigma)) = \prod_i \left(2\delta(|\sigma_i^2|-1)\right) \exp\left[\sum_{\langle ij\rangle} w_{ij}(1-\vec{\sigma}_i\cdot\vec{\sigma}_j)\right]$ Symmetry: 'global' rotations in O(n) (continuous!).
- If $\frac{1}{2}((\vec{\sigma}_i \cdot \vec{\sigma}_j)^2 1)$ instead of $(\vec{\sigma}_i \cdot \vec{\sigma}_j 1)$: extra 'local' \mathbb{Z}_2 symmetry $\vec{\sigma}_i \to \epsilon_i \vec{\sigma}_i$, with $\epsilon = \pm 1$. In other words, the $\vec{\sigma}$'s are in the projective space: \mathbb{RP}^{n-1} .

$$\left[\text{ RP}^{n-1} := \left\{ \vec{x} \in \mathbb{R}^n \setminus \{0\} \right\} / \vec{x} \sim \lambda \vec{x} \right]$$

- ► Find relations between Potts and O(n) non-lin. σ -models, and with combinatorial "generating functions" (i.e. countings of graphical structures);
- ▶ Understand analytic continuation in q for Potts Model, and in n for O(n);
- ▶ Understand computational complexity for the generating function (and existence of FPRAS), as a fn. of q and of n;
- ▶ Understand asymptotic freedom in a geometric and non-perturbative way, in D=2 Euclidean lattice, for our 'favourite' model: Potts $[q \rightarrow 0; J/q \text{ fixed}]$ $\equiv O(n)$ non-lin σ -model $[n \rightarrow -1] \equiv \text{Spanning Forests}$.

- Find relations between Potts and O(n) non-lin. σ-models, and with combinatorial "generating functions"
 (i.e. countings of graphical structures);
- ▶ Understand analytic continuation in q for Potts Model, and in n for O(n);
- ▶ Understand computational complexity for the generating function (and existence of FPRAS), as a fn. of q and of n;
- ▶ Understand asymptotic freedom in a geometric and non-perturbative way, in D=2 Euclidean lattice, for our 'favourite' model: Potts $[q \to 0; J/q \text{ fixed}]$ $\equiv O(n)$ non-lin σ -model $[n \to -1]$ \equiv Spanning Forests.

- Find relations between Potts and O(n) non-lin. σ-models, and with combinatorial "generating functions"
 (i.e. countings of graphical structures);
- ▶ Understand analytic continuation in q for Potts Model, and in n for O(n);
- Understand computational complexity for the generating function (and existence of FPRAS), as a fn. of q and of n;
- ▶ Understand asymptotic freedom in a geometric and non-perturbative way, in D=2 Euclidean lattice, for our 'favourite' model: Potts $[q \to 0; J/q \text{ fixed}]$ $\equiv O(n)$ non-lin σ -model $[n \to -1]$ \equiv Spanning Forests.

- Find relations between Potts and O(n) non-lin. σ-models, and with combinatorial "generating functions"
 (i.e. countings of graphical structures);
- ▶ Understand analytic continuation in q for Potts Model, and in n for O(n);
- Understand computational complexity for the generating function (and existence of FPRAS), as a fn. of q and of n;
- ▶ Understand asymptotic freedom in a geometric and non-perturbative way, in D=2 Euclidean lattice, for our 'favourite' model: Potts $[q \rightarrow 0; J/q \text{ fixed}]$ $\equiv O(n)$ non-lin σ -model $[n \rightarrow -1] \equiv \text{Spanning Forests}$.

Analytic continuation is easy for Potts...

[Fortuin-Kasteleyn (1972), relating Potts p.fn. to the Tutte Poly.]

$$\begin{split} Z_G &= \sum_{\sigma} e^{-\beta \mathcal{H}(\sigma)} = \sum_{\sigma} \prod_{(ij)} \left(1 + v_{ij} \, \delta(\sigma_i, \sigma_j) \right) & \left[v_{ij} := e^{J_{ij}} - 1 \right] \\ &= \sum_{H \subseteq G} \prod_{(ij) \in E(H)} v_{ij} \left(\sum_{\sigma} \prod_{(ij) \in E(H)} \delta(\sigma_i, \sigma_j) \right) \\ &= \sum_{H \subseteq G} q^{K(H)} \prod_{(ij) \in E(H)} v_{ij} \,. & \left[K(H) = \# \left\{ \substack{\text{comp.} \\ \text{in } H} \right\} \right] \end{split}$$

Recognize the (slightly reparametrized and rescaled) multivariate Tutte Polynomial of *G*, and even better on next slide...

Analytic continuation is easy for Potts...

[Fortuin-Kasteleyn (1972), relating Potts p.fn. to the Tutte Poly.]

$$\begin{split} Z_G &= \sum_{\sigma} e^{-\beta \mathcal{H}(\sigma)} = \sum_{\sigma} \prod_{(ij)} \left(1 + v_{ij} \, \delta(\sigma_i, \sigma_j) \right) & \left[v_{ij} := e^{J_{ij}} - 1 \right] \\ &= \sum_{H \subseteq G} \prod_{(ij) \in E(H)} v_{ij} \left(\sum_{\sigma} \prod_{(ij) \in E(H)} \delta(\sigma_i, \sigma_j) \right) \\ &= \sum_{H \subseteq G} q^{K(H)} \prod_{(ij) \in E(H)} v_{ij} \,. & \left[K(H) = \# \left\{ \substack{\text{comp.} \\ \text{in } H} \right\} \right] \end{split}$$

Recognize the (slightly reparametrized and rescaled) multivariate Tutte Polynomial of *G*, and even better on next slide...

...and leads to the Random Cluster Model

- Recall: \blacktriangleright L(H), the *cyclomatic number*, is the number of linearly-independent cycles in H.
 - \rightarrow Euler formula states that V K = E L.

$$Z_{\mathrm{RC}}(G;\vec{w};\lambda,\rho) = \sum_{H\subseteq G} \lambda^{K(H)-K(G)} \, \rho^{L(H)} \prod_{(ij)\in E(H)} w_{ij} \qquad \begin{bmatrix} \lambda\rho = q \\ w_{ij} = v_{ij}/\rho \end{bmatrix}$$

Tutte:
$$w = 1$$
; $x := Z[\bullet - \bullet] = 1 + \lambda$ and $y := Z[\bullet - \bullet] = 1 + \rho$.

...and leads to the Random Cluster Model

- Recall: \blacktriangleright L(H), the *cyclomatic number*, is the number of linearly-independent cycles in H.
 - \rightarrow Euler formula states that V K = E L.

$$Z_{\mathrm{RC}}(G; \vec{w}; \lambda, \rho) = \sum_{H \subseteq G} \lambda^{K(H) - K(G)} \rho^{L(H)} \prod_{(ij) \in E(H)} w_{ij} \qquad \begin{bmatrix} \lambda \rho = q \\ w_{ij} = v_{ij}/\rho \end{bmatrix}$$

Tutte:
$$w = 1$$
; $x := Z[\bullet - \bullet] = 1 + \lambda$ and $y := Z[\bullet - \bullet] = 1 + \rho$.

...and leads to the Random Cluster Model

- Recall: \blacktriangleright L(H), the *cyclomatic number*, is the number of linearly-independent cycles in H.
 - \rightarrow Euler formula states that V K = E L.

$$Z_{\mathrm{RC}}(G; \vec{w}; \lambda, \rho) = \sum_{H \subseteq G} \lambda^{K(H) - K(G)} \rho^{L(H)} \prod_{(ij) \in E(H)} w_{ij} \qquad \begin{bmatrix} \lambda \rho = q \\ w_{ij} = v_{ij}/\rho \end{bmatrix}$$

Tutte:
$$w = 1$$
; $x := Z[\bullet - \bullet] = 1 + \lambda$ and $y := Z[\bullet - \bullet] = 1 + \rho$.

Planar duality

If graph G is connected and planar:

- Spanning Forests and Connected Subgraphs are dual;
- >> Trees are self-dual, and the intersection of the two sets.

More generally: $E(\widehat{H}) = \widehat{E(H)}^c$, and $L(\widehat{H}) = K(H) - 1$, so duality acts as $\lambda \leftrightarrow \rho$ and $w_{ij} \leftrightarrow 1/w_{ij}$.

Temperley-Lieb Algebra with parameter $\sqrt{\lambda \rho}$ plays a role.

 $Z_{\rm RC}(G; \vec{w}; \lambda, \rho)$ is 'hard' to calculate (#P) in general, except for some special loci in the (λ, ρ) plane: [Welsh, 1990]

- ▶ Trivial if $\lambda \rho = q = 1$ (percolation);
- ► Computable in poly-time as a Pfaffian if $\lambda \rho = 2$ (Ising) and G is planar [Kasteleyn; Kač, Ward; 60's]
- Computable in poly-time at exceptional special points $(\lambda, \rho) = (-2, -2), (-2, -1), (-1, -2)$ and (0, 0).

 $Z_{\rm RC}(G; \vec{w}; \lambda, \rho)$ is 'hard' to calculate (#P) in general, except for some special loci in the (λ, ρ) plane: [Welsh, 1990]

- ▶ Trivial if $\lambda \rho = q = 1$ (percolation);
- ► Computable in poly-time as a Pfaffian if $\lambda \rho = 2$ (Ising) and G is planar [Kasteleyn; Kač, Ward; 60's]
- Computable in poly-time at exceptional special points $(\lambda, \rho) = (-2, -2), (-2, -1), (-1, -2)$ and (0, 0).

 $Z_{\rm RC}(G; \vec{w}; \lambda, \rho)$ is 'hard' to calculate (#P) in general, except for some special loci in the (λ, ρ) plane: [Welsh, 1990]

- Trivial if $\lambda \rho = q = 1$ (percolation);
- ► Computable in poly-time as a Pfaffian if $\lambda \rho = 2$ (Ising) and G is planar [Kasteleyn; Kač, Ward; 60's]
- Computable in poly-time at exceptional special points $(\lambda, \rho) = (-2, -2), (-2, -1), (-1, -2)$ and (0, 0).

 $Z_{\rm RC}(G; \vec{w}; \lambda, \rho)$ is 'hard' to calculate (#P) in general, except for some special loci in the (λ, ρ) plane: [Welsh, 1990]

- Trivial if $\lambda \rho = q = 1$ (percolation);
- ► Computable in poly-time as a Pfaffian if $\lambda \rho = 2$ (Ising) and G is planar [Kasteleyn; Kač, Ward; 60's]
- Computable in poly-time at exceptional special points $(\lambda, \rho) = (-2, -2), (-2, -1), (-1, -2)$ and (0, 0).

 $Z_{\rm RC}(G; \vec{w}; \lambda, \rho)$ is 'hard' to calculate (#P) in general, except for some special loci in the (λ, ρ) plane: [Welsh, 1990]

- Trivial if $\lambda \rho = q = 1$ (percolation);
- ► Computable in poly-time as a Pfaffian if $\lambda \rho = 2$ (Ising) and G is planar [Kasteleyn; Kač, Ward; 60's]
- Computable in poly-time at exceptional special points $(\lambda, \rho) = (-2, -2), (-2, -1), (-1, -2)$ and (0, 0).

The Matrix-Tree Theorem [Kirchhoff, 1848]

$$Z_{\mathrm{RC}}(G; \vec{w}; \lambda = \rho = 0) = \sum_{\substack{T \subseteq G \ \mathrm{trees}}} \prod_{ij \in E(T)} w_{ij} = \det L(i_0)$$

where i_0 is any vertex of G (the 'root'), $L(i_0)$ is the minor of L with row and col. i_0 removed, and L is the graph Laplacian matrix:

$$L_{ij} = \begin{cases} -w_{ij} & (ij) \in E(G) \\ 0 & (ij) \notin E(G) \\ \sum_{k \sim i} w_{ik} & i = j \end{cases} \qquad L \sim -\nabla^2$$

From Gaussian Integral formula in complex Grassmann Algebra:

$$Z_{\mathrm{RC}}(G; \vec{w}; \lambda = \rho = 0) = \int \mathcal{D}_{V(G)}(\psi, \bar{\psi}) \; \bar{\psi}_{i_0} \psi_{i_0} \; \exp(\bar{\psi}L\psi)$$

The Matrix-Tree Theorem [Kirchhoff, 1848]

$$Z_{\mathrm{RC}}(G; \vec{w}; \lambda = \rho = 0) = \sum_{\substack{T \subseteq G \ \mathrm{trees}}} \prod_{ij \in E(T)} w_{ij} = \det L(i_0)$$

where i_0 is any vertex of G (the 'root'), $L(i_0)$ is the minor of L with row and col. i_0 removed, and L is the graph Laplacian matrix:

$$L_{ij} = \begin{cases} -w_{ij} & (ij) \in E(G) \\ 0 & (ij) \notin E(G) \\ \sum_{k \sim i} w_{ik} & i = j \end{cases} \qquad L \sim -\nabla^2$$

From Gaussian Integral formula in complex Grassmann Algebra:

$$Z_{\mathrm{RC}}(G; \vec{w}; \lambda = \rho = 0) = \int \mathcal{D}_{V(G)}(\psi, \bar{\psi}) \; \bar{\psi}_{i_0} \psi_{i_0} \; \exp(\bar{\psi} L \psi)$$

A digression on Grassmann Calculus

For i = 1, ..., n, introduce the formal symbols θ_i , with $\theta_i \theta_j = -\theta_j \theta_i$, and symbols $\partial_i \equiv (\int d\theta_i)$, with formal rules:

$$\begin{aligned} \{\partial_i, \theta_j\} &= \delta_{ij} & (\text{cfr. with } \left[\frac{\mathrm{d}}{\mathrm{d}x_i}, x_j\right] = \delta_{ij}) \\ \{\partial_i, \partial_j\} &= \{\theta_i, \theta_j\} = 0 & \left[\frac{\mathrm{d}}{\mathrm{d}x_i}, \frac{\mathrm{d}}{\mathrm{d}x_j}\right] = [x_i, x_j] = 0 \\ & \int \mathrm{d}\theta_i(\theta_i \, a + b) = a & (\text{so that } \int \mathrm{d}\theta f(\theta + \chi) = \int \mathrm{d}\theta f(\theta)) \,. \end{aligned}$$

As $\theta_i^2 = 0$, the most general monomial $\prod_i \theta_i^{n_i}$ has $n_i = 0, 1$ (this justifies the name 'fermion'). Remark

$$\int \mathrm{d}\theta_n \cdots \mathrm{d}\theta_1 \prod_{i=1,\dots,n} \theta_i^{n_i} = \left\{ \begin{array}{ll} 1 & n_i = 1 & \forall i \\ 0 & \mathrm{otherwise} \end{array} \right.$$

Special application, for $n \times n$ antisymmetric matrix A,

$$\int d\theta_n \cdots d\theta_1 \exp\left(\frac{1}{2}\theta A\theta\right) = \operatorname{pf} A = (\det A)^{\frac{1}{2}}.$$

A "complex" structure is natural: consider the case of 2n symbols $\bar{\psi}_1, \ldots, \bar{\psi}_n$ and ψ_1, \ldots, ψ_n , and $\mathcal{D}(\psi, \bar{\psi}) := \mathrm{d}\psi_n \mathrm{d}\bar{\psi}_n \cdots \mathrm{d}\psi_1 \mathrm{d}\bar{\psi}_1$. Then, for any matrix A

$$\int \mathcal{D}(\psi, \bar{\psi}) \ F(A\bar{\psi}, B\psi) = \det A \det B \int \mathcal{D}(\psi, \bar{\psi}) \ F(\bar{\psi}, \psi);$$

$$\int \mathcal{D}(\psi, \bar{\psi}) \ \exp(\bar{\psi}A\psi) = \det A;$$

$$\int \mathcal{D}(\psi, \bar{\psi}) \ \bar{\psi}_{i_1} \psi_{j_1} \cdots \bar{\psi}_{i_k} \psi_{j_k} \ \exp(\bar{\psi}A\psi) = \epsilon(I, J) \det A_{I, J}.$$

These are the fermionic counterparts of Jacobian of a linear transformation, Gaussian Integral and Wick Theorem for bosons.

Special application, for $n \times n$ antisymmetric matrix A,

$$\int \mathrm{d}\theta_n \cdots \mathrm{d}\theta_1 \exp\left(\frac{1}{2}\theta A\theta\right) = \mathrm{pf} A = (\det A)^{\frac{1}{2}}.$$

A "complex" structure is natural: consider the case of 2n symbols $\bar{\psi}_1, \ldots, \bar{\psi}_n$ and ψ_1, \ldots, ψ_n , and $\mathcal{D}(\psi, \bar{\psi}) := \mathrm{d}\psi_n \mathrm{d}\bar{\psi}_n \cdots \mathrm{d}\psi_1 \mathrm{d}\bar{\psi}_1$. Then, for any matrix A

$$\int \mathcal{D}(\psi, \bar{\psi}) \ F(A\bar{\psi}, B\psi) = \det A \det B \int \mathcal{D}(\psi, \bar{\psi}) \ F(\bar{\psi}, \psi);$$

$$\int \mathcal{D}(\psi, \bar{\psi}) \ \exp(\bar{\psi}A\psi) = \det A;$$

$$\int \mathcal{D}(\psi, \bar{\psi}) \ \bar{\psi}_{i_1} \psi_{j_1} \cdots \bar{\psi}_{i_k} \psi_{j_k} \ \exp(\bar{\psi}A\psi) = \epsilon(I, J) \det A_{I, J}.$$

These are the fermionic counterparts of Jacobian of a linear transformation, Gaussian Integral and Wick Theorem for bosons.

An extension of the Matrix-Tree Theorem

In the following we will prove an extension to arbitrary λ of Kirchhoff Formula $(\lambda \to 0)$

$$\begin{split} Z_{\mathrm{RC}}(G;\vec{w};\lambda,\rho=0) &= \int \!\! \mathcal{D}_{V(G)}(\psi,\bar{\psi}) \exp(\bar{\psi}L\psi) \\ &\times \exp\left[\lambda \bigg(\sum_{i} \bar{\psi}_{i}\psi_{i} + \sum_{(ij)} w_{ij} \bar{\psi}_{i}\psi_{i}\bar{\psi}_{j}\psi_{j} \bigg) \right] \\ &= \int \!\! \mathcal{D}_{V}(\psi,\bar{\psi}) \exp\left[\lambda \sum_{i} \bar{\psi}_{i}\psi_{i} + \sum_{(ij)} w_{ij} \Big((\bar{\psi}_{i} - \bar{\psi}_{j})(\psi_{i} - \psi_{j}) - \lambda \bar{\psi}_{i}\psi_{i}\bar{\psi}_{j}\psi_{j} \Big) \right] \end{split}$$

Non-Gaussian integral, as expected from intrinsic hardness of the counting problem. However consequences can be drawn from such an expression.

An extension of the Matrix-Tree Theorem

In the following we will prove an extension to arbitrary λ of Kirchhoff Formula $(\lambda \to 0)$

$$\begin{split} Z_{\mathrm{RC}}(G;\vec{w};\lambda,\rho=0) &= \int \!\! \mathcal{D}_{V(G)}(\psi,\bar{\psi}) \exp(\bar{\psi}L\psi) \\ &\times \exp\left[\lambda \bigg(\sum_{i} \bar{\psi}_{i}\psi_{i} + \sum_{(ij)} w_{ij} \bar{\psi}_{i}\psi_{i}\bar{\psi}_{j}\psi_{j} \bigg) \right] \\ &= \int \!\! \mathcal{D}_{V}(\psi,\bar{\psi}) \exp\left[\lambda \sum_{i} \bar{\psi}_{i}\psi_{i} + \sum_{(ii)} w_{ij} \Big((\bar{\psi}_{i} - \bar{\psi}_{j})(\psi_{i} - \psi_{j}) - \lambda \bar{\psi}_{i}\psi_{i}\bar{\psi}_{j}\psi_{j} \Big) \right] \end{split}$$

Non-Gaussian integral, as expected from intrinsic hardness of the counting problem. However consequences can be drawn from such an expression.

Analytic continuation is hard for O(n) models...

Dimensional reduction tools can be useful? Generalize O(n) to OSP(n|2m) models:

$$\vec{\sigma} = (\phi^{(a)})_{a=1,\dots,n} \qquad |\vec{\sigma}|^2 = \sum_{a=1}^n (\phi^{(a)})^2$$

$$\vec{\sigma} = (\phi^{(a)}; \bar{\psi}^{(b)}, \psi^{(b)})_{\substack{a=1,\dots,n\\b=1,\dots,m}} \qquad |\vec{\sigma}|^2 = \sum_{a=1}^n (\phi^{(a)})^2 + 2\lambda \sum_{a=1}^m \bar{\psi}^{(b)} \psi^{(b)}$$

For $n \ge 1$ and $m \ge 0$, analytic continuation should depend on n-2m only. [Parisi-Sourlas, 1979; Cardy, 1983]

Simplest non-trivial choice: OSP(1|2), i.e. $\vec{\sigma} = (\phi; \bar{\psi}, \psi)$.

Analytic continuation is hard for O(n) models...

Dimensional reduction tools can be useful? Generalize O(n) to OSP(n|2m) models:

$$\vec{\sigma} = (\phi^{(a)})_{a=1,\dots,n} \qquad |\vec{\sigma}|^2 = \sum_{a=1}^n (\phi^{(a)})^2$$

$$\vec{\sigma} = (\phi^{(a)}; \bar{\psi}^{(b)}, \psi^{(b)})_{\substack{a=1,\dots,n\\b=1,\dots,m}} \qquad |\vec{\sigma}|^2 = \sum_{a=1}^n (\phi^{(a)})^2 + 2\lambda \sum_{a=1}^m \bar{\psi}^{(b)} \psi^{(b)}$$

For $n \ge 1$ and $m \ge 0$, analytic continuation should depend on n-2m only. [Parisi-Sourlas, 1979; Cardy, 1983]

Simplest non-trivial choice: OSP(1|2), i.e. $\vec{\sigma} = (\phi; \vec{\psi}, \psi)$.

Analytic continuation is hard for O(n) models...

Dimensional reduction tools can be useful? Generalize O(n) to OSP(n|2m) models:

$$\vec{\sigma} = (\phi^{(a)})_{a=1,\dots,n} \qquad |\vec{\sigma}|^2 = \sum_{a=1}^n (\phi^{(a)})^2$$

$$\vec{\sigma} = (\phi^{(a)}; \overline{\psi}^{(b)}, \psi^{(b)})_{\substack{a=1,\dots,n\\b=1,\dots,m}} \qquad |\vec{\sigma}|^2 = \sum_{a=1}^n (\phi^{(a)})^2 + 2\lambda \sum_{a=1}^m \overline{\psi}^{(b)} \psi^{(b)}$$

For $n \ge 1$ and $m \ge 0$, analytic continuation should depend on n - 2m only. [Parisi-Sourlas, 1979; Cardy, 1983]

Simplest non-trivial choice: OSP(1|2), i.e. $\vec{\sigma} = (\phi; \bar{\psi}, \psi)$.

Nienhuis [1982] considers an O(n)-invariant model with a logarithmic action:

- \checkmark Easy analytic continuation in n, through a geometric model;
- ✗ Log-action: many terms; Blind to one-body measure... issues of universality?

Nienhuis [1982] considers an O(n)-invariant model with a logarithmic action:

- \checkmark Easy analytic continuation in n, through a geometric model;
- ✗ Log-action: many terms; Blind to one-body measure... issues of universality?

Nienhuis [1982] considers an O(n)-invariant model with a logarithmic action:

$$\exp(-eta \mathcal{H}(\sigma)) = \exp\Big[\sum_{\langle ij \rangle} \log \left(1 + rac{w_{ij}}{n} ec{\sigma}_i \cdot ec{\sigma}_j
ight)\Big]$$

- \checkmark Easy analytic continuation in n, through a geometric model;
- ✗ Log-action: many terms; Blind to one-body measure... issues of universality?

Nienhuis [1982] considers an O(n)-invariant model with a logarithmic action:

$$\exp(-eta \mathcal{H}(\sigma)) = \exp\Big[\sum_{\langle ij \rangle} \log \left(1 + rac{w_{ij}}{n} ec{\sigma}_i \cdot ec{\sigma}_j
ight)\Big]$$

- \checkmark Easy analytic continuation in n, through a geometric model;
- ✗ Log-action: many terms; Blind to one-body measure... issues of universality?

Dense O(n) Loops, Potts, and Temperley-Lieb algebra

The rules:

- fill the square lattice with
- 2 give weight *n* to each cycle.

This model of dense loops has special algebraic properties → TL Algebra

$$e_i^2 = n e_i$$
 $e_i e_{i\pm 1} e_i = e_i$
 $[e_i, e_i] = 0$ if $|i - j| > 1$.

 \rightarrow Potts Model on the square lattice (rot. 45°), for $n=\sqrt{q}$

Dense O(n) Loops, Potts, and Temperley-Lieb algebra

The rules:

- fill the square lattice with
- ② give weight n to each cycle.

This model of dense loops has special algebraic properties >> TL Algebra

$$e_i^2 = n e_i$$
 $e_i e_{i\pm 1} e_i = e_i$
 $[e_i, e_j] = 0$ if $|i - j| > 1$.

Potts Model on the square lattice (rot. 45°), for $n = \sqrt{q}$

OSP(1|2) – Spanning-Forest correspondence

<u>Theorem:</u> the OSP(1|2) non-linear σ -model partition function is related to the Random Cluster partition function at $\rho = 0$

$$Z_{\mathrm{OSP}(1|2)}(G; -\vec{w}/\lambda) = Z_{\mathrm{RC}}(G; \vec{w}; \lambda, \rho = 0)$$

at a perturbative level. For the ${\rm RP}^{0|2}$ model, the relation is non-perturbative.

...Let's prove it...

From the δ 's, for each i we have $\phi_i^2 + 2\lambda \bar{\psi}_i \psi_i = 1$.

$$\vec{\sigma}_i = \epsilon_i (\sqrt{1 - 2\lambda \bar{\psi}_i \psi_i}; \bar{\psi}_i, \psi_i) = \epsilon_i (1 - \lambda \bar{\psi}_i \psi_i; \bar{\psi}_i, \psi_i), \quad \left[\epsilon_i = \pm 1\right]$$

Forget about ϵ 's (say, all $+1$). [this why 'perturbative'...]

A Jacobian in the resolution of the δ 's gives

$$\prod_{i} \frac{1}{\sqrt{1 - 2\lambda \bar{\psi}_{i} \psi_{i}}} = \exp\left(\lambda \sum_{i} \bar{\psi}_{i} \psi_{i}\right)$$

OSP(1|2) – Spanning-Forest correspondence

<u>Theorem:</u> the OSP(1|2) non-linear σ -model partition function is related to the Random Cluster partition function at $\rho = 0$

$$Z_{\mathrm{OSP}(1|2)}(G; -\vec{w}/\lambda) = Z_{\mathrm{RC}}(G; \vec{w}; \lambda, \rho = 0)$$

at a perturbative level. For the ${\rm RP}^{0|2}$ model, the relation is non-perturbative.

...Let's prove it...

From the δ 's, for each i we have $\phi_i^2 + 2\lambda \bar{\psi}_i \psi_i = 1$.

$$\vec{\sigma}_i = \epsilon_i (\sqrt{1 - 2\lambda \bar{\psi}_i \psi_i}; \bar{\psi}_i, \psi_i) = \epsilon_i (1 - \lambda \bar{\psi}_i \psi_i; \bar{\psi}_i, \psi_i), \quad \left[\epsilon_i = \pm 1\right]$$

Forget about ϵ 's (say, all $+1$). [this why 'perturbative'...]

A Jacobian in the resolution of the δ 's gives

$$\prod_i \frac{1}{\sqrt{1 - 2\lambda \bar{\psi}_i \psi_i}} = \exp\left(\lambda \sum_i \bar{\psi}_i \psi_i\right)$$

OSP(1|2) – Spanning-Forest correspondence

<u>Theorem:</u> the OSP(1|2) non-linear σ -model partition function is related to the Random Cluster partition function at $\rho = 0$

$$Z_{\mathrm{OSP}(1|2)}(G; -\vec{w}/\lambda) = Z_{\mathrm{RC}}(G; \vec{w}; \lambda, \rho = 0)$$

at a perturbative level. For the $\mathrm{RP}^{0|2}$ model, the relation is non-perturbative.

...Let's prove it...

From the δ 's, for each i we have $\phi_i^2 + 2\lambda \bar{\psi}_i \psi_i = 1$.

$$\vec{\sigma}_i = \epsilon_i (\sqrt{1 - 2\lambda \bar{\psi}_i \psi_i}; \bar{\psi}_i, \psi_i) = \epsilon_i (1 - \lambda \bar{\psi}_i \psi_i; \bar{\psi}_i, \psi_i), \quad \left[\epsilon_i = \pm 1\right]$$

Forget about ϵ 's (say, all +1). [this why 'perturbative'...]

A Jacobian in the resolution of the δ 's gives

$$\prod_{i} \frac{1}{\sqrt{1 - 2\lambda \bar{\psi}_{i}\psi_{i}}} = \exp\left(\lambda \sum_{i} \bar{\psi}_{i}\psi_{i}\right)$$

The action, in both cases

OSP(1|2):
$$S = -\sum_{(ij)} \frac{w_{ij}}{\lambda} (1 - \vec{\sigma}_i \cdot \vec{\sigma}_j)$$

$$RP^{0|2}: \qquad S = -\sum_{(ij)} \frac{w_{ij}}{2\lambda} (1 - (\vec{\sigma}_i \cdot \vec{\sigma}_j)^2)$$

gives the peculiar expression

$$S = \sum_{(ij)} w_{ij} f_{ij}^{(\lambda)} \qquad f_{ij}^{(\lambda)} := (\bar{\psi}_i - \bar{\psi}_j)(\psi_i - \psi_j) - \lambda \bar{\psi}_i \psi_i \bar{\psi}_j \psi_j$$

and we are left to prove our "generalized Matrix-Tree theorem":

$$\int \mathcal{D}(\psi, \bar{\psi}) \, \exp \left[\lambda \bar{\psi} \psi + \sum_{(ij)} w_{ij} f_{ij}^{(\lambda)}\right] = Z_{\mathrm{RC}}(G; \vec{w}; \lambda, \rho = 0)$$

$$f_A = \lambda (1 - |A|) \tau_A + \sum_{i \in A} \tau_{A \setminus i} - \sum_{(i \neq j) \in A} \bar{\psi}_i \psi_j \tau_{A \setminus \{i,j\}}$$

$$f_A f_B = \begin{cases} f_{A \cup B} & |A \cap B| = 1\\ 0 & |A \cap B| \ge 2 \end{cases}$$
 (corollary: $f_{ij}^2 = 0$)

- ▶ Expand the action: $\exp\left(\sum_{(ij)} w_{ij} f_{ij}\right) = \sum_{E' \subseteq E(G)} \prod_{(ij) \in E'} w_{ij} f_{ij}$
- ▶ If H = (V, E') has any cycle, $\prod f_{ij} = 0$ by the lemma.
- ▶ Otherwise, it is a forest $F = \{T_{\alpha}\}$, and $\prod f_{ij} = \prod_{\alpha} f_{V(T_{\alpha})}$ (again by the lemma).

$$f_A = \lambda (1 - |A|) \tau_A + \sum_{i \in A} \tau_{A \setminus i} - \sum_{(i \neq j) \in A} \bar{\psi}_i \psi_j \tau_{A \setminus \{i,j\}}$$

$$f_A f_B = \begin{cases} f_{A \cup B} & |A \cap B| = 1 \\ 0 & |A \cap B| \ge 2 \end{cases}$$
 (corollary: $f_{ij}^2 = 0$)

- ▶ Expand the action: $\exp\left(\sum_{(ij)} w_{ij} f_{ij}\right) = \sum_{E' \subseteq E(G)} \prod_{(ij) \in E'} w_{ij} f_{ij}$
- ▶ If H = (V, E') has any cycle, $\prod f_{ij} = 0$ by the lemma.
- ▶ Otherwise, it is a forest $F = \{T_{\alpha}\}$, and $\prod f_{ij} = \prod_{\alpha} f_{V(T_{\alpha})}$ (again by the lemma).

$$f_A = \lambda (1 - |A|) \tau_A + \sum_{i \in A} \tau_{A \setminus i} - \sum_{(i \neq j) \in A} \bar{\psi}_i \psi_j \tau_{A \setminus \{i,j\}}$$

$$f_A f_B = \left\{ egin{array}{ll} f_{A \cup B} & |A \cap B| = 1 \\ 0 & |A \cap B| \geq 2 \end{array} \right. \quad \mbox{(corollary: } f_{ij}^2 = 0)$$

- ▶ Expand the action: $\exp\left(\sum_{(ij)} w_{ij} f_{ij}\right) = \sum_{E' \subseteq E(G)} \prod_{(ij) \in E'} w_{ij} f_{ij}$
- ▶ If H = (V, E') has any cycle, $\prod f_{ii} = 0$ by the lemma.
- ▶ Otherwise, it is a forest $F = \{T_{\alpha}\}$, and $\prod f_{ij} = \prod_{\alpha} f_{V(T_{\alpha})}$ (again by the lemma).

$$f_A = \lambda (1 - |A|) \tau_A + \sum_{i \in A} \tau_{A \setminus i} - \sum_{(i \neq j) \in A} \bar{\psi}_i \psi_j \tau_{A \setminus \{i,j\}}$$

$$f_A f_B = \begin{cases} f_{A \cup B} & |A \cap B| = 1 \\ 0 & |A \cap B| \ge 2 \end{cases}$$
 (corollary: $f_{ij}^2 = 0$)

- ▶ Expand the action: $\exp\left(\sum_{(ij)} w_{ij} f_{ij}\right) = \sum_{E' \subseteq E(G)} \prod_{(ij) \in E'} w_{ij} f_{ij}$
- ▶ If H = (V, E') has any cycle, $\prod f_{ii} = 0$ by the lemma.
- ▶ Otherwise, it is a forest $F = \{T_{\alpha}\}$, and $\prod f_{ij} = \prod_{\alpha} f_{V(T_{\alpha})}$ (again by the lemma).

$$f_A = \lambda (1 - |A|) \tau_A + \sum_{i \in A} \tau_{A \setminus i} - \sum_{(i \neq j) \in A} \bar{\psi}_i \psi_j \tau_{A \setminus \{i,j\}}$$

$$f_A f_B = \begin{cases} f_{A \cup B} & |A \cap B| = 1 \\ 0 & |A \cap B| \ge 2 \end{cases}$$
 (corollary: $f_{ij}^2 = 0$)

- ▶ Expand the action: $\exp\left(\sum_{(ij)} w_{ij} f_{ij}\right) = \sum_{E' \subseteq E(G)} \prod_{(ij) \in E'} w_{ij} f_{ij}$
- ▶ If H = (V, E') has any cycle, $\prod f_{ii} = 0$ by the lemma.
- Otherwise, it is a forest $F = \{T_{\alpha}\}$, and $\prod f_{ij} = \prod_{\alpha} f_{V(T_{\alpha})}$ (again by the lemma).

So, our fermionic integral has already been reduced to a sum over spanning forests, and factors w_{ij} are appropriate. We still have to prove that the remaining fermionic integral of each summand gives exactly $\lambda^{K(F)}$.

Of course, the integral factorizes on various $V(T_{\alpha})$, and we can concentrate on a single component, with $V(T_{\alpha}) = U$:

$$\int \mathcal{D}(\psi, \bar{\psi}) \prod_{i} (1 + \underbrace{\lambda \bar{\psi}_{i} \psi_{i}}) \left[\underbrace{\lambda (1 - |U|) \tau_{U}} + \sum_{i} \underbrace{\tau_{U \setminus i}} - \sum_{(i \neq j)} \bar{\psi}_{i} \psi_{j} \tau_{U \setminus \{i, j\}} \right]$$

Term \spadesuit contributes $\lambda(1-|U|)$. Terms \clubsuit_i contribute λ each. So we get a factor $\lambda(1-|U|+\sum_{i\in U}1)=\lambda$, as claimed.

Conclusions in the "continuum limit"

$$Z_{ ext{OSP(1|2)}} = \int \mathcal{D}(\psi, ar{\psi}) \, e^{\lambda ar{\psi}\psi + ar{\psi}
abla^2\psi + rac{\lambda}{2}ar{\psi}\psi
abla^2ar{\psi}\psi} = Z_{ ext{RC}}(\lambda,
ho = 0)$$

which generalizes Kirchhoff Theorem

$$Z'\left[egin{array}{l} {
m massless} \ {
m fermion} \end{array}
ight] = \int \mathcal{D}(\psi,ar{\psi})\,ar{\psi}_0\psi_0\,e^{ar{\psi}
abla^2\psi} = Z_{
m RC}(\lambda=0,
ho=0)$$

Of course, the theory at $\lambda=0$ (Spanning Trees) is critical. In D=2, it is a c=-2 logarithmic CFT.

O(n) model RG calculations say facts on Potts near q=0. In particular, in D=2, they predict asymptotic freedom in the region $\lambda>0$, perturbatively near 0.

Conclusions in the "continuum limit"

$$Z_{ ext{OSP(1|2)}} = \int \mathcal{D}(\psi, ar{\psi}) \, e^{\lambda ar{\psi}\psi + ar{\psi}
abla^2\psi + rac{\lambda}{2}ar{\psi}\psi
abla^2ar{\psi}\psi} = Z_{ ext{RC}}(\lambda,
ho = 0)$$

which generalizes Kirchhoff Theorem

$$Z'\left[egin{array}{l} {
m massless} \ {
m fermion} \end{array}
ight] = \int \mathcal{D}(\psi,ar{\psi})\,ar{\psi}_0\psi_0\,e^{ar{\psi}
abla^2\psi} = Z_{
m RC}(\lambda=0,
ho=0)$$

Of course, the theory at $\lambda=0$ (Spanning Trees) is critical. In D=2, it is a c=-2 logarithmic CFT.

O(n) model RG calculations say facts on Potts near q=0. In particular, in D=2, they predict asymptotic freedom in the region $\lambda>0$, perturbatively near 0.

Conclusions in the "continuum limit"

$$Z_{ ext{OSP(1|2)}} = \int \mathcal{D}(\psi, ar{\psi}) \, e^{\lambda ar{\psi}\psi + ar{\psi}
abla^2\psi + rac{\lambda}{2}ar{\psi}\psi
abla^2ar{\psi}\psi} = Z_{ ext{RC}}(\lambda,
ho = 0)$$

which generalizes Kirchhoff Theorem

$$Z'\left[egin{array}{l} {
m massless} \ {
m fermion} \end{array}
ight] = \int \mathcal{D}(\psi,ar{\psi})\,ar{\psi}_0\psi_0\,e^{ar{\psi}
abla^2\psi} = Z_{
m RC}(\lambda=0,
ho=0)$$

Of course, the theory at $\lambda=0$ (Spanning Trees) is critical. In D=2, it is a c=-2 logarithmic CFT.

O(n) model RG calculations say facts on Potts near q=0. In particular, in D=2, they predict asymptotic freedom in the region $\lambda>0$, perturbatively near 0.

Robustness of OSP(1|2) symmetry for interacting forests

E.g., our present understanding for Potts on the square lattice (combined with Baxter solution):

Robustness of OSP(1|2) symmetry for interacting forests

The set of $\{f_{ij}^{(\lambda)}\}_{1\leq i< j\leq n}$ generates all functions of scalar products $\{\vec{\sigma}_i\cdot\vec{\sigma}_j\}$ for n unit vectors in $\mathrm{RP}^{0|2}$, as an algebra of polynomials. So the most general function $\mathcal{S}(\bar{\psi},\psi)$ invariant under $\mathrm{OSP}(1|2)$ global rotation is of the form

$$S(\bar{\psi},\psi) = \sum_{(ij)} w_{ij} f_{ij} + \sum_{(ijk)} w_{ijk} f_{ijk} + \cdots + \sum_{(ij;kl)} w_{ij;kl} f_{ij} f_{kl} + \cdots$$

Represent terms as

Robustness of OSP(1|2) symmetry for interacting forests

The set of $\{f_{ij}^{(\lambda)}\}_{1\leq i< j\leq n}$ generates all functions of scalar products $\{\vec{\sigma}_i\cdot\vec{\sigma}_j\}$ for n unit vectors in $\mathrm{RP}^{0|2}$, as an algebra of polynomials. So the most general function $\mathcal{S}(\bar{\psi},\psi)$ invariant under $\mathrm{OSP}(1|2)$ global rotation is of the form

$$S(\bar{\psi},\psi) = \sum_{(ij)} w_{ij} f_{ij} + \sum_{(ijk)} w_{ijk} f_{ijk} + \cdots + \sum_{(ij;kl)} w_{ij;kl} f_{ij} f_{kl} + \cdots$$

Represent terms as

then

$$\int \mathcal{D}(\psi, \bar{\psi}) e^{\lambda \bar{\psi}\psi + \mathcal{S}(\bar{\psi}, \psi)} = \sum_{\substack{F \subseteq G \\ \text{hyperforests}}} \lambda^{K(F)} P(w; F)$$

The theorem

with G a hypergraph with edges $(i_1 \cdots i_k)$ corresponding to k-uples such that some coefficient w is non-zero, and P(w; F) is a polynomial in the w's whose k-uples appear as hyper-edges in F.

Even for the most general OSP(1|2)-invariant action, restriction to cycle-free sub-(hyper)graphs, i.e. forests, appears as an algebraic consequence of symmetry, and even at the level of the Grassmann sub-algebra of f_{ij} 's, before integration.

As $f_i=1$ and $f_\varnothing=\lambda$, the most general monomial in the polynomial algebra generated by f_{ij} 's is labeled by a partition $\mathcal{C}=(\mathcal{C}_1,\ldots,\mathcal{C}_k)$ of [n]:

$$C \in \Pi(n)$$
: $f_C := f_{C_1} \cdots f_{C_k}$

- ▶ Which dimension has the linear space?
- ▶ There is any natural non-redundant basis of f_C 's?
- ▶ Which relations do generate the kernel?

As $f_i=1$ and $f_\varnothing=\lambda$, the most general monomial in the polynomial algebra generated by f_{ij} 's is labeled by a partition $\mathcal{C}=(\mathcal{C}_1,\ldots,\mathcal{C}_k)$ of [n]:

$$C \in \Pi(n)$$
: $f_C := f_{C_1} \cdots f_{C_k}$

- ▶ Which dimension has the linear space?
- ▶ There is any natural non-redundant basis of f_C 's?
- ▶ Which relations do generate the kernel?

As $f_i=1$ and $f_\varnothing=\lambda$, the most general monomial in the polynomial algebra generated by f_{ij} 's is labeled by a partition $\mathcal{C}=(\mathcal{C}_1,\ldots,\mathcal{C}_k)$ of [n]:

$$C \in \Pi(n)$$
: $f_C := f_{C_1} \cdots f_{C_k}$

- Which dimension has the linear space?
- ▶ There is any natural non-redundant basis of f_C 's?
- Which relations do generate the kernel?

As $f_i=1$ and $f_\varnothing=\lambda$, the most general monomial in the polynomial algebra generated by f_{ij} 's is labeled by a partition $\mathcal{C}=(\mathcal{C}_1,\ldots,\mathcal{C}_k)$ of [n]:

$$C \in \Pi(n)$$
: $f_C := f_{C_1} \cdots f_{C_k}$

- Which dimension has the linear space?
- ▶ There is any natural non-redundant basis of f_C 's?
- ▶ Which relations do generate the kernel?

a few answers...

- **1** The dimension of the linear space is $C_n = \frac{1}{n+1} {2n \choose n} \sim 4^n n^{-3/2}$, the *n*-th Catalan number;
- A basis is NC(n), the non-crossing partitions. $C \in NC(n)$ iff for all A, B distinct blocks of C, and all a, $c \in A$ and b, $d \in B$, it is never a < b < c < d.

3 A single 4-point relation generates the kernel:

$$R_{abcd} = \lambda f_{abcd} + f_{ab}f_{cd} + f_{ac}f_{bd} + f_{ad}f_{bc} - f_{abc} - f_{abd} - f_{acd} - f_{bcd} = 0$$

a few answers...

- **1** The dimension of the linear space is $C_n = \frac{1}{n+1} {2n \choose n} \sim 4^n n^{-3/2}$, the *n*-th Catalan number:
- A basis is NC(n), the non-crossing partitions. $C \in NC(n)$ iff for all A, B distinct blocks of C, and all a, $c \in A$ and b, $d \in B$, it is never a < b < c < d.

3 A single 4-point relation generates the kernel:

$$R_{abcd} = \lambda f_{abcd} + f_{ab}f_{cd} + f_{ac}f_{bd} + f_{ad}f_{bc} - f_{abc} - f_{abd} - f_{acd} - f_{bcd} = 0$$

a few answers...

- The dimension of the linear space is $C_n = \frac{1}{n+1} {2n \choose n} \sim 4^n n^{-3/2}$, the *n*-th Catalan number:
- A basis is NC(n), the non-crossing partitions. $C \in NC(n)$ iff for all A, B distinct blocks of C, and all a, $c \in A$ and b, $d \in B$, it is never a < b < c < d.

- **3** A single 4-point relation generates the kernel:
- $R_{abcd} = \lambda f_{abcd} + f_{ab}f_{cd} + f_{ac}f_{bd} + f_{ad}f_{bc} f_{abc} f_{abd} f_{acd} f_{bcd} = 0$

A better look at $R_{abcd} = 0$

Can be used to recursively write a $f_{\mathcal{C}}$ with \mathcal{C} crossing as a linear combination of $f_{\mathcal{C}'}$'s, with all \mathcal{C}' non-crossing.

Consider Clifford Algebra. Other OSP(1|2)-invariant objects are:

$$p_i := \partial_i \bar{\partial}_i (1 + \lambda \bar{\psi}_i \psi_i) = \int \mathrm{d}\psi_i \mathrm{d}\bar{\psi}_i e^{\lambda \bar{\psi}_i \psi_i}$$

Some algebra:

$$p_i^2 = \lambda p_i$$
; $[p_i, p_j] = \underbrace{[p_i, f_{jk}] = 0}_{i \neq i, k}$; $(p_i f_A) = f_{A \setminus i}$ if $i \in A$.

A better look at $R_{abcd} = 0$

$$\lambda f_{abcd} \quad f_{ab} f_{cd} \quad f_{ac} f_{bd} \quad f_{ad} f_{bc} \quad -f_{abc} \quad -f_{abd} \quad -f_{acd} \quad -f_{bcd}$$

$$\stackrel{a}{\swarrow} \stackrel{d}{\swarrow} \stackrel{d$$

Can be used to recursively write a $f_{\mathcal{C}}$ with \mathcal{C} crossing as a linear combination of $f_{\mathcal{C}'}$'s, with all \mathcal{C}' non-crossing.

Consider Clifford Algebra. Other OSP(1|2)-invariant objects are:

$$p_i := \partial_i \bar{\partial}_i (1 + \lambda \bar{\psi}_i \psi_i) = \int \mathrm{d}\psi_i \mathrm{d}\bar{\psi}_i e^{\lambda \bar{\psi}_i \psi_i}$$

Some algebra:

$$p_i^2 = \lambda p_i$$
; $[p_i, p_j] = \underbrace{[p_i, f_{jk}] = 0}_{i \neq i,k}$; $(p_i f_A) = f_{A \setminus i}$ if $i \in A$.

Clifford Algebra and $R_{ac}^b = 0$

With p_i 's we get a three-point relation in Clifford Algebra: $R_{ac}^b = 0$. It is an easy check that $R_{ac}^b f_{bd} = R_{abcd}$.

Compare the terms appearing in R_{abcd} and in R_{ac}^b :

Exchange operator and $R^{ab} = 0$

Another interesting $\mathrm{OSP}(1|2)$ -invariant in Clifford Algebra is the "exchange" operator

$$\begin{split} B_{ab} &:= \left(1 - (\bar{\psi}_{a} - \bar{\psi}_{b})(\bar{\partial}_{a} - \bar{\partial}_{b})\right) \left(1 - (\psi_{a} - \psi_{b})(\partial_{a} - \partial_{b})\right) \\ B_{ab} P(\bar{\psi}_{a}, \psi_{a}, \bar{\partial}_{a}, \partial_{a}, \bar{\psi}_{b}, \cdots) &= P(\bar{\psi}_{b}, \psi_{b}, \bar{\partial}_{b}, \partial_{b}, \bar{\psi}_{a}, \cdots) B_{ab} \end{split}$$

With B_{ab} we can build a two-point relation $R^{ab} = 0$:

and $R^{bc}f_{ab}f_{cd} = R_{abcd}$.

Comments on R_{abcd} , R_{ac}^{b} and R^{ab}

The three relations $R_{abcd}=0$, $R_{ac}^b=0$ and $R^{ab}=0$ are different forms of a single "fundamental" $\mathrm{OSP}(1|2)$ relation, which, at a level of diagrams, relates the only 4-point crossing partition to the other seven 2-block non-crossing ones.

They all involve eight fermions, and have eight terms, four positive and four negative.

A version of $R_{abcd}=0$ for $\lambda=0$ (thus with seven terms) was also in [Kenyon-Wilson, 2006].

An important completeness proof for the set of related observables is in [Ko-Smolinsky, 1991] and [Di Francesco-Golinelli-Guittier, 1996]. It is at $\lambda=0$, but extends immediately from block-triangularity of the T-L Gram matrix.

Comments on R_{abcd} , R_{ac}^{b} and R^{ab}

The three relations $R_{abcd}=0$, $R_{ac}^b=0$ and $R^{ab}=0$ are different forms of a single "fundamental" $\mathrm{OSP}(1|2)$ relation, which, at a level of diagrams, relates the only 4-point crossing partition to the other seven 2-block non-crossing ones.

They all involve eight fermions, and have eight terms, four positive and four negative.

A version of $R_{abcd}=0$ for $\lambda=0$ (thus with seven terms) was also in [Kenyon-Wilson, 2006].

An important completeness proof for the set of related observables is in [Ko-Smolinsky, 1991] and [Di Francesco-Golinelli-Guittier, 1996]. It is at $\lambda=0$, but extends immediately from block-triangularity of the T-L Gram matrix.

Recognizing even/odd Temperley-Lieb

We have seen some algebraic rules for f_{ij} 's and p_i 's:

$$f_{i\,i+1}^2 = 0$$
; $[f_{i\,i+1}, f_{j\,j+1}] = 0$; $f_{i\,i\pm 1} p_i f_{i\,i\pm 1} = f_{i\,i\pm 1}$; $p_i^2 = \lambda p_i$; $[p_i, p_j] = 0$; $p_i f_{i\,i\pm 1} p_i = p_i$; $[p_i, f_{j\,j+1}] = 0$ if $j \neq i, i-1$.

...look similar to Temperley-Lieb Algebra [1971],

$$e_i^2 = \lambda e_i$$
; $e_i e_{i\pm 1} e_i = e_i$; $[e_i, e_j] = 0$ if $|i - j| \ge 2$.

by identifying $e_{2i} = p_i$ and $e_{2i+1} = f_{i\,i+1}$, but $e_i^2 = \lambda_{\text{parity}(i)}$ with $\lambda_{\text{even}} = \lambda$ and $\lambda_{\text{odd}} = 0$.

...comments on Temperley-Lieb

Indeed, T-L describes the transfer matrix of the Random Cluster Model, on planar graphs, at $\lambda=\rho=\sqrt{q}$, and allows to "integrate" the model, say on the square lattice, on Baxter critical parabola.

Instead, this algebra describes the line $\lambda > 0$, $\rho = 0$ corresponding to spanning forests.

As a result of $\rho=0$, we do not need to deal with L(H), and through $R_{abcd}=0$ we can build a transfer matrix on $\mathrm{NC}(n)$ also for non-planar graphs.

This is related to a modification of Martin-Saleur Partition Algebra [1993], in which cycles are forbidden.

...comments on Temperley-Lieb

Indeed, T-L describes the transfer matrix of the Random Cluster Model, on planar graphs, at $\lambda=\rho=\sqrt{q}$, and allows to "integrate" the model, say on the square lattice, on Baxter critical parabola.

Instead, this algebra describes the line $\lambda > 0$, $\rho = 0$ corresponding to spanning forests.

As a result of $\rho=0$, we do not need to deal with L(H), and through $R_{abcd}=0$ we can build a transfer matrix on NC(n) also for non-planar graphs.

This is related to a modification of Martin-Saleur Partition Algebra [1993], in which cycles are forbidden.

...comments on Temperley-Lieb

Indeed, T-L describes the transfer matrix of the Random Cluster Model, on planar graphs, at $\lambda=\rho=\sqrt{q}$, and allows to "integrate" the model, say on the square lattice, on Baxter critical parabola.

Instead, this algebra describes the line $\lambda > 0$, $\rho = 0$ corresponding to spanning forests.

As a result of $\rho=0$, we do not need to deal with L(H), and through $R_{abcd}=0$ we can build a transfer matrix on $\mathrm{NC}(n)$ also for non-planar graphs.

This is related to a modification of Martin-Saleur Partition Algebra [1993], in which cycles are forbidden.

- ▶ We put in correspondence the OSP(1|2) non-linear σ -model with Spanning Forests, i.e. Potts Model for $q \to 0$ and $v_{ij}/q = w_{ij}$ fixed.
- ► Even the most general OSP(1|2)-invariant action admits a combinatorial expansion in terms of sub-hyperforests only (no cycles in subgraphs). The symmetry is a precious guideline when building proofs.
- ▶ Study of linear independence in the symmetric subalgebra led to a 'fundamental' relation $R_{abcd} = 0$, generalizing the one for spanning trees, i.e. free-fermion theory.
- ► The tools developed led naturally to an algebra representing the "Even/odd" Temperley-Lieb.

- ▶ We put in correspondence the OSP(1|2) non-linear σ -model with Spanning Forests, i.e. Potts Model for $q \to 0$ and $v_{ij}/q = w_{ij}$ fixed.
- ► Even the most general OSP(1|2)-invariant action admits a combinatorial expansion in terms of sub-hyperforests only (no cycles in subgraphs). The symmetry is a precious guideline when building proofs.
- ▶ Study of linear independence in the symmetric subalgebra led to a 'fundamental' relation $R_{abcd} = 0$, generalizing the one for spanning trees, i.e. free-fermion theory.
- ► The tools developed led naturally to an algebra representing the "Even/odd" Temperley-Lieb.

- ▶ We put in correspondence the OSP(1|2) non-linear σ -model with Spanning Forests, i.e. Potts Model for $q \to 0$ and $v_{ij}/q = w_{ij}$ fixed.
- ► Even the most general OSP(1|2)-invariant action admits a combinatorial expansion in terms of sub-hyperforests only (no cycles in subgraphs). The symmetry is a precious guideline when building proofs.
- ▶ Study of linear independence in the symmetric subalgebra led to a 'fundamental' relation $R_{abcd} = 0$, generalizing the one for spanning trees, i.e. free-fermion theory.
- ► The tools developed led naturally to an algebra representing the "Even/odd" Temperley-Lieb.

- ▶ We put in correspondence the OSP(1|2) non-linear σ -model with Spanning Forests, i.e. Potts Model for $q \to 0$ and $v_{ij}/q = w_{ij}$ fixed.
- ► Even the most general OSP(1|2)-invariant action admits a combinatorial expansion in terms of sub-hyperforests only (no cycles in subgraphs). The symmetry is a precious guideline when building proofs.
- ▶ Study of linear independence in the symmetric subalgebra led to a 'fundamental' relation $R_{abcd} = 0$, generalizing the one for spanning trees, i.e. free-fermion theory.
- ► The tools developed led naturally to an algebra representing the "Even/odd" Temperley-Lieb.

- Combinatorial interpretation of fermionic observables.
 Probabilistic understanding of Ward identities.
- ► Raise to a OSP(1|2m)-Spanning-Forest relation. For higher m, can access more probabilistic observables, and build more faithful representations of Partition Algebra.
- ► You can add a "vector field", and count unicyclics with topological weights proportional to the circuitation.
- Relation between Spanning Forests and Abelian Sandpile Model, through Dhar work and a Biggs-Merino theorem.
- ► In the ASM, our fermionic methods allow to manipulate Dhar invariants Q_i. Understanding the group structure of the recurrent configurations, beside mere counting!

- Combinatorial interpretation of fermionic observables.
 Probabilistic understanding of Ward identities.
- ▶ Raise to a OSP(1|2m)-Spanning-Forest relation. For higher m, can access more probabilistic observables, and build more faithful representations of Partition Algebra.
- ➤ You can add a "vector field", and count unicyclics with topological weights proportional to the circuitation.
- Relation between Spanning Forests and Abelian Sandpile Model, through Dhar work and a Biggs-Merino theorem.
- ▶ In the ASM, our fermionic methods allow to manipulate Dhar invariants *Q_i*. Understanding the group structure of the recurrent configurations, beside mere counting!

- Combinatorial interpretation of fermionic observables.
 Probabilistic understanding of Ward identities.
- ► Raise to a OSP(1|2m)-Spanning-Forest relation. For higher m, can access more probabilistic observables, and build more faithful representations of Partition Algebra.
- You can add a "vector field", and count unicyclics with topological weights proportional to the circuitation.
- Relation between Spanning Forests and Abelian Sandpile Model, through Dhar work and a Biggs-Merino theorem.
- ▶ In the ASM, our fermionic methods allow to manipulate Dhar invariants *Q_i*. Understanding the group structure of the recurrent configurations, beside mere counting!

- Combinatorial interpretation of fermionic observables.
 Probabilistic understanding of Ward identities.
- ► Raise to a OSP(1|2m)-Spanning-Forest relation. For higher m, can access more probabilistic observables, and build more faithful representations of Partition Algebra.
- You can add a "vector field", and count unicyclics with topological weights proportional to the circuitation.
- Relation between Spanning Forests and Abelian Sandpile Model, through Dhar work and a Biggs-Merino theorem.
- ▶ In the ASM, our fermionic methods allow to manipulate Dhar invariants *Q_i*. Understanding the group structure of the recurrent configurations, beside mere counting!

- Combinatorial interpretation of fermionic observables.
 Probabilistic understanding of Ward identities.
- ▶ Raise to a OSP(1|2m)-Spanning-Forest relation. For higher m, can access more probabilistic observables, and build more faithful representations of Partition Algebra.
- You can add a "vector field", and count unicyclics with topological weights proportional to the circuitation.
- Relation between Spanning Forests and Abelian Sandpile Model, through Dhar work and a Biggs-Merino theorem.
- ▶ In the ASM, our fermionic methods allow to manipulate Dhar invariants *Q_i*. Understanding the group structure of the recurrent configurations, beside mere counting!

- Combinatorial interpretation of fermionic observables.
 Probabilistic understanding of Ward identities.
- ▶ Raise to a OSP(1|2m)-Spanning-Forest relation. For higher m, can access more probabilistic observables, and build more faithful representations of Partition Algebra.
- You can add a "vector field", and count unicyclics with topological weights proportional to the circuitation.
- Relation between Spanning Forests and Abelian Sandpile Model, through Dhar work and a Biggs-Merino theorem.
- ▶ In the ASM, our fermionic methods allow to manipulate Dhar invariants Q_i. Understanding the group structure of the recurrent configurations, beside mere counting!

